JP3148964B2 - Electrophotographic equipment - Google Patents

Electrophotographic equipment

Info

Publication number
JP3148964B2
JP3148964B2 JP29435993A JP29435993A JP3148964B2 JP 3148964 B2 JP3148964 B2 JP 3148964B2 JP 29435993 A JP29435993 A JP 29435993A JP 29435993 A JP29435993 A JP 29435993A JP 3148964 B2 JP3148964 B2 JP 3148964B2
Authority
JP
Japan
Prior art keywords
exposure
image
lens
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29435993A
Other languages
Japanese (ja)
Other versions
JPH07128960A (en
Inventor
圭司 厳島
忠志 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29435993A priority Critical patent/JP3148964B2/en
Priority to US08/332,481 priority patent/US5729800A/en
Publication of JPH07128960A publication Critical patent/JPH07128960A/en
Application granted granted Critical
Publication of JP3148964B2 publication Critical patent/JP3148964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子写真装置に係り、特
にa−Siドラムを用いたプリンタ、複写機、ファクシ
ミリ等の電子写真装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus, and more particularly to an electrophotographic apparatus using an a-Si drum, such as a printer, a copying machine, and a facsimile.

【0002】[0002]

【従来の技術】従来より感光体ドラム外周面上に、露
光、現像、転写、クリーニング(残留トナー除去)、除
電、及び帯電の各プロセス手段を配置し、所定の電子写
真プロセスにより画像形成を行なう、いわゆるカールソ
ンプロセスに基づく電子写真装置は周知である。
2. Description of the Related Art Conventionally, respective process means of exposure, development, transfer, cleaning (removal of residual toner), charge elimination and charging are arranged on the outer peripheral surface of a photosensitive drum, and an image is formed by a predetermined electrophotographic process. Electrophotographic apparatuses based on the so-called Carlson process are well known.

【0003】又近年円筒状の透光性支持体上に透光性導
電層と光導電体層を積層して感光体ドラムを形成すると
共に、該ドラム内に、画像情報に対応した光出力を生成
する露光手段(例えばLEDヘッド)を内挿し、所定の
帯電手段を用いて帯電させた感光体ドラム上に前記露光
手段の光出力を集束レンズを通して露光すると同時若し
くはその直後に前記感光体ドラムと対面配置させた現像
スリーブを介して前記潜像をトナー像化(現像)した
後、該トナー像を転写ローラその他の転写手段を介して
記録紙に転写可能に構成した電子写真装置(特開昭58
−153957号他)も公知である。
In recent years, a photoconductive drum is formed by laminating a light-transmitting conductive layer and a photoconductive layer on a cylindrical light-transmitting support, and a light output corresponding to image information is formed in the drum. Exposure means (for example, an LED head) to be generated is interpolated, and the light output of the exposure means is exposed through a converging lens onto the photosensitive drum charged using a predetermined charging means at the same time as or immediately after exposure to the photosensitive drum. An electrophotographic apparatus configured to transfer (transfer) the toner image to recording paper via a transfer roller or other transfer means after forming the latent image into a toner image (development) via a developing sleeve arranged in a face-to-face manner (Japanese Patent Laid-Open No. 58
153957) are also known.

【0004】[0004]

【発明が解決しようとする課題】この種の電子写真装置
において、例えば露光源に半導体レーザを用いるレーザ
プリンタにおいては半導体レーザよりの発振波長をコリ
メータレンズを介してポリゴンミラーによりビーム走査
した後、fθレンズを介して感光体ドラム上に結像させ
るように構成しているが、前記のレーザプリンタにおい
てはポリゴンミラーによりAー4サイズ付近まで拡幅化
された帯状光を精度よく結像させなければならず、この
為前記fθレンズにはAー4サイズに対応する長さの長
幅なレンズを必要とし、これを精度よく組み付けるのが
中々困難であり、組み立て、加工誤差及び熱膨脹等が生
じやすい。
In an electrophotographic apparatus of this type, for example, in a laser printer using a semiconductor laser as an exposure source, after the oscillation wavelength of the semiconductor laser is beam-scanned by a polygon mirror via a collimator lens, fθ Although an image is formed on a photosensitive drum via a lens, in the above-described laser printer, it is necessary to accurately form an image of a band-like light whose width is increased to around A-4 size by a polygon mirror. For this reason, the fθ lens requires a wide lens having a length corresponding to the A-4 size, and it is difficult to assemble the lens with high accuracy, and assembly, processing errors, thermal expansion, and the like are likely to occur.

【0005】この為前記誤差及び長幅なレンズに起因し
て感光体ドラム上に光収差や結像ずれが生じ、そして従
来用いられているopcドラムやa−Si系ドラムにお
いてはこれらの収差分の光量も拾ってしまうために、画
像コントラストや先鋭度を高めることも困難であった。
For this reason, optical aberrations and image shifts occur on the photoreceptor drum due to the error and the long lens, and these aberrations occur in the conventional opc drum and a-Si type drum. Therefore, it is also difficult to increase the image contrast and the sharpness because the light amount of light is picked up.

【0006】又前記レーザプリンタは小型化を図るため
に、その焦点距離の短縮化を図っているが、ポリゴンミ
ラーによりAー4サイズ付近まで拡幅化された帯状光を
精度よく結像させなければならず、この為前記fθレン
ズにはAー4サイズに対応する長さの長幅なレンズを必
要とし、而もその曲面をトーリック形状にする等種々の
工夫を必要とする。
In order to reduce the size of the laser printer, the focal length of the laser printer is shortened. However, it is necessary to accurately form an image of the band light widened to around A-4 by a polygon mirror. For this reason, the fθ lens requires a wide lens having a length corresponding to the A-4 size, and further requires various measures such as making the curved surface toric.

