JPH07175276A - Electrophotographic device - Google Patents

Electrophotographic device

Info

Publication number
JPH07175276A
JPH07175276A JP6197225A JP19722594A JPH07175276A JP H07175276 A JPH07175276 A JP H07175276A JP 6197225 A JP6197225 A JP 6197225A JP 19722594 A JP19722594 A JP 19722594A JP H07175276 A JPH07175276 A JP H07175276A
Authority
JP
Japan
Prior art keywords
image
drum
photoconductor
surface potential
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6197225A
Other languages
Japanese (ja)
Inventor
Tadashi Oba
忠志 大庭
Keiji Iwashima
圭司 厳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6197225A priority Critical patent/JPH07175276A/en
Priority to US08/332,481 priority patent/US5729800A/en
Publication of JPH07175276A publication Critical patent/JPH07175276A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrophotographic device forming a distinct image without causing image flowing and fogging as an electro-photographic device performing uniform electrostatic charging to a photoreceptor,, including a discharge phenomenon. CONSTITUTION:This electrophotographic device is equipped with an electrostatic charging means performing the uniform electrostatic charging by corona discharge or by the electrostatic charging means such as an electrostatic charging roller or the like, and exposing and developing means forming the image by reversal development. A photoreceptive layer is formed of an a-Si layer whose film thickness is <=25mum and the surface potential Vo of the photoreceptor generated by the discharge phenomenon is set to <= about 360V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はa−Siドラムを用いた
プリンタ、複写機、ファクシミリ等の電子写真装置に適
用される発明に係り、特に放電現象を含んで感光体に均
一帯電を行う電子写真装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an invention applied to an electrophotographic apparatus using a-Si drum, such as a printer, a copying machine, a facsimile, etc., and particularly to an electronic apparatus for uniformly charging a photosensitive member including a discharge phenomenon. Regarding photographic equipment.

【0002】[0002]

【従来の技術】従来より感光体ドラム外周面上に、露
光、現像、転写、クリーニング(残留トナー除去)、除
電、及び帯電の各プロセス手段を配置し、所定の電子写
真プロセスにより画像形成を行なう、いわゆるカールソ
ンプロセスに基づく電子写真装置は周知である。
2. Description of the Related Art Conventionally, process means for exposing, developing, transferring, cleaning (removing residual toner), discharging, and charging are arranged on the outer peripheral surface of a photosensitive drum, and an image is formed by a predetermined electrophotographic process. Electrophotographic devices based on the so-called Carlson process are well known.

【0003】この種の電子写真装置においては、感光体
表面に均一帯電を図るために一般にコロナ放電を利用し
て帯電を行っているが、コロナ放電は一般に4〜8KV
以上の高電圧をワイヤ印加する必要があり、この為前記
コロナ放電によってオゾンやその放電生成物である窒素
酸化物やアンモニウム塩が発生し、これらが感光体表面
に吸着して画像流れが生じ易くなる。そして前記画像流
れは、高湿度環境下において著しい。一方電子写真装置
に用いる感光体ドラムには近年耐久性の向上とフリーメ
インテナンス化を図るために、a−Siドラムを用いて
いるものがあるが、a−Siは、OPCその他の有機半
導体に比較して吸水性が高くこの為前記画像流れはa−
Siドラムに多く発生しやすい。そこで従来技術におい
ては前記感光体ドラムの背面側にシートヒータその他の
ヒート体を配し、感光体ドラムを加熱する事により前記
像流れの発生を防止している。又前記窒素酸化物の生成
はOPCドラムのような軟質なドラムでは転写後残留ト
ナーを除去するクリーニングブレードの摺擦によりその
表面が微小に削り取られる為、問題が顕在化しにくい
が、a−Si系ドラムは硬質である為に前記欠点が顕在
化し易い。この為a−Siドラムにおいては研磨ブレー
ドや研磨ローラを用いて感光体ドラム表面を研磨して前
記生成物を除去しながら像流れの発生を防止していた。
In this type of electrophotographic apparatus, generally, corona discharge is used to charge the surface of the photosensitive member, but the corona discharge is generally 4 to 8 KV.
It is necessary to apply the above high voltage to the wire, so that ozone or nitrogen oxide or ammonium salt which is a discharge product thereof is generated by the corona discharge, and these are easily adsorbed on the surface of the photoconductor to cause image deletion. Become. The image deletion is remarkable in a high humidity environment. On the other hand, some photosensitive drums used in electrophotographic apparatuses use a-Si drums in recent years in order to improve durability and achieve free maintenance. However, a-Si is compared to OPC and other organic semiconductors. Since the water absorption is high, the image flow is a-
Most likely to occur on Si drums. Therefore, in the prior art, a sheet heater or other heating body is arranged on the back side of the photosensitive drum to heat the photosensitive drum to prevent the image deletion. In addition, since the surface of the nitrogen oxide is slightly scraped off by a rubbing of a cleaning blade that removes residual toner after transfer on a soft drum such as an OPC drum, the problem is less likely to be manifested. Since the drum is hard, the above-mentioned defects are likely to be revealed. Therefore, in the a-Si drum, the surface of the photoconductor drum is polished by using a polishing blade or a polishing roller to remove the above-mentioned products and prevent the occurrence of image deletion.

【0004】[0004]

【発明が解決しようとする課題】前記したようにa−S
iドラムは有機半導体ドラムに比較して硬質で耐久性が
極めてよいにも拘らず、その耐久性とフリーメインテナ
ンス化を図るために、前記したヒータを設けたり、又研
磨手段を設けねばならず、その構成が極めて煩雑化す
る。かかる欠点を解消するために、感光体ドラム上に導
電性ローラを接触させ、該導電性ローラに直流電圧を印
加して暗所で感光体ドラムの接触帯電を行うように構成
したローラ帯電方式が存在する。しかしながらかかる帯
電方式においても、感光体ドラムと帯電ローラとの間に
微小楔状空隙が存在するために、その部分で僅かながら
放電現象が生じ、オゾンの発生が認められ、前記した欠
点を必ずしも解消し得ない。かかる欠点を解消するため
に、前記帯電手段に粒子帯電手段を用いた技術も開示さ
れているが、粒子帯電手段は感光体側を開口した状態で
粒子を帯電容器内に収納せねばならず、その取扱いが煩
雑化するのみならず、粒子が感光体と常に摺擦されなが
ら均一帯電を行うために、粒子の疲労が生じやすく、や
はり耐久性に乏しい。
As mentioned above, a-S
Although the i-drum is harder and has excellent durability as compared with the organic semiconductor drum, it is necessary to provide the above-mentioned heater or polishing means in order to achieve durability and free maintenance. The configuration becomes extremely complicated. In order to solve such a drawback, a roller charging method is configured in which a conductive roller is brought into contact with the photosensitive drum, and a DC voltage is applied to the conductive roller to perform contact charging of the photosensitive drum in a dark place. Exists. However, even in such a charging method, since there is a minute wedge-shaped void between the photosensitive drum and the charging roller, a slight discharge phenomenon occurs at that portion, and ozone generation is recognized. I don't get it. In order to solve such a drawback, a technique using a particle charging means as the charging means is also disclosed, but the particle charging means must store the particles in a charging container in a state where the photosensitive member side is opened. Not only is the handling complicated, but since particles are uniformly rubbed against the photosensitive member and are uniformly charged, fatigue of the particles easily occurs and durability is also poor.

【0005】本発明はかかる従来技術の欠点に鑑み、a
−Siドラムを用い、又コロナ放電器や帯電ローラ、更
には帯電ブラシのように、放電現象を含んで感光体に均
一帯電を行った電子写真装置において像流れやかぶりが
生じることなく鮮明画像を形成し得る電子写真装置を提
供する事を目的とする。
In view of the drawbacks of the prior art, the present invention has
-A clear image can be obtained without causing image deletion or fog in an electrophotographic apparatus in which a photoconductor is uniformly charged by including a discharge phenomenon, such as a corona discharger, a charging roller, and a charging brush, using a Si drum. An object is to provide an electrophotographic apparatus that can be formed.

【0006】本発明の他の目的は、a−Siドラムを用
いた電子写真装置において構成の簡単化や安全性を配慮
しつつ、又温度等の環境変動によってもかぶりや像流れ
が発生することなく鮮明画像が形成し得る電子写真装置
を提供する事にある。
Another object of the present invention is that, in an electrophotographic apparatus using an a-Si drum, fogging and image deletion may occur due to environmental changes such as temperature while considering simplification and safety. An object of the present invention is to provide an electrophotographic apparatus capable of forming a clear image without any trouble.

【0007】[0007]

【課題を解決するための手段】先ず、像流れの原因につ
いて説明する。電子写真装置に用いられる現像方式に
は、複写機等に用いられる現像方式のように、感光体ド
ラムの表面電位と逆極性の電荷を磁性トナーに注入さ
せ、均一帯電させた感光体ドラムの画像背景部を露光さ
せた後、露光されていない潜像部に、逆極性の電荷を磁
性トナーを付着させる正転現像方式と、プリンタに用い
られる現像方式のように、、感光体ドラムの表面電位と
逆極性の電荷を有する磁性トナーに注入させ、均一帯電
させた感光体ドラムの画像背景部を露光させた後、露光
されていない潜像部に、逆極性の電荷を磁性トナーを付
着させる正転現像方式と、プリンタに用いられる現像方
式のように、感光体ドラムの表面電位と同極性の電荷を
磁性トナーに注入させ、均一帯電させた感光体ドラムに
画像を露光させて電荷が除去された潜像を形成した後、
該潜像に、現像バイアスを利用して同極性の電荷を有す
る磁性トナーを付着させる反転現像方式とが存在する。
First, the cause of image deletion will be described. The developing method used in electrophotographic devices is the same as the developing method used in copying machines, in which an electric charge having a polarity opposite to the surface potential of the photosensitive drum is injected into the magnetic toner to uniformly charge the image on the photosensitive drum. After exposing the background area, the surface potential of the photoconductor drum is different from that of the normal development method in which magnetic toner is applied with an electric charge of opposite polarity to the unexposed latent image area and the development method used in printers. After exposing the image background of the photoconductor drum that has been uniformly charged by injecting it into the magnetic toner that has the opposite polarity, the positive polarity that attaches the opposite polarity to the magnetic toner is applied to the unexposed latent image area. Similar to the transfer developing method and the developing method used in printers, charges having the same polarity as the surface potential of the photosensitive drum are injected into the magnetic toner, and the image is exposed on the uniformly charged photosensitive drum to remove the charges. Diving After the formation of the,
There is a reversal development method in which a magnetic toner having a charge of the same polarity is attached to the latent image by utilizing a development bias.

【0008】そして、特に反転現像方式においては、図
1(A)に示すように、感光体上に所定電位の表面電位
Voを均一帯電させた後、露光を行うことにより逆正規
分布状の潜像電位分布が形成され、その分布の閾値レベ
ルVB より低下した部分にトナーが付着されるのであ
る。即ち、反転現像では閾値レベルVB でトナードット
径Dが決る。
In the reversal development method, in particular, as shown in FIG. 1 (A), after a surface potential Vo having a predetermined potential is uniformly charged on the photosensitive member, the latent image having the inverse normal distribution is formed by exposing. The image potential distribution is formed, and the toner is attached to the portion where the distribution is lower than the threshold level V B. That is, in the reversal development, the toner dot diameter D is determined by the threshold level V B.

【0009】一方a−Si感光体において、帯電時にお
ける放電現象に伴うオゾン発生や放電生成物のドラム付
着により、感光体表面の吸湿性が高くなり、高湿環境下
においてドラム表面抵抗が低下し、表面電位Vo’が低
下する。そして前記したように、トナードット径Dは閾
値レベルVB で決るために、表面電位Vo’が低下する
と、対応する潜像電位分布のドット径D’が大きくな
り、ぼけた画像、即ち画像流れが生じやすい。従って画
像流れを防止するには、吸湿性に起因する表面電位の低
下量(Vo−Vo')を下げること。及び前記潜像電位分
布を先鋭化し、表面電位Vo’が低下してもドット径が
大きくなることを防止することが必要である。
On the other hand, in the a-Si photosensitive member, ozone is generated due to the discharge phenomenon at the time of charging and the discharge product adheres to the drum, so that the surface of the photosensitive member has a high hygroscopic property and the surface resistance of the drum is lowered in a high humidity environment. , The surface potential Vo ′ decreases. As described above, since the toner dot diameter D is determined by the threshold level V B , when the surface potential Vo ′ decreases, the dot diameter D ′ of the corresponding latent image potential distribution increases, resulting in a blurred image, that is, image deletion. Is likely to occur. Therefore, in order to prevent image deletion, the amount of decrease in surface potential (Vo-Vo ') due to hygroscopicity should be reduced. Further, it is necessary to sharpen the latent image potential distribution and prevent the dot diameter from increasing even if the surface potential Vo ′ decreases.