【0007】しかしながらこのように長幅で且つ複雑な
形状のレンズを形成するには、プラスチックレンズが好
ましいが、プラスチックレンズのように屈折率の低いレ
ンズを用いると、その両端部における結像部が必ずしも
感光体ドラム母線と一致する直線状とならず、主走査方
向に等幅の高品質な画像を形成するのに設計上の工夫を
必要とする。
However, in order to form a lens having such a long width and a complicated shape, a plastic lens is preferable. However, when a lens having a low refractive index such as a plastic lens is used, an image forming portion at both ends thereof is formed. It is not necessarily a straight line that coincides with the photoconductor drum generatrix, and a design contrivance is required to form a high-quality image of equal width in the main scanning direction.

【0008】これはLEDプリンタや複写機においても
同様であり、一般に露光像を結像させる為に、セルフォ
ックレンズ(商品名)を用いているが、セルフォックレ
ンズにおいても多数本のファイバを長さを揃えて一体化
させたものであるために、プラスチックレンズのように
屈折率の低いレンズを用いると、焦点距離が長くなるた
めに結像誤差が生じやすく、該誤差から起因する収差を
拾ってやはり先鋭度が低下し高品質の且つコントラスト
の高いドット画像を形成し得ない。
The same applies to LED printers and copiers. In general, a selfoc lens (trade name) is used to form an exposure image. When a lens having a low refractive index, such as a plastic lens, is used because it is uniform and uniform, an imaging error tends to occur due to a long focal length, and aberrations resulting from the error are picked up. As a result, the sharpness is reduced, and a high-quality and high-contrast dot image cannot be formed.

【0009】本発明はかかる従来技術の欠点に鑑み、a
−Siドラムを用いて高耐久性を図りつつ結像収差や焦
点誤差が生じても、感光体ドラム上の収差分の光量を拾
わずに、画像コントラストや先鋭度を高めるために、前
記感光体層の表面電位の1/2まで露光電位が低下する
に必要な感光体半減感度が、感光体の膜厚に依存する度
合いを突止め、その感光体層厚を規制するとともに、感
光体半減感度の範囲を設定し、結像誤差その他に起因す
る光収差分の光量を拾うことなく中心光量のみを拾い、
この結果、プラスチックレンズを用いてコントラストの
高い高品質の画像が形成可能な電子写真装置を提供する
事を目的とする。
In view of the drawbacks of the prior art, the present invention provides a
-To improve image contrast and sharpness without picking up the amount of aberration on the photoconductor drum, even if imaging aberrations and focus errors occur while achieving high durability using the Si drum, Determine the degree to which the photoreceptor half-reduction sensitivity required to lower the exposure potential to half of the surface potential of the layer depends on the thickness of the photoreceptor, regulate the photoreceptor layer thickness, and reduce the photoreceptor half-reduction sensitivity. , And pick up only the center light amount without picking up the light amount for the optical aberration caused by the imaging error and others.
As a result, it is an object to provide an electrophotographic apparatus capable of forming a high-contrast high-quality image using a plastic lens .

【0010】[0010]

【課題を解決するための手段】本発明は、前記感光体層
を2〜25μmの膜厚からなるa−Si層で形成すると
共に、表面層の膜厚を0.05〜5μmに設定し、前記
感光体層の表面電位の1/2まで露光電位が低下するに
必要な感光体半減感度を、8〜1cm/μJの範囲に
設定するとともに、450Vで帯電させ、740nmの
露光波長を用いて、エネルギ密度0.2μJ/cm
露光した場合の焦点深度300μm以上となるように構
し、前記露光像を結像するための光学レンズを、プラ
スチックレンズで構成配置したことを特徴とする。かか
る技術により結像誤差その他に起因する光収差分の光量
を拾うことなく中心光量のみを拾い、この結果、プラス
チックレンズを用いても画像コントラストや先鋭度の高
い高品質のドット画像の形成が可能である。
According to the present invention, the photoreceptor layer is formed of an a-Si layer having a thickness of 2 to 25 μm, and the thickness of the surface layer is set to 0.05 to 5 μm. The photoreceptor half-reduction sensitivity required for lowering the exposure potential to half the surface potential of the photoreceptor layer is set in the range of 8 to 1 cm 2 / μJ, charged at 450 V, and using an exposure wavelength of 740 nm. A depth of focus of 300 μm or more when exposed at an energy density of 0.2 μJ / cm 2 , and an optical lens for forming the exposure image is constituted by a plastic lens. . With this technology, only the center light amount is picked up without picking up the light amount corresponding to the optical aberration caused by the imaging error and the like. As a result, a high quality dot image with high image contrast and sharpness can be formed even with a plastic lens. It is.

【0011】すなわち、前記のように結像収差が生じて
も中心波長のみを拾うことは結果として焦点深度が深く
なり、この為fθレンズのように長幅なレンズの両端部
において結像収差が発生しても、この収差を拾うことな
く主走査方向に等幅の高品質な画像を形成し得る。
That is, even if imaging aberrations occur as described above, picking up only the center wavelength results in a deeper depth of focus, and as a result, imaging aberrations occur at both ends of a long lens such as an fθ lens. Even if it occurs, a high-quality image having the same width in the main scanning direction can be formed without picking up this aberration.

【0012】そして、LEDプリンタや複写機において
セルフォックレンズ(商品名)にプラスチックレンズの
ように屈折率の低いレンズを用いて±300μm前後の
焦点誤差が生じてもこれを容易に吸収し、高品質の且つ
コントラストの高いドット画像を形成し得う。
In a LED printer or a copying machine, even if a focus error of about ± 300 μm is generated by using a low refractive index lens such as a plastic lens for a SELFOC lens (trade name), the error can be easily absorbed and a high error can be obtained. A high-quality and high-contrast dot image can be formed.

【0013】従って本発明によれば、前記露光像を結像
するための光学レンズを、屈折率が略1.51のプラス
チックレンズで構成した場合においても、高品質な画像
形成が可能となり、而も組み立て加工誤差も許容し得る
ために、製造コストが大幅に低減する。
Therefore, according to the present invention, even when the optical lens for forming the exposure image is formed of a plastic lens having a refractive index of about 1.51, high quality image formation becomes possible. Since manufacturing errors can be tolerated, the manufacturing cost is greatly reduced.