【0010】そこで本発明は図2においてドラム膜厚と
線幅との関係を検討し、感光体膜厚が40μm以下の場
合の線幅は、25μm以下の場合の線幅に比較して太
く、その分先鋭度と解像度が低下している事が理解され
る。又25μm以下の場合は、先鋭度も解像度もほぼ一
致しており、有意差はないことを把握した。又図4より
明らかなように、膜厚40μmの場合に比較して、7μ
m、15μmのものは焦点深度が370μmと、焦点深
度が2倍弱向上する事になり、そして焦点深度が大にな
ることは、表面電位Vo’が低下した場合においても先
鋭度を維持することが出来ることを示している。
Therefore, in the present invention, the relationship between the drum film thickness and the line width is examined in FIG. 2, and the line width when the photoconductor film thickness is 40 μm or less is thicker than the line width when it is 25 μm or less. It is understood that the sharpness and the resolution are reduced accordingly. Further, when the thickness is 25 μm or less, the sharpness and the resolution are almost the same, and it is understood that there is no significant difference. Moreover, as is clear from FIG.
The depth of focus is 370 μm for m and 15 μm, which means that the depth of focus is slightly more than doubled, and the larger depth of focus means that the sharpness is maintained even when the surface potential Vo ′ decreases. Indicates that you can.

【0011】このことより、図1(B)に示すように、
感光体膜厚を25μm以下、好ましくは20μm以下、
更に好ましくは15μm以下にすると、潜像電位分布が
先鋭化し、閾値レベルVB で決るトナードット径Dが小
さくなるとともに、表面電位Vo’の低下によってもド
ット径Dの変動が小さく、従ってぼけの発生も低下す
る。
From this, as shown in FIG. 1 (B),
The thickness of the photoreceptor is 25 μm or less, preferably 20 μm or less,
More preferably, if it is set to 15 μm or less, the latent image potential distribution becomes sharp, the toner dot diameter D determined by the threshold level V B becomes small, and the fluctuation of the dot diameter D becomes small due to the decrease of the surface potential Vo ′. Occurrence also decreases.

【0012】従ってa−Si系材料で感光体を形成する
場合は膜厚を薄くする事により、少ない光出力でも所定
の表面電位Vo’を得る事が出来るが、その下限は略2
μmに設定するのが好ましい。その理由は、LED等の
700nm前後の波長の露光手段に用いた場合、例えば
a−Si:H材の入射光の90%が吸収されるまでの膜
厚は約2.2μmであることに鑑み、その下限値を2μ
mに設定するのがよい。
Therefore, when the photoconductor is formed of an a-Si material, the predetermined surface potential Vo 'can be obtained with a small light output by reducing the film thickness, but the lower limit is about 2.
It is preferably set to μm. The reason is that, when used for an exposure means such as an LED having a wavelength of about 700 nm, for example, the film thickness of the a-Si: H material until 90% of incident light is absorbed is about 2.2 μm. , Its lower limit is 2μ
It is better to set to m.

【0013】又吸湿性に起因する表面電位の低下量(V
o−Vo')を下げるには、帯電表面電位VO 自体を下げ
ればよく、而も図5より理解される通り、ドラム膜厚を
薄膜化するにつれ、温度変動に起因する表面電位Vo’
の変動が小さくなることが知見され、40μmのドラム
膜厚を有する感光体ドラムにおいては、10〜40℃の
電位変化量が80V(2.7V/℃)であるのに対し、
25μm、15μmの感光体ドラムにおいては、温度依
存性が大幅に低下し10〜40℃の電位変化量は前者が
30V(1.0V/℃)、後者が15V(0.5V/
℃)であった。一方a−Si感光体の場合は、耐膜厚が
12〜15v/μmである為、膜厚25μm以下に設定
した場合には表面電位Voを360V以下に設定するこ
とによりぼけ画像の防止とともに、長期使用による膜厚
劣化も防止できる。
The amount of decrease in surface potential (V
In order to lower the (o−Vo ′), the charged surface potential V O itself may be lowered, and as can be understood from FIG. 5, the surface potential Vo ′ caused by the temperature fluctuation is reduced as the drum film thickness is reduced.
Was found to be small, and in the photosensitive drum having a drum film thickness of 40 μm, the potential change amount of 10 to 40 ° C. was 80 V (2.7 V / ° C.),
In the case of 25 μm and 15 μm photosensitive drums, the temperature dependence is greatly reduced, and the potential change amount of 10 to 40 ° C. is 30 V (1.0 V / ° C.) for the former and 15 V (0.5 V / 0.5 V for the latter).
℃). On the other hand, in the case of the a-Si photoconductor, the withstand film thickness is 12 to 15 v / μm. Therefore, when the film thickness is set to 25 μm or less, the surface potential Vo is set to 360 V or less to prevent the blurred image and It is possible to prevent film thickness deterioration due to long-term use.

【0014】又、通常複写機やプリンタが設置されてい
る環境は、職員が快適に仕事が出来るように、夏は冷
房、冬は暖房の空調がなされているオフィス内に配置さ
れており、この為、オフィス内は外気ほど温度の高低差
はなく、朝方の冷房や暖房が十分利いていないときであ
っても、その温度差はせいぜい30℃前後である。この
為、例えば感光体ドラムの表面電位Voを略300Vに
設定した場合、長期使用によるかぶりの許容範囲が±2
5Vなので膜厚25μm以下ならばドラムヒータなしで
使用出来ることも理解できる。
The environment in which a copying machine or a printer is usually installed is set in an office where air conditioning is performed in the summer and heating in the winter so that the staff can work comfortably. Therefore, there is no temperature difference in the office as much as the outside air, and the temperature difference is around 30 ° C at most even when the air conditioning and heating in the morning are not sufficiently effective. Therefore, for example, when the surface potential Vo of the photosensitive drum is set to approximately 300 V, the permissible range of fogging due to long-term use is ± 2.
Since it is 5 V, it can be understood that it can be used without a drum heater if the film thickness is 25 μm or less.

【0015】従って本発明によればヒータを用いずに画
像形成を行ってもかぶり等が生じることがないために、
消費電力の大幅低減のほかに、ヒータ、ドラム表面温度
を検知するサーミスタ、該サーミスタよりの検知温度に
基づくヒータ制御回路等の電装部品の低減と回路構成が
簡単化するとともに、前記ヒータを用いない為にウオー
ミングアップタイムが不用となり、装置立上げ時間を大
幅に低減させることが出来る。
Therefore, according to the present invention, fogging does not occur even when an image is formed without using a heater.
In addition to drastically reducing the power consumption, the heater, thermistor for detecting the drum surface temperature, the reduction of electric components such as the heater control circuit based on the temperature detected by the thermistor, and the simplification of the circuit configuration are made, and the heater is not used. Therefore, the warming up time becomes unnecessary, and the equipment startup time can be greatly reduced.

【0016】更に本発明は露光波長を700nm以上に
設定することにより、前記効果が一層増進される。即ち
図3より明らかなように、膜厚25μm以下の感光体ド
ラムと、従来の膜厚が40μmの膜厚の感光体ドラムを
用いて半減感度(表面電位Voの1/2まで露光電位が
低下するに必要な露光エネルギー密度)を調べてみる
と、膜厚に比例して半減感度が低くなり、波長685n
mに比して740nmの方が感度が低下し、その分結像
誤差その他に起因する光収差分の光量を拾うことなく中
心光量のみを拾い、画像コントラストや先鋭度の高い高
品質のドット画像の形成が可能である。
Further, according to the present invention, the effect is further enhanced by setting the exposure wavelength to 700 nm or more. That is, as is apparent from FIG. 3, the half-sensitivity (exposure potential is reduced to 1/2 of the surface potential Vo) by using a photosensitive drum having a film thickness of 25 μm or less and a conventional photosensitive drum having a film thickness of 40 μm. Exposure energy density required to achieve the half-sensitivity decreases in proportion to the film thickness.
The sensitivity of 740 nm is lower than that of m, and only the central light amount is picked up without picking up the light amount of the optical aberration caused by the imaging error and the like, and a high-quality dot image with high image contrast and sharpness is obtained. Can be formed.

【0017】而して本発明は、コロナ放電若しくは帯電
ローラその他の放電現象を含んで均一帯電を行う帯電手
段と、反転現像により画像形成を行う露光、現像手段を
具えてなる電子写真装置に適用されるもので、その特徴
とするところは、前記感光体層を25μm以下の膜厚か
らなるa−Si層で形成すると共に、前記帯電により生
成される感光体の表面電位Voを略360V以下に設定
したことにある。この場合好ましくは前記感光体層を2
〜20μmに、感光体の表面電位Voを略300V以下
に夫々設定するのがよい。又好ましくは、前記感光体層
を支持する基体内にヒータを内蔵することなく、機内環
境温度下で画像形成を行う構成の簡単化と立上げ開始時
間の短縮を図る上で好ましい。
Thus, the present invention is applied to an electrophotographic apparatus comprising a charging unit for uniformly charging the discharge by corona discharge or a charging roller and other discharge phenomena, and an exposing and developing unit for forming an image by reversal development. The characteristic is that the photoconductor layer is formed of an a-Si layer having a film thickness of 25 μm or less, and the surface potential Vo of the photoconductor generated by the charging is set to approximately 360 V or less. I have set it. In this case, preferably the photosensitive layer is 2
It is preferable to set the surface potential Vo of the photosensitive member to approximately 20 V or less and approximately 300 V or less. Further, it is preferable to simplify the structure for performing image formation under the ambient temperature of the apparatus and shorten the start-up time without incorporating a heater in the substrate supporting the photoconductor layer.

【0018】更に前記露光像を形成する露光手段の中心
露光波長を700nm以上に設定することにより一層か
ぶりや像流れのない鮮明画像の形成が可能となる。即ち
露光波長が740nmの場合、図2に示すように、膜厚
が25μm以下の場合、膜厚が40μmの場合に比して
画像解像度や線画先鋭度についても大幅に向上している
ことが理解できる。
Further, by setting the center exposure wavelength of the exposing means for forming the exposure image to 700 nm or more, it is possible to form a clear image without further fog or image deletion. That is, it is understood that when the exposure wavelength is 740 nm, as shown in FIG. 2, when the film thickness is 25 μm or less, the image resolution and the line drawing sharpness are also significantly improved as compared with the case where the film thickness is 40 μm. it can.

【0019】又露光手段にLEDを用いた場合において
も該LEDの発光波長を700nm以上に設定できるこ
とは、LED製造の面で極めて有利となる。即ち発光波
長が700nmでよいことは、ウエーハ上にGaAsP
の膜生成を行う際にリンPの混合比を少なくして膜生成
が可能であり、この事は例えば740nmのLEDを製
造する場合膜生成時間が7.5時間と680nmの場合
に比して大幅に短縮でき、製造コストのみならず製造上
のバラツキも大幅に低減する。
Further, even when an LED is used as the exposure means, the fact that the emission wavelength of the LED can be set to 700 nm or more is extremely advantageous in terms of LED manufacturing. That is, it is sufficient that the emission wavelength is 700 nm.
It is possible to form the film by reducing the mixing ratio of phosphorus P when the film formation is performed. This is compared with the case where the film formation time is 7.5 hours and 680 nm when manufacturing an LED of 740 nm, for example. It can be greatly shortened, and not only the manufacturing cost but also the manufacturing variation can be significantly reduced.

【0020】[0020]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図6
は本発明が適用される電子写真装置を示し、図上時計回
りに回転するa−Si感光体ドラム1の周囲に、回転方
向に沿って露光用LEDヘッド2及びセルフォックレン
ズ3からなる光学系、二成分現像ユニット4、転写ロー
ラ5、クリーニングブレード6、除電ランプ7、及び帯
電ユニット8が配設されている。
Embodiments of the present invention will now be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much. Figure 6
Shows an electrophotographic apparatus to which the present invention is applied, and an optical system including an LED head 2 for exposure and a SELFOC lens 3 along the rotation direction around an a-Si photosensitive drum 1 which rotates clockwise in the figure. A two-component developing unit 4, a transfer roller 5, a cleaning blade 6, a charge eliminating lamp 7, and a charging unit 8 are provided.

【0021】次に夫々の各構成要素について説明する。
感光体ドラム1は導電性支持体1a上に感光体層1b、
及び表面層1cが積層されて形成されており、該支持体
1aは、一般にはアルミ性の円筒体を用いるが、表面に
導電膜を被着させたガラス等無機材料や、エポキシ等の
透明な樹脂等で形成され、本実施例においては肉厚が2
mmで外周径を30mmに設定すると共に、軸方向に3
00mmの長さを有するアルミ製円筒体を用いている。
Next, each component will be described.
The photoconductor drum 1 includes a photoconductor layer 1b on a conductive support 1a,
And the surface layer 1c are laminated, and the support 1a is generally made of an aluminum cylinder. However, an inorganic material such as glass having a conductive film deposited on the surface thereof or a transparent material such as epoxy is used. It is made of resin or the like and has a wall thickness of 2 in this embodiment.
Set the outer diameter to 30 mm in mm and set 3 in the axial direction.
An aluminum cylinder having a length of 00 mm is used.