【0014】[0014]

【作用】次に本発明の作用を図1乃至図4に基づいて説
明する。尚、該グラフの説明は後記実施例にて詳細に説
明する。図1(A)はa−Si感光体の膜厚と感光体半
減感度の関係を示す表、図1(B)はこれをグラフ化し
たもので、露光波長が740nm若しくは685nmの
いずれにおいてもa−Si感光体膜厚に比例して感光体
半減感度が低下することが理解される。
Next, the operation of the present invention will be described with reference to FIGS. The graph will be described in detail in Examples below. FIG. 1A is a table showing the relationship between the film thickness of the a-Si photosensitive member and the half-sensitivity of the photosensitive member, and FIG. 1B is a graph showing the relationship. It is understood that the photoreceptor half-life sensitivity decreases in proportion to the Si photoreceptor film thickness.

【0015】そして図2は垂直、水平線幅とドット数の
関係を感光体の膜厚毎に調べたもので、本図より理解さ
れるように、膜厚が25μmのものは、膜厚が40μm
の場合に比して線幅が先鋭化して画像品質が大幅に向上
していることが理解できるが、逆に25μm以下では線
幅の先鋭度はほぼ一致し、その間に有意差は見られなか
った。としてみると膜厚が25μmの場合の半減感度
は、露光波長685nmで7.58cm/μJ、露光
波長740nmで5.85cm/μJで、一方膜厚が
40μmの場合の半減感度は、露光波長685nmで1
1.11cm/μJ、露光波長740nmで9.09
cm/μJでかかる実験より明らかなように、感光体
半減感度を8cm/μJ以下に設定することにより図
2に示す先鋭度の高いドット画像の形成が可能となる。
FIG. 2 shows the relationship between the vertical and horizontal line widths and the number of dots for each photoconductor thickness. As can be understood from FIG. 2, the photoconductor having a thickness of 25 μm has a thickness of 40 μm.
It can be understood that the line width is sharpened and the image quality is greatly improved as compared with the case of, but conversely, at 25 μm or less, the sharpness of the line width almost coincides, and no significant difference is observed between them. Was. The half sensitivity when the film thickness is 25μm and try to, 7.58cm 2 / μJ at the exposure wavelength 685 nm, at the exposure wavelength 740nm at 5.85cm 2 / μJ, whereas the half-sensitivity when the film thickness is 40 [mu] m, the exposure 1 at a wavelength of 685 nm
1.11cm 2 / μJ, at the exposure wavelength 740nm 9.09
cm 2 / according to experiments is clear in .mu.J, formation of sharpness of high dot image shown in FIG. 2 becomes possible by setting the photoreceptor half sensitivity below 8 cm 2 / .mu.J.

【0016】又前記半減感度を余りに低くすると、線画
像自体がぼけてしまうから、図1(A)の表より明らか
なごとく露光波長740nmで膜厚7μmの半減感度
1.75cm/μJでも十分なる先鋭度が確保できた
ことから、前記半減感度は2cm/μJ以上あれば問
題が生じないことが理解される。
If the half-sensitivity is too low, the line image itself will be blurred. Therefore, as is clear from the table of FIG. 1A, a half-sensitivity of 1.75 cm 2 / μJ with an exposure wavelength of 740 nm and a film thickness of 7 μm is sufficient. From the fact that a certain degree of sharpness could be secured, it is understood that no problem occurs if the half sensitivity is 2 cm 2 / μJ or more.

【0017】図3は焦点深度とドラム感度の関係を示し
たもので、ドラム感度が低下すると結果として前記した
ように結像位置周囲の収差分を拾わない為に、焦点深度
が大になるが、膜厚が40μmの場合は焦点深度が15
0〜230μm前後であるが、膜厚が15μmでは焦点
深度が380μm前後に大幅に向上し、而もこれは膜厚
を7μmに薄くしてもほとんど変化がない。したがって
焦点深度が大になることは、露光像を感光体ドラム上に
結像させる為の光学系の加工精度や組み立て精度をラフ
に設定できると共に、画像品質のバラツキが大幅に低減
するとともに前記したようにプラスチックレンズの使用
が可能となる。これは、図4に示すように膜厚が25μ
m以下のものについてはプラスチックレンズでも、又光
学ガラスレンズでもそのMTF値はほとんど変らない
が、40μmの膜厚のものについてはプラスチックレン
ズを用いたものはMTF値が大幅に低下している事から
も理解される。
FIG. 3 shows the relationship between the depth of focus and the drum sensitivity. When the drum sensitivity is lowered, the depth of focus becomes large because aberrations around the imaging position are not picked up as described above. When the film thickness is 40 μm, the depth of focus is 15
The thickness is about 0 to 230 μm, but when the film thickness is 15 μm, the depth of focus is greatly improved to about 380 μm. Even if the film thickness is reduced to 7 μm, there is almost no change. Therefore, the increase in the depth of focus means that the processing accuracy and the assembly accuracy of the optical system for forming the exposure image on the photosensitive drum can be set roughly, and the variation in image quality is greatly reduced, as described above. Thus, the use of a plastic lens becomes possible. This is because, as shown in FIG.
The MTF value of a plastic lens or an optical glass lens hardly changes for a lens having a thickness of m or less, but the MTF value of a plastic lens using a plastic lens for a film having a thickness of 40 μm is greatly reduced. Is also understood.

【0018】[0018]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図5
は本発明が適用される電子写真装置を示し、図上時計回
りに回転するa−Si感光体ドラム1の周囲に、回転方
向に沿って露光用LEDヘッド2及びセルフォックレン
ズ3からなる光学系、二成分現像ユニット4、転写ロー
ラ5、クリーニングブレード6、除電ランプ7、及び粒
子帯電ユニット8が配設されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just. FIG.
FIG. 1 shows an electrophotographic apparatus to which the present invention is applied, and an optical system including an exposure LED head 2 and a selfoc lens 3 around an a-Si photosensitive drum 1 rotating clockwise in FIG. , A two-component developing unit 4, a transfer roller 5, a cleaning blade 6, a neutralizing lamp 7, and a particle charging unit 8.