【0022】又前記a−Si系感光体層1b、及び表面
層1cは、グロー放電分解法、スパッタリング法、EC
R法、蒸着法等により膜形成し、その形成にあたって、
ダングリングボンド終端用の元素、例えば(H)やハロ
ゲンを5〜40wt.%含有させるのがよい。即ち、感
光体層1bはa−Si:Hからなる光導電体を用い、そ
して現像バイアスが正の場合には電子の移動度を高める
為、ノンドープ又はVa族元素を含有させ、又現像バイ
アスが負の場合には正孔の移動度を高めるため、IIIa
族元素を含有させるのが好ましい。又必要に応じて暗導
電率や光導電率等の電気的特性、光学的バンドギャップ
等について所望の特性を得るために、C,O,N等の元
素を含有させても良い。
The a-Si type photoreceptor layer 1b and the surface layer 1c are formed by glow discharge decomposition method, sputtering method and EC.
A film is formed by R method, vapor deposition method, etc.
An element for terminating the dangling bond, such as (H) or halogen, is added in an amount of 5 to 40 wt. % Should be included. That is, the photoconductor layer 1b uses a photoconductor made of a-Si: H, and when the developing bias is positive, it contains a non-doped or Va group element in order to increase the mobility of electrons. In the case of a negative value, IIIa
It is preferable to include a group element. If necessary, elements such as C, O and N may be contained in order to obtain desired characteristics such as electrical characteristics such as dark conductivity and photoconductivity and optical bandgap.

【0023】そして、前記感光体層1b全体の膜厚は、
必要な帯電および絶縁耐圧の確保や、露光された光の吸
収や前記した残留電位の抑制等から2〜25μm程度にす
るのがよい。
The overall film thickness of the photoconductor layer 1b is
The thickness is preferably about 2 to 25 μm in order to secure the necessary charging and dielectric strength, absorb the exposed light, and suppress the above-mentioned residual potential.

【0024】又、表面層1cは、α−SiC、α−Si
O,α−SiN、α−SiON、α−SiCON等のa
−Si系の無機高抵抗若しくは絶縁材料、ポリエチレン
テレフタレート、パリレン、ポリ四フッ化エチレン、ポ
リイミド、ポリフッ化エチレンプロピレン等の有機絶縁
材料を用いるのがよく、特に高抵抗のa−SiC層を用
いると、絶縁耐圧や耐摩耗性、耐環境性等の特性が高め
られる。このa−Si1-xxのx値は0.3≦x<1.0、好
適には0.5≦x≦0.95に設定する事により1012 〜10
13Ω・cm範囲の抵抗値で高耐湿性を得る事が出来、こ
の場合層内でC量に勾配を持たせてもよい。またCと同
時にN,O,Geを含有させる事により耐湿性を更に高
めることが出来る。
The surface layer 1c is made of α-SiC, α-Si.
A of O, α-SiN, α-SiON, α-SiCON, etc.
It is preferable to use an organic insulating material such as -Si-based inorganic high resistance or insulating material, polyethylene terephthalate, parylene, polytetrafluoroethylene, polyimide, polyfluorinated ethylene propylene, especially when using a high resistance a-SiC layer. Characteristics such as dielectric strength, abrasion resistance, and environment resistance are improved. The value x of a-Si 1-x C x is set to 0.3 ≤ x <1.0, preferably 0.5 ≤ x ≤ 0.95 so that 10 12 to 10 10 can be obtained.
It is possible to obtain high humidity resistance with a resistance value in the range of 13 Ω · cm, and in this case, the C content may have a gradient in the layer. Further, by containing N, O and Ge at the same time as C, the moisture resistance can be further enhanced.

【0025】表面層1cの厚みは0.05〜5μm、好適に
は0.1〜3μmの範囲内が良く、又その厚みはこの際表面
層1cの抵抗は1012 〜1013Ω・cmに設定した。
The thickness of the surface layer 1c is 0.05 to 5 μm, preferably 0.1 to 3 μm, and the thickness of the surface layer 1c is set to 10 12 to 10 13 Ω · cm.

【0026】尚、本実施例においては容量結合型グロー
放電分解装置を用いて、前記a−S感光体層1bとa−
SiC表面層1cとを順次積層し、後記するように、感
光体の層厚が夫々7、10、15、20、25、40μ
m厚みの膜層を有する感光体ドラム1を作製した。この
場合表面層1cの膜厚は最大3μm以下で且つ全体層厚
の略5%以下に設定する。尚、この際40μmの膜厚の
ものについては、肉厚が2mmのアルミ製円筒体では真
円度が出ず、この為再度成膜を行ったが、その結果は芳
しくなかった。そこで本実施例においては肉厚を4ミリ
のアルミ素管を用いて再度成膜を行ったところ真円度を
得ることが出来た。従って膜厚を薄くすることは基体、
即ちアルミ製円筒体を薄くすることも可能となり、これ
により軽量化が達成される。
In this embodiment, the a-S photoconductor layers 1b and a-S are formed by using a capacitively coupled glow discharge decomposition apparatus.
The SiC surface layer 1c and the SiC surface layer 1c are sequentially laminated, and the layer thickness of the photoconductor is 7, 10, 15, 20, 25, 40 μm, respectively, as described later.
A photoconductor drum 1 having a m-thick film layer was produced. In this case, the thickness of the surface layer 1c is set to 3 μm or less at the maximum and approximately 5% or less of the total layer thickness. At this time, in the case of the film having a thickness of 40 μm, the roundness was not obtained in the aluminum cylinder having a thickness of 2 mm, and therefore the film was formed again, but the result was not good. Therefore, in this embodiment, when the film was formed again using an aluminum tube having a thickness of 4 mm, the roundness could be obtained. Therefore, reducing the film thickness is
That is, it is possible to make the aluminum cylindrical body thin, and this achieves weight reduction.

【0027】又露光用LEDヘッド2には露光波長が6
85nmと740nmのヘッドアレイを用い、これをダ
イナミック駆動にて一走査ライン毎に64ビット×40
回分割露光される。
The exposure LED head 2 has an exposure wavelength of 6
Using a head array of 85 nm and 740 nm, this is dynamically driven and 64 bits x 40 for each scanning line.
It is exposed in divided times.

【0028】現像ユニット4は、キャリアとトナーから
なる複数成分現像剤が収納された現像容器41と固定磁
石集成体43が収納された現像ローラ42からなり、該
ローラ42に例えば50〜450Vの間で任意に設定で
きる直流現像バイアス電源44を接続して、現像を行う
ように構成する。
The developing unit 4 comprises a developing container 41 containing a multi-component developer consisting of a carrier and toner, and a developing roller 42 containing a fixed magnet assembly 43. A direct-current developing bias power source 44, which can be arbitrarily set by, is connected to perform development.

【0029】そして前記キャリアには平均粒径70μm
のフェライトキャリアを用いたが、キャリアはこれに限
らず、必ずしもフェライトキャリアに限定される事なく
鉄粉、マグネタイト等のキャリアや磁性樹脂キャリアを
用いてもよい。
The carrier has an average particle size of 70 μm.
However, the carrier is not limited to the ferrite carrier, and a carrier such as iron powder or magnetite or a magnetic resin carrier may be used.

【0030】又トナーは通常の高抵抗若しくは絶縁性ト
ナーが用いられ、例えば、バインダー樹脂、着色剤、電
荷制御剤、オフセット防止剤などに、磁性体を添加して
その平均中心粒度は5〜15μm前後の磁性トナーとし
て構成し上記のキャリアとトナーと適正混合比を例えば
85〜90:15〜10重量%に設定する。転写ローラ
5は転写効率を上げるために導電性ローラを用い、前記
トナーの帯電電位と逆極性の転写バイアスを印加させる
とともに、前記感光体ドラム1周面に均一に圧接し、該
ドラム1と同期して回転可能に構成する。
Ordinary high-resistance or insulating toner is used as the toner. For example, a binder resin, a colorant, a charge control agent, an offset preventing agent, etc., to which a magnetic substance is added, has an average central particle size of 5 to 15 μm. The front and rear magnetic toners are constituted and the proper mixing ratio of the carrier and the toner is set to, for example, 85 to 90:15 to 10% by weight. As the transfer roller 5, a conductive roller is used in order to increase transfer efficiency, a transfer bias having a polarity opposite to the charging potential of the toner is applied, and the transfer roller 5 is uniformly pressed against the peripheral surface of the photosensitive drum 1 to synchronize with the drum 1. And make it rotatable.

【0031】帯電ユニット8にはすでに公知であるコロ
トロン方式の帯電器にて感光体上に均一に帯電させた。
図中81はコロナ放電線、82は制御グリッド、83は
放電バイアス、84は帯電制御バイアスである。
The charging unit 8 was uniformly charged on the photosensitive member by a known corotron charging device.
In the figure, 81 is a corona discharge line, 82 is a control grid, 83 is a discharge bias, and 84 is a charge control bias.

【0032】かかる実施例では、帯電制御バイアスを1
50Vから450V前後の間で適宜バイアスに設定した
状態で高電圧の放電バイアスを印加させる事により、感
光体ドラム1表面電位Voを下記の設定値に帯電させた
後、露光ヘッド2により所定の潜像を露光させた後、現
像ユニット4により該潜像にトナー像を付着させた後、
転写ローラ5に転写させる。次にかかる装置を用い膜厚
の異なる感光体ドラム1を用いて次のような実験を行っ
た。
In this embodiment, the charge control bias is set to 1
By applying a high-voltage discharge bias in a state where the bias is appropriately set between about 50 V and 450 V, the surface potential Vo of the photosensitive drum 1 is charged to the following set value, and then a predetermined latent voltage is set by the exposure head 2. After exposing the image, a toner image is attached to the latent image by the developing unit 4,
Transfer to the transfer roller 5. Next, the following experiment was conducted by using the above-mentioned apparatus and using the photosensitive drums 1 having different film thicknesses.

【0033】前記感光体ドラム1の表面電位Voが20
0Vになるように帯電制御バイアス等を調整した後、7
40nmの露光波長を有するLEDヘッドを用い、感光
体ドラム1上に結像させるエネルギーレベルが1.0μ
J/cm2になるように、露光ヘッド2の出力を調整し
た後、夫々膜厚を異ならせた感光体ドラム1上に前記エ
ネルギーレベルの露光像を書込んだ際のドラム膜厚と線
幅との関係を図2に示す。本図より理解されるように、
水平線及び垂直線のいずれの場合も感光体膜厚が40μ
m以下の場合の線幅は、25μm以下の場合の線幅に比
較して太く、その分先鋭度と解像度が低下して結果とし
て図1(B)に示すように、潜像電位分布幅が広がって
いる事が理解される。又25μm以下の場合は、先鋭度
も解像度もほぼ一致してシャープになっており、結果と
して図1(B)に示すように、潜像電位分布幅が狭小化
している事が理解される。
The surface potential Vo of the photosensitive drum 1 is 20.
After adjusting the charging control bias etc. to 0V, 7
Using an LED head having an exposure wavelength of 40 nm, the energy level for forming an image on the photosensitive drum 1 is 1.0 μ.
After adjusting the output of the exposure head 2 so as to be J / cm 2 , the drum film thickness and the line width when the exposure image of the energy level is written on the photoconductor drums 1 having different film thicknesses. The relationship with is shown in FIG. As you can see from this figure,
In both cases of horizontal lines and vertical lines, the photoconductor film thickness is 40μ
The line width in the case of m or less is thicker than the line width in the case of 25 μm or less, and the sharpness and the resolution are reduced accordingly, and as a result, as shown in FIG. It is understood that it is spreading. Further, in the case of 25 μm or less, the sharpness and the resolution are almost the same and sharp, and as a result, it is understood that the latent image potential distribution width is narrowed as shown in FIG. 1 (B).