【0019】次に夫々の各構成要素について説明する。
感光体ドラム1は導電性支持体1a上に感光体層1b、
及び表面層1cが積層されて形成されており、該支持体
1aは、一般にはアルミ性の円筒体を用いるが、表面に
導電膜を被着させたガラス等無機材料や、エポキシ等の
透明な樹脂等で形成され、本実施例においては肉厚が2
mmで外周径を30mmに設定すると共に、軸方向に3
00mmの長さを有するアルミ製円筒体を用いている。
Next, each component will be described.
The photoconductor drum 1 includes a photoconductor layer 1b on a conductive support 1a,
The support 1a is generally formed of an aluminum cylindrical body, but is made of an inorganic material such as glass having a conductive film adhered to the surface, or a transparent material such as epoxy. It is formed of resin or the like, and in this embodiment, the thickness is 2
mm and the outer diameter is set to 30 mm, and 3 mm in the axial direction.
An aluminum cylinder having a length of 00 mm is used.

【0020】又前記a−Si系感光体層1b、及び表面
層1cは、グロー放電分解法、スパッタリング法、EC
R法、蒸着法等により膜形成し、その形成にあたって、
ダングリングボンド終端用の元素、例えば(H)やハロ
ゲンを5〜40wt.%含有させるのがよい。即ち、感
光体層1bはa−Si:Hからなる光導電体を用い、そ
して現像バイアスが正の場合には電子の移動度を高める
為、ノンドープ又はVa族元素を含有させ、又現像バイ
アスが負の場合には正孔の移動度を高めるため、IIIa
族元素を含有させるのが好ましい。又必要に応じて暗導
電率や光導電率等の電気的特性、光学的バンドギャップ
等について所望の特性を得るために、C,O,N等の元
素を含有させても良い。そして、前記感光体層1b全体
の膜厚は、必要な帯電および絶縁耐圧の確保や、露光さ
れた光の吸収や前記した残留電位の抑制等から2〜25
μm程度にするのがよい。
The a-Si photosensitive layer 1b and the surface layer 1c are formed by a glow discharge decomposition method, a sputtering method,
A film is formed by an R method, a vapor deposition method, and the like.
An element for terminating dangling bonds, for example, (H) or halogen is 5 to 40 wt. %. That is, the photoconductor layer 1b uses a photoconductor made of a-Si: H. When the developing bias is positive, the photoconductive layer 1b contains a non-doped or Va group element in order to increase the mobility of electrons. In the case of a negative value, IIIa
It is preferable to include a group element. If necessary, elements such as C, O, and N may be contained in order to obtain desired characteristics such as electric characteristics such as dark conductivity and photoconductivity, and optical band gap. The thickness of the entire photoreceptor layer 1b is 2 to 25 in order to ensure necessary charging and dielectric strength, absorb exposed light, and suppress the above-described residual potential.
It is good to be about μm.

【0021】又、表面層1cは、a−SiC、a−Si
O、a−SiN、a−SiON、a−SiCON等のa
−Si系の無機高抵抗若しくは絶縁材料、ポリエチレン
テレフタレート、パリレン、ポリ四フッ化エチレン、ポ
リイミド、ポリフッ化エチレンプロピレン等の有機絶縁
材料を用いるのがよく、特に高抵抗のa−SiC層を用
いると、絶縁耐圧や耐摩耗性、耐環境性等の特性が高め
られる。このa−Si1-xCxのx値は0.3≦x<1.0、好
適には0.5≦x≦0.95に設定する事により1012〜1
13Ω・cm範囲の抵抗値で高耐湿性を得る事が出
来、この場合層内でC量に勾配を持たせてもよい。また
Cと同時にN,O,Geを含有させる事により耐湿性を
更に高めることが出来る。
The surface layer 1c is made of a-SiC, a-Si
A such as O, a-SiN, a-SiON, a-SiCON
-It is preferable to use an Si-based inorganic high-resistance or insulating material, an organic insulating material such as polyethylene terephthalate, parylene, polytetrafluoroethylene, polyimide, and polyfluoroethylene propylene. Particularly, when a high-resistance a-SiC layer is used. In addition, characteristics such as dielectric strength, abrasion resistance, and environmental resistance are improved. The a-Si1-xCx x value is 0.3 ≦ x <1.0, preferably by setting the 0.5 ≦ x ≦ 0.95 10 12 ~1
High moisture resistance can be obtained with a resistance value in the range of 0 13 Ω · cm. In this case, the C amount may have a gradient in the layer. Further, by containing N, O, and Ge simultaneously with C, the moisture resistance can be further improved.

【0022】表面層1cの厚みは0.05〜5μm、好適に
は0.1〜3μmの範囲内が良く、又その厚みはこの際表面
層1cの抵抗は1012〜1013Ω・cmに設定し
た。
The thickness of the surface layer 1c is preferably in the range of 0.05 to 5 μm, preferably 0.1 to 3 μm, and the thickness of the surface layer 1c is set to 10 12 to 10 13 Ω · cm.

【0023】そして、本実施例においては容量結合型グ
ロー放電分解装置を用いて、前記の材料構成で、a−S
i感光体層1bを成膜した上にa−SiC表面層1cを
積層被覆した。そして本実施例においては、前記成膜時
間を変える事により感光体の層厚が夫々7、10、1
5、20、25、40μmなるように成膜して膜厚の異
なる感光体ドラム1を作製した。この場合表面層1cの
膜厚は最大3μm以下で且つ全体層厚の略5%以下に設
定する。
Then, in this embodiment, a-S
The i-photoreceptor layer 1b was formed, and an a-SiC surface layer 1c was coated thereon. In this embodiment, the layer thickness of the photoconductor is changed to 7, 10, 1 by changing the film forming time.
The photosensitive drums 1 having different thicknesses were formed by forming the films to have a thickness of 5, 20, 25, and 40 μm. In this case, the thickness of the surface layer 1c is set to 3 μm or less at the maximum and to about 5% or less of the total layer thickness.