【0034】又図3は、前記感光体ドラム1の表面電位
Voが200Vになるように帯電制御バイアス等を調整
した後、波長波長685nmの露光波長を有するLED
ヘッドと740nmの露光波長を有するLEDヘッド夫
々について、膜厚7、10、15、20、25μmの膜
厚の感光体ドラムと、従来の膜厚が40μmの膜厚の感
光体ドラムを用いて半減感度(表面電位Voの1/2ま
で露光電位が低下するに必要な露光エネルギー密度)を
調べてみると、25μmの感光体ドラムは従来の40μ
mの膜厚の感光体ドラムより大幅に半減感度が低くな
り、従って潜像電位分布幅の狭小化とともに、図1
(A)に示すように表面電位Vo’の低下によって潜像
電位分布が僅かに広がってもその分布周縁の光量を拾う
ことなく中心光量のみを拾い、画像コントラストや先鋭
度の高い高品質のドット画像の形成が可能である。そし
てかかる効果は波長685nmに比して740nmの方
が一層増進される。
Further, FIG. 3 shows an LED having an exposure wavelength of 685 nm after adjusting the charging control bias and the like so that the surface potential Vo of the photosensitive drum 1 becomes 200V.
For each of the head and the LED head having an exposure wavelength of 740 nm, the photoconductor drum having a film thickness of 7, 10, 15, 20, 25 μm and the conventional photoconductor drum having a film thickness of 40 μm are halved. The sensitivity (exposure energy density required to reduce the exposure potential to 1/2 of the surface potential Vo) was examined.
The half-sensitivity is significantly lower than that of a photoconductor drum having a film thickness of m, so that the latent image potential distribution width is narrowed, and
As shown in (A), even if the latent image potential distribution slightly expands due to a decrease in the surface potential Vo ′, only the central light amount is picked up without picking up the light amount at the periphery of the distribution, and high-quality dots with high image contrast and sharpness are obtained. It is possible to form an image. The effect is further enhanced at 740 nm as compared to the wavelength of 685 nm.

【0035】更に図4は表面電位Voが450Vで帯電
させた後、露光波長が740nmで且つエネルギー密度
が0.2μJ/cm2で露光した場合の焦点深度とドラ
ム感度の関係を示したもので、膜厚40μmの場合に比
較して、7μm、15μmのものは焦点深度が370μ
mと、焦点深度が2倍弱向上する事になり、そして焦点
深度が大になることは、図1(B)に示すように、表面
電位Vo’の低下によっても潜像電位分布の周縁におけ
るぼけの発生も低下する。
Further, FIG. 4 shows the relationship between the depth of focus and the drum sensitivity when the surface potential Vo was charged at 450 V and the exposure was performed at an exposure wavelength of 740 nm and an energy density of 0.2 μJ / cm 2. In comparison with the case where the film thickness is 40 μm, the depth of focus is 370 μ when the thickness is 7 μm or 15 μm.
m, the depth of focus is slightly more than doubled, and the depth of focus becomes large, as shown in FIG. 1 (B). The occurrence of blurring is also reduced.

【0036】図5は、a−Siドラムの膜厚が40μm
の感光体ドラムを用いて温度30℃において表面電位V
oが320Vになるように、帯電制御バイアス等を調整
した後、該帯電制御バイアスを一定に維持した状態で、
中湿度下における機内温度を10℃、20℃、30℃4
3℃に変化させた場合の、15μm、25μm、40μ
mに成膜したa−Si感光体ドラムと表面電位Voの関
係を示す。本図より理解されるように40μmのドラム
膜厚を有する感光体ドラムにおいては、温度依存性が高
く10〜40℃の電位変化量80V(2.7V/℃)で
あったが、25μm、15μmの感光体ドラムにおいて
は、温度依存性が大幅に低下し10〜40℃の電位変化
量は前者が30V(1.0V/℃)、後者が15V
(0.5V/℃)であった。このことから環境変動に起
因する表面電位Voの変動も感光体ドラムを25μm以
下に薄膜化することにより抑制し得る。
In FIG. 5, the film thickness of the a-Si drum is 40 μm.
Surface potential V at a temperature of 30 ° C. using the photosensitive drum of
After adjusting the charge control bias etc. so that o becomes 320 V, in a state where the charge control bias is kept constant,
The machine temperature under medium humidity is 10 ℃, 20 ℃, 30 ℃ 4
15μm, 25μm, 40μ when changed to 3 ° C
The relationship between the a-Si photosensitive drum formed on m and the surface potential Vo is shown. As can be understood from this figure, in the photoconductor drum having a drum film thickness of 40 μm, the temperature dependency was high and the potential change amount of 80 V (2.7 V / ° C.) at 10 to 40 ° C. was 25 μm and 15 μm. In the case of the photosensitive drum of No. 3, the temperature dependency is significantly reduced, and the potential change amount of 10 to 40 ° C. is 30 V (1.0 V / ° C.) for the former and 15 V for the latter
(0.5 V / ° C.). From this fact, the fluctuation of the surface potential Vo due to the environmental fluctuation can be suppressed by thinning the photosensitive drum to 25 μm or less.

【0037】次に、感光体ドラムの表面電位Voを30
0Vに設定し、現像バイアスを210Vに設定した状態
で、感光体ドラムにヒータを装着することなく、25μ
m、15μmの感光体ドラムについて中湿度下において
機内温度を10℃から40℃の間で10℃/時間の勾配
で上下に変化させながら、18万枚(略300時間)印
刷したところ、いずれの感光体ドラムにおいても画像流
れもかぶりが生じることなく鮮明画像を得ることが出来
た。
Next, the surface potential Vo of the photosensitive drum is set to 30.
With the developing bias set to 0V and the developing bias set to 210V, without attaching a heater to the photosensitive drum,
m and 15 μm photosensitive drums were printed at 180,000 sheets (approximately 300 hours) while changing the temperature inside the machine from 10 ° C. to 40 ° C. at a gradient of 10 ° C./hour under medium humidity. Even on the photoconductor drum, a clear image could be obtained without causing image fogging or fogging.

【0038】次に、感光体ドラムの表面電位Voを45
0Vに設定し、現像バイアスを250Vに設定した状態
で、感光体ドラムにヒータを装着することなく、40μ
mの感光体ドラムについて同様に中湿度下において機内
温度を10℃から40℃の間で10℃/時間の勾配で上
下に変化させながら、印刷したところ、短時間で画像流
れが発生した。
Next, the surface potential Vo of the photosensitive drum is set to 45
With the developing bias set to 0V and the developing bias set to 250V, 40 μ without attaching a heater to the photosensitive drum.
Similarly, with respect to the photoconductor drum of m, printing was performed while changing the in-machine temperature up and down at a gradient of 10 ° C./hour between 10 ° C. and 40 ° C., and image deletion occurred in a short time.

【0039】[0039]

【発明の効果】以上記載したごとく本発明によれば、a
−Siドラムを用い、又コロナ放電器や帯電ローラ、更
には帯電ブラシのように、放電現象を含んで感光体に均
一帯電を行うた電子写真装置において像流れやかぶりが
生じることなく鮮明画像を形成し得る。
As described above, according to the present invention, a
-A clear image can be obtained without causing image deletion or fogging in an electrophotographic apparatus that uses a Si drum and that uniformly charges a photoconductor including a discharge phenomenon, such as a corona discharger, a charging roller, and a charging brush. Can be formed.

【0040】又本発明によれば、a−Siドラムを用い
た電子写真装置において構成の簡単化や安全性を配慮し
つつ、又温度等の環境変動によってもかぶりや像流れが
発生することなく鮮明画像が形成し得る。等の種々の著
効を有す。
Further, according to the present invention, in the electrophotographic apparatus using the a-Si drum, simplification of structure and safety are taken into consideration, and fog and image deletion do not occur due to environmental changes such as temperature. A clear image can be formed. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は表面電位が低下した場合の表面電位と
潜像電位分布の関係を示し、特にトナードット径の増加
(画像流れ)の状態を示す。(B)は感光体膜厚と潜像
電位レベルの関係を示す。
FIG. 1A shows the relationship between the surface potential and the latent image potential distribution when the surface potential is lowered, and particularly shows the state where the toner dot diameter is increased (image deletion). (B) shows the relationship between the photoconductor film thickness and the latent image potential level.

【図2】ドラム膜厚と線幅との関係を示し、(A)は水
平線、(B)は垂直線を示す。
FIG. 2 shows the relationship between drum film thickness and line width, (A) showing a horizontal line and (B) showing a vertical line.

【図3】ドラム膜厚と半減感度の関係を示すグラフ図で
ある。
FIG. 3 is a graph showing the relationship between drum film thickness and half-sensitivity.

【図4】各ドラム膜厚におけるドラム感度と焦点深度の
関係を示すグラフ図である。
FIG. 4 is a graph showing the relationship between drum sensitivity and depth of focus for each drum film thickness.

【図5】帯電制御バイアスを一定に維持した状態で、機
内温度を変化させた場合のa−Si感光体ドラムの膜厚
と表面電位の関係を示す
FIG. 5 shows the relationship between the film thickness of the a-Si photosensitive drum and the surface potential when the in-machine temperature is changed while the charge control bias is kept constant.

【図6】本発明が適用される電子写真装置を示す概略図
である。
FIG. 6 is a schematic view showing an electrophotographic apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 露光用ヘッド 3 光学系 4 二成分現像ユニット 8 帯電装置 1 Photoconductor drum 2 Exposure head 3 Optical system 4 Two-component developing unit 8 Charging device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03G 15/02 102 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G03G 15/02 102

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基体上に支持された感光体層に放電現象
を含んで均一帯電を行った後、該感光体層に露光像を書
込みながら反転現像により画像形成を行う電子写真装置
において、 前記感光体層を25μm以下の膜厚からなるa−Si層
で形成すると共に、前記帯電により生成される感光体の
表面電位を略360V以下に設定したことを特徴とする
電子写真装置
1. An electrophotographic apparatus for performing image formation by reversal development while uniformly writing an exposed image on a photoconductor layer supported on a substrate while including a discharge phenomenon, An electrophotographic apparatus characterized in that the photoreceptor layer is formed of an a-Si layer having a thickness of 25 μm or less, and the surface potential of the photoreceptor produced by the charging is set to about 360 V or less.
【請求項2】 前記感光体層を2〜20μmに、感光体
の表面電位を略300V以下に夫々設定したことを特徴
とする請求項1記載の電子写真装置
2. The electrophotographic apparatus according to claim 1, wherein the photoconductor layer is set to 2 to 20 μm, and the surface potential of the photoconductor is set to about 300 V or less.
【請求項3】 前記感光体層を支持する基体内にヒータ
を内蔵することなく、機内環境温度下で画像形成を行う
ことを特徴とする電子写真装置
3. An electrophotographic apparatus, wherein an image is formed at an internal environmental temperature of a machine without incorporating a heater in a substrate that supports the photosensitive layer.
【請求項4】 前記露光像を形成する露光手段の中心露
光波長を700nm以上に設定したことを特徴とする請
求項1記載の電子写真装置。
4. The electrophotographic apparatus according to claim 1, wherein the center exposure wavelength of the exposing means for forming the exposure image is set to 700 nm or more.
JP6197225A 1993-10-29 1994-07-29 Electrophotographic device Pending JPH07175276A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6197225A JPH07175276A (en) 1993-10-29 1994-07-29 Electrophotographic device
US08/332,481 US5729800A (en) 1993-10-29 1994-10-27 Electrophotographic apparatus having an a-Si photosensitive drum assembled therein

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-294365 1993-10-29
JP29436593 1993-10-29
JP6197225A JPH07175276A (en) 1993-10-29 1994-07-29 Electrophotographic device

Publications (1)

Publication Number Publication Date
JPH07175276A true JPH07175276A (en) 1995-07-14

Family

ID=26510243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6197225A Pending JPH07175276A (en) 1993-10-29 1994-07-29 Electrophotographic device

Country Status (1)

Country Link
JP (1) JPH07175276A (en)

Similar Documents

Publication Publication Date Title
US4334772A (en) Electrophotographic apparatus of retentive type
JP3302326B2 (en) Image forming device
US5729800A (en) Electrophotographic apparatus having an a-Si photosensitive drum assembled therein
US5963762A (en) Electrophotographic apparatus performing image exposure and development simultaneously
JP3046087B2 (en) Image forming device
JPH07175276A (en) Electrophotographic device
JP3268753B2 (en) Image forming device
JP3330009B2 (en) Electrophotographic equipment
US5587773A (en) Electrophotographic apparatus for performing image exposure and development simultaneously
JP2921716B2 (en) Charging member
JP3279923B2 (en) Electrophotographic equipment
JP3987443B2 (en) Photoconductor, image forming method and image forming apparatus using the photoconductor
JP3714567B2 (en) Electrophotographic equipment
JPH07175301A (en) Electrophotographic device and electrophotographic method
JP2823942B2 (en) Charging member
JP2004347870A (en) Image forming apparatus
JP3142037B2 (en) Electrophotographic equipment
JP3148964B2 (en) Electrophotographic equipment
JPH1020633A (en) Image forming device provided with developing bias control function
JPH09297464A (en) Electrophotographic device
JPH0728332A (en) Image forming device
EP0606757B1 (en) Electrophotographic apparatus for performing image exposure and development simultaneously
JP2920663B2 (en) Electrophotographic photoreceptor
JPH0580541A (en) Image forming device
JPH09152740A (en) Electrophotographic device