【0024】又露光用LEDヘッド2には露光波長が6
85nmと740nmのヘッドアレイを用い、これをダ
イナミック駆動にて一走査ライン毎に64ビット×40
回分割露光されるように構成する。
The exposure LED head 2 has an exposure wavelength of 6
A head array of 85 nm and 740 nm was used, and this was dynamically driven and 64 bits × 40 per scanning line.
It is configured to perform multiple-time division exposure.

【0025】現像ユニット4は、キャリアとトナーから
なる複数成分現像剤が収納された現像容器41と固定磁
石集成体43が収納された現像ローラ42からなり、該
ローラ42に例えば50〜450Vの直流現像バイアス
電源44を接続して、低電界現像により現像を行うよう
に構成する。
The developing unit 4 comprises a developing container 41 in which a multi-component developer composed of a carrier and a toner is stored, and a developing roller 42 in which a fixed magnet assembly 43 is stored. The developing bias power supply 44 is connected to perform development by low electric field development.

【0026】そして前記キャリアは、バインダ樹脂中に
磁性体が均一分散されてなるキャリア母粒子の表面に導
電性微粒子が固定されて構成されたものを用い、その磁
力は、5kOe(エールステッド)の磁場での最大磁化
が55〜80emu/g、キャリアの平均中心粒度は3
5μmで特に35μm以下の粒子を15wt%以上含む
粒径分布の現像剤を用いる。
As the carrier, a carrier is used in which conductive fine particles are fixed on the surface of carrier base particles in which a magnetic substance is uniformly dispersed in a binder resin, and the magnetic force is 5 kOe (Oersted). The maximum magnetization in a magnetic field is 55 to 80 emu / g, and the average center particle size of the carrier is 3
A developer having a particle size distribution of 5 μm, particularly containing 15 wt% or more of particles of 35 μm or less is used.

【0027】又トナーは通常の高抵抗若しくは絶縁性ト
ナーが用いられ、例えば、バインダー樹脂、着色剤、電
荷制御剤、オフセット防止剤などに、磁性体を添加して
その平均中心粒度は5〜15μm前後の磁性トナーとし
て構成し上記のキャリアとトナーと適正混合比を例えば
85〜90:15〜10重量%に設定する。
As the toner, an ordinary high-resistance or insulating toner is used. For example, a magnetic substance is added to a binder resin, a colorant, a charge control agent, an offset preventing agent, etc., and the average central particle size is 5 to 15 μm. The carrier and the toner are configured as the front and rear magnetic toners, and an appropriate mixing ratio of the carrier and the toner is set to, for example, 85 to 90:15 to 10% by weight.

【0028】転写ローラ5は転写効率を上げるために導
電性ローラを用い、前記トナーの帯電電位と逆極性の転
写バイアスを印加させるとともに、前記感光体ドラム1
周面に均一に圧接し、該ドラム1と同期して回転可能に
構成する。
The transfer roller 5 uses a conductive roller to increase the transfer efficiency, applies a transfer bias having a polarity opposite to the charging potential of the toner, and applies a transfer bias to the photosensitive drum 1.
It is configured to be uniformly pressed against the peripheral surface and to be rotatable in synchronization with the drum 1.

【0029】粒子帯電ユニット8は、図上右方向に回転
する感光体ドラム1に対し帯電ギャップ(0.5mm)
を介して前記感光体ドラム1の回転方向とアゲインスト
方向(図上左方向)に回転可能により非磁性スリーブ8
1を配設すると共に、該非磁性スリーブ81の背面側の
帯電領域下流側に固定配置した固定磁石体82Aと、該
固定磁石体82Aの帯電領域上流方向、言換えればスリ
ーブ回転方向下流側に、前記固定磁石体82Aと同極性
の反発磁石体82B、又スリーブ回転方向上流側に、前
記固定磁石体82Aと逆極性の磁石体82Cを配設す
る。尚、86は非磁性スリーブ81を介して導電性磁性
粒子群84に帯電バイアスを印加させるバイアス電源で
ある。
The particle charging unit 8 has a charging gap (0.5 mm) with respect to the photosensitive drum 1 rotating rightward in FIG.
The non-magnetic sleeve 8 is rotatable in the rotational direction of the photosensitive drum 1 and the opposite direction (left direction in the figure) through the
1 and a fixed magnet body 82A fixedly disposed on the downstream side of the charging area on the back side of the non-magnetic sleeve 81, and on the upstream side of the charging area of the fixed magnet body 82A, in other words, on the downstream side in the sleeve rotation direction, A repulsion magnet body 82B having the same polarity as the fixed magnet body 82A, and a magnet body 82C having a polarity opposite to that of the fixed magnet body 82A are arranged on the upstream side in the sleeve rotation direction. Reference numeral 86 denotes a bias power supply for applying a charging bias to the conductive magnetic particle group 84 via the non-magnetic sleeve 81.

【0030】そして前記帯電領域上に介在させる導電性
磁性粒子群は導電性であれば特に限定されないが、フェ
ライトや鉄粉、マグネタイト等の磁性コアの表面に導電
性樹脂で被覆した導電性磁性粒子で構成するか若しくは
導電性粒子と磁性粒子の混合粒子群で構成してもよい。
例えば平均粒径が30μm前後の磁性粒子母材と、平均
粒径が15μm前後の導電粒子材を適宜割合で配合した
ものを用いても良い。尚、本実施例においては平均粒径
が20〜35μm、抵抗率10〜10Ω・cmのフ
ェライトコア粒子を用い、磁気特性を60〜70emu/
g(1k Oe)に設定したものを用いる。
The conductive magnetic particles interposed on the charged area are not particularly limited as long as they are conductive. However, the conductive magnetic particles in which the surface of a magnetic core such as ferrite, iron powder or magnetite is coated with a conductive resin are used. Or a mixed particle group of conductive particles and magnetic particles.
For example, a mixture of a magnetic particle base material having an average particle size of about 30 μm and a conductive particle material having an average particle size of about 15 μm may be used. In this example, ferrite core particles having an average particle diameter of 20 to 35 μm and a resistivity of 10 5 to 10 6 Ω · cm were used, and the magnetic characteristics were 60 to 70 emu / cm 2.
g (1 k Oe) is used.

【0031】一方、感光体ドラム1の背面側には、帯電
領域下流側に位置する前記固定磁石体82Aとほぼ対向
させて第1の磁石体85Aと、前記第1の磁石体85A
に隣接させて帯電領域上流側に第2の磁石体85Bとを
隣接配置すると共に、第1の磁石体85Aは前記固定磁
石体82Aと逆極性のS極に設定し、第2の磁石体85
Bは該第1の磁石体85Aと逆極性のN極に設定し、両
磁石体85A、85B間の感光体ドラム1上に水平磁場
を形成する。
On the other hand, on the back side of the photosensitive drum 1, a first magnet body 85A substantially facing the fixed magnet body 82A located downstream of the charging area, and a first magnet body 85A
A second magnet body 85B is arranged adjacent to the charging area upstream side adjacent to the first magnet body 85A, and the first magnet body 85A is set to an S pole having a polarity opposite to that of the fixed magnet body 82A.
B is set to an N pole having a polarity opposite to that of the first magnet body 85A, and forms a horizontal magnetic field on the photosensitive drum 1 between the two magnet bodies 85A and 85B.

【0032】かかる実施例においては、前記感光体ドラ
ム1上の前記両磁石体85A、85B間の水平磁場上で
磁性粒子群84Bを密着させながら感光体ドラム1表面
を円滑に帯電させた後、露光ヘッド2により所定の潜像
を露光させた後、現像ユニット4により該潜像にトナー
像を付着させた後、転写ローラ5を用いて図示しない記
録媒体に転写させる事が出来る。
In this embodiment, after the surface of the photosensitive drum 1 is smoothly charged while the magnetic particles 84B are brought into close contact with each other on a horizontal magnetic field between the two magnets 85A and 85B on the photosensitive drum 1, After exposing a predetermined latent image by the exposure head 2 and attaching a toner image to the latent image by the developing unit 4, the latent image can be transferred to a recording medium (not shown) using the transfer roller 5.

【0033】次にかかる装置を用い膜厚の異なる感光体
ドラム1を用いて次のような実験を行った。
Next, the following experiment was carried out using such a device and using the photosensitive drums 1 having different film thicknesses.

【0034】前記感光体ドラム1の表面電位が200V
になるように粒子帯電バイアスを調整した後、露光ヘッ
ド2の出力を調整しながら膜厚の異なる各感光体ドラム
における半減感度(表面電位の1/2まで露光電位が低
下するに必要な露光エネルギー密度)を調べてみると、
膜厚に比例して半減感度が低くなり、且つ露光波長68
5nmに比して740nmの方が低くなっていることが
理解できる。
The surface potential of the photosensitive drum 1 is 200 V
After adjusting the particle charging bias so as to obtain the half-sensitivity (exposure energy required to reduce the exposure potential to half the surface potential) in each photosensitive drum having a different film thickness while adjusting the output of the exposure head 2. Looking at the density)
The half sensitivity decreases in proportion to the film thickness, and the exposure wavelength 68
It can be understood that 740 nm is lower than 5 nm.

【0035】図2は表面電位200Vで、露光波長74
0nmで露光した場合のドラム膜厚と線幅との関係を示
し、本図より理解されるように、水平線及び垂直線のい
ずれの場合も感光体膜厚が40μm以下の場合の線幅
は、25μm以下の場合の線幅に比較して太く、その分
先鋭度と解像度が低下している事が理解される。又25
μm以下の場合は、先鋭度も解像度もほぼ一致してお
り、有意差はない。そして、図1に示すように、膜厚が
25μmの場合の半減感度は、露光波長685nmで
7.58cm/μJ、露光波長740nmで5.85
cm/μJで、一方膜厚が40μmの場合の半減感度
は、露光波長685nmで11.11cm/μJ、露
光波長740nmで9.09cm/μJでかかる実験
より明らかなように、感光体半減感度を8cm/μJ
以下に設定することにより図2に示す先鋭度の高いドッ
ト画像の形成が可能となる。又前記半減感度を余りに低
くすると、線画像自体がぼけてしまうから、図1(A)
の表より明らかなごとく露光波長740nmで膜厚7μ
mの露光波長1.75cm/μJでも十分なる先鋭度
が確保できたことから、前記半減感度は2cm/μJ
以上あれば問題が生じないことが理解される。
FIG. 2 shows a surface potential of 200 V and an exposure wavelength of 74.
The relationship between the drum film thickness and the line width when exposed at 0 nm is shown. As can be understood from this drawing, the line width when the photoconductor film thickness is 40 μm or less in both horizontal and vertical lines is It is understood that the line width is thicker than that in the case of 25 μm or less, and the sharpness and the resolution are reduced correspondingly. 25
In the case of μm or less, the sharpness and the resolution are almost the same, and there is no significant difference. As shown in FIG. 1, the half-reduction sensitivity when the film thickness is 25 μm is 7.58 cm 2 / μJ at an exposure wavelength of 685 nm and 5.85 cm 2 / μJ at an exposure wavelength of 740 nm.
In cm 2 / μJ, whereas thickness half sensitivity in the case of 40μm is, 11.11cm 2 / μJ at the exposure wavelength 685 nm, as it is clear from such experiments with 9.09cm 2 / μJ at the exposure wavelength 740 nm, the photosensitive member 8 cm 2 / μJ half sensitivity
By setting as follows, it is possible to form a dot image with high sharpness shown in FIG. If the half sensitivity is too low, the line image itself will be blurred.
As is clear from the table, the film thickness is 7 μm at the exposure wavelength of 740 nm.
Since sufficient Naru sharpness even exposure wavelength 1.75 cm 2 / .mu.J of m could be secured, the half sensitivity 2 cm 2 / .mu.J
It is understood that the above does not cause a problem.

【0036】更に図3は図5に示す前記粒子帯電装置8
の代りにコロナ放電器を用いて表面電位が450Vで帯
電させた後、露光波長が740nmで且つエネルギー密
度が0.2μJ/cmで露光した場合の焦点深度とド
ラム電位の関係を示したもので、膜厚が40μmの場合
は焦点深度が150〜230μm前後であるが、膜厚が
15μmでは焦点深度が380μm前後に大幅に向上
し、而もこれは膜厚を7μmに薄くしてもほとんど変化
がない。したがってドラム感度が低下すると結果として
前記したように結像位置周囲の収差分を拾わない為に、
焦点深度が大になるが、本図では膜厚が15μm以下又
図2を考慮すると膜厚が25μm以下でも300μm以
上の焦点深度が得られる事が推定される。尚、図6中8
1はコロナ放電線、82は制御グリッド、83は放電バ
イアス、84'は帯電制御バイアスである。
FIG. 3 shows the particle charging device 8 shown in FIG.
Shows the relationship between the depth of focus and the drum potential when exposed at a wavelength of 740 nm and an energy density of 0.2 μJ / cm 2 after charging at a surface potential of 450 V using a corona discharger instead of When the film thickness is 40 μm, the depth of focus is about 150 to 230 μm. However, when the film thickness is 15 μm, the depth of focus is greatly improved to about 380 μm. no change. Therefore, when the drum sensitivity decreases, as a result, as described above, in order to not pick up the aberration around the imaging position,
Although the depth of focus becomes large, in this figure, it is estimated that a depth of focus of 300 μm or more can be obtained even if the thickness is 25 μm or less in consideration of FIG. In addition, 8 in FIG.
1 is a corona discharge line, 82 is a control grid, 83 is a discharge bias, and 84 'is a charging control bias.

【0037】次に前記感光体ドラム上に露光像を結像さ
せるセルフォックレンズとして日本板硝子製のセルフォ
ックレンズSLA−20(屈折率:略1.63)と三菱
レイヨン製RA57S−S21(屈折率:略1.50
8)の関係を図6の装置を用いて制御バイアスを300
V(表面電位300V)に設定して調べる。先ず、感光
体ドラムとセルフォックレンズ間の焦点距離を15m
m、露光波長685nmに維持してAー4サイズの紙を
縦送りにして10枚/分の速度で、露光エネルギーが2
5μmの膜厚の感光体ドラムにおいては0.5〜0.6
μJ/cm、膜厚が10μmのものについては0.7
〜0.9μJ/cm、膜厚が40μmのものについて
は0.3〜0.4μJ/cmの露光エネルギーにて露
光を行なった所、図4に示すように、膜厚が10μm及
び25μmのものについてはプラスチックレンズでも、
又光学ガラスレンズでもそのMTF値はほとんど変ら
ず、65以上を維持し得るが、40μmの膜厚のものに
ついてはプラスチックレンズを用いたものはMTF値が
大幅に低下している事が理解される。
Next, as a selfoc lens for forming an exposure image on the photosensitive drum, a selfoc lens SLA-20 (refractive index: approximately 1.63) manufactured by Nippon Sheet Glass and RA57S-S21 (refractive index) manufactured by Mitsubishi Rayon Co., Ltd. : About 1.50
The relationship of 8) was set by using the apparatus of FIG.
V (surface potential: 300 V) for examination. First, the focal length between the photosensitive drum and the SELFOC lens is 15 m.
m, the exposure energy was 2 at a speed of 10 sheets / min by longitudinally feeding A-4 size paper while maintaining the exposure wavelength at 685 nm.
0.5 to 0.6 for a photosensitive drum having a thickness of 5 μm.
μJ / cm 2 , and 0.7 μm for a film thickness of 10 μm.
~0.9μJ / cm 2, where the film thickness is about what the 40μm is was subjected to exposure at an exposure energy of 0.3~0.4μJ / cm 2, as shown in FIG. 4, the film thickness is 10μm and 25μm For plastic lenses,
The MTF value of the optical glass lens hardly changes and can be maintained at 65 or more. However, it is understood that the MTF value of the plastic lens having a film thickness of 40 μm is greatly reduced. .

【0038】[0038]

【発明の効果】以上記載したごとく本発明によれば、感
光体の表面層の膜厚、感光体層の膜厚、露光波長、感光
体層の表面電位の1/2まで露光電位が低下するに必要
な感光体半減感度、前記露光波長を用いて露光するエネ
ルギ密度、露光の際の帯電電位及び焦点深度を請求項1
に記載するように設定することにより、前記露光像を結
像するための光学レンズを、プラスチックレンズで構成
配置することを可能としたものであり、かかる技術によ
り結像誤差その他に起因する光収差分の光量を拾うこと
なく中心光量のみを拾い、この結果、プラスチックレン
ズを用いても画像コントラストや先鋭度の高い高品質の
ドット画像の形成が可能な電子写真装置を提供する事が
出来る。そして、特に露光手段にプラスチックレンズを
用いる事により、自由な長さと曲面のレンズが形成出
来、製造コストを低減することができる。等の種々の著
効を有す。
As described above, according to the present invention, the exposure potential is reduced to 1/2 of the thickness of the surface layer of the photoreceptor, the thickness of the photoreceptor layer, the exposure wavelength, and the surface potential of the photoreceptor layer. 2. The photoreceptor half-reduction sensitivity required for the exposure, the energy density for exposure using the exposure wavelength, the charging potential at the time of exposure, and the depth of focus.
By setting as described in the above, the optical lens for forming the exposure image, it is possible to configure and arrange a plastic lens, optical aberration due to imaging errors and other due to such technology Only the central light quantity is picked up without picking up the minute light quantity. As a result, an electrophotographic apparatus capable of forming a high-quality dot image with high image contrast and sharpness even when using a plastic lens can be provided. In particular, by using a plastic lens as the exposure means, a lens having a free length and a curved surface can be formed, and the manufacturing cost can be reduced. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 感光体半減感度と膜厚との関係を示し、
(A)は表、(B)はグラフ図である。
FIG. 1 shows the relationship between photoreceptor half-life sensitivity and film thickness,
(A) is a table, (B) is a graph.

【図2】 ドラム膜厚と線幅との関係を示し、(A)は
水平線、(B)は垂直線を示す。
FIG. 2 shows a relationship between a drum film thickness and a line width, wherein (A) shows a horizontal line and (B) shows a vertical line.

【図3】 ドラム感度と半減感度の関係を示すグラフ図
である。
FIG. 3 is a graph showing a relationship between a drum sensitivity and a half sensitivity.

【図4】 膜厚とレンズ種類の関係を示すグラフ図であ
る。
FIG. 4 is a graph showing a relationship between a film thickness and a lens type.

【図5】 本発明が適用される電子写真装置を示す概略
図である。
FIG. 5 is a schematic view showing an electrophotographic apparatus to which the present invention is applied.

【図6】 本発明が適用される電子写真装置を示す概略
図である。
FIG. 6 is a schematic view showing an electrophotographic apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 露光用ヘッド 3 光学系 4 二成分現像ユニット 8、8' 帯電装置 DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Exposure head 3 Optical system 4 Two-component developing unit 8, 8 'Charging device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−21858(JP,A) 特開 平5−249723(JP,A) 特開 平5−72782(JP,A) 特開 昭60−249170(JP,A) 特開 平4−324464(JP,A) 特開 平5−27464(JP,A) 特開 昭58−2802(JP,A) 特開 平4−255818(JP,A) 実開 昭60−90467(JP,U) (58)調査した分野(Int.Cl.7,DB名) G03G 5/00 - 5/16 G03G 15/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-21858 (JP, A) JP-A-5-249723 (JP, A) JP-A-5-72782 (JP, A) JP-A-60-1985 249170 (JP, A) JP-A-4-32464 (JP, A) JP-A-5-27464 (JP, A) JP-A-58-2802 (JP, A) JP-A-4-255818 (JP, A) 60-90467 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G03G 5/00-5/16 G03G 15/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基体上に支持された感光体層に露光像を
書込みながら画像形成を行う電子写真装置において、 前記感光体層を2〜25μmの膜厚からなるa−Si層
で形成すると共に、表面層の膜厚を0.05〜5μmに
設定し、 前記感光体層の表面電位の1/2まで露光電位が低下す
るに必要な感光体半減感度を、8〜1cm/μJの範
囲に設定するとともに、 450Vで帯電させ、740nmの露光波長を用いて、
エネルギ密度0.2μJ/cmで露光した場合の焦点
深度300μm以上となるように構成し、 前記露光像を結像するための光学レンズを、プラスチッ
クレンズで構成配置したことを特徴とする電子写真装
置。
An exposed image is formed on a photoreceptor layer supported on a substrate.
An electrophotographic apparatus for forming an image while writing, wherein the photosensitive layer is an a-Si layer having a thickness of 2 to 25 μm.
And the thickness of the surface layer is reduced to 0.05 to 5 μm.
Setting, the exposure potential is reduced to half of the surface potential of the photoconductor layer.
8 to 1 cm2/ ΜJ range
, And charged at 450 V, using an exposure wavelength of 740 nm.
Energy density 0.2μJ / cm2Exposure atIffocus
Constructed to have a depth of 300μm or moreAnd  The optical lens for forming the exposure image is made of plastic.
An electrophotographic apparatus characterized in that it is constructed and arranged with cleanse.
Place.
JP29435993A 1993-10-29 1993-10-29 Electrophotographic equipment Expired - Fee Related JP3148964B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29435993A JP3148964B2 (en) 1993-10-29 1993-10-29 Electrophotographic equipment
US08/332,481 US5729800A (en) 1993-10-29 1994-10-27 Electrophotographic apparatus having an a-Si photosensitive drum assembled therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29435993A JP3148964B2 (en) 1993-10-29 1993-10-29 Electrophotographic equipment

Publications (2)

Publication Number Publication Date
JPH07128960A JPH07128960A (en) 1995-05-19
JP3148964B2 true JP3148964B2 (en) 2001-03-26

Family

ID=17806693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29435993A Expired - Fee Related JP3148964B2 (en) 1993-10-29 1993-10-29 Electrophotographic equipment

Country Status (1)

Country Link
JP (1) JP3148964B2 (en)

Also Published As

Publication number Publication date
JPH07128960A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US4585326A (en) Developing electrophotographic image using magnets and magnetic material
JP3148964B2 (en) Electrophotographic equipment
EP0614129B1 (en) Magnetic carrier, developer comprising the carrier for developing latent electrostatic images, electrographic photoconductor, and image formation method using the same
US6047154A (en) Developing apparatus
US5963762A (en) Electrophotographic apparatus performing image exposure and development simultaneously
JPH10274868A (en) Image forming device and process cartridge
JP2801230B2 (en) Image forming device
JP2959599B2 (en) Two-component developer and image forming method
JP3072802B2 (en) Image forming device
JP3142037B2 (en) Electrophotographic equipment
JPS6064364A (en) Method and device for image formation
JP2916787B2 (en) Developing device
JP3330009B2 (en) Electrophotographic equipment
JP2986030B2 (en) Image forming device
JP3714567B2 (en) Electrophotographic equipment
JP2768678B2 (en) Image forming device
JPH0424644A (en) Image recorder
JPH03259278A (en) Developing device
EP0606757B1 (en) Electrophotographic apparatus for performing image exposure and development simultaneously
JP2957036B2 (en) Conductive magnetic carrier for developer, developer and image forming method
JPH07175276A (en) Electrophotographic device
JPH05303249A (en) Image forming device
JPH06332327A (en) Image forming device
JPH056060A (en) Image forming method
JPH0580541A (en) Image forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees