JP2920663B2 - Electrophotographic photoreceptor - Google Patents
Electrophotographic photoreceptorInfo
- Publication number
- JP2920663B2 JP2920663B2 JP20447690A JP20447690A JP2920663B2 JP 2920663 B2 JP2920663 B2 JP 2920663B2 JP 20447690 A JP20447690 A JP 20447690A JP 20447690 A JP20447690 A JP 20447690A JP 2920663 B2 JP2920663 B2 JP 2920663B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- layer
- photoreceptor
- electrostatic latent
- latent image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrophotography Using Other Than Carlson'S Method (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は静電潜像形成と静電潜像転写を同時に行う同
時静電潜像転写方式に好適な電子写真感光体に関するも
のである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member suitable for a simultaneous electrostatic latent image transfer system for simultaneously forming an electrostatic latent image and transferring an electrostatic latent image.
電子写真法として、感光体上の静電潜像を誘電体層を
設けた記録紙に一旦転写し、この静電潜像をトナーで現
像する静電潜像転写法が既に知られている。この電子写
真法はトランスファー・オブ・エレクトロスタティック
・イメージ(Transfer of Electro−Static Image)
法、いわゆるTESI法と呼ばれ、大別して、感光体上の静
電潜像形式と記録紙への静電潜像転写とを別々の工程で
行う「順次転写法」と、感光体と記録紙を積み重ねた状
態で画像露光を行い、静電潜像形成と転写を同時に行っ
て記録紙に静電潜像を形成する「同時転写法」とがあ
る。As an electrophotographic method, an electrostatic latent image transfer method in which an electrostatic latent image on a photoreceptor is temporarily transferred to a recording paper provided with a dielectric layer and the electrostatic latent image is developed with toner is already known. This electrophotography is based on Transfer of Electro-Static Image.
Method, the so-called TESI method, which is roughly classified into a "sequential transfer method" in which the electrostatic latent image format on the photoconductor and the transfer of the electrostatic latent image to recording paper are performed in separate steps, and a photoconductor and recording paper There is a "simultaneous transfer method" in which image exposure is performed in a state where the electrostatic latent images are stacked, and an electrostatic latent image is simultaneously formed and transferred to form an electrostatic latent image on recording paper.
後者の同時転写法に用いられる感光体として、透光性
の導電支持体上に光導電層を積層したものを基本構成と
し、更にコントラストを改善するために上記導電支持体
と光導電層との間に絶縁層を形成した層構成が提案され
ている(特公昭57−55140号及び特開昭56−43665号参
照)。The photoreceptor used in the latter simultaneous transfer method has a basic structure in which a photoconductive layer is laminated on a light-transmitting conductive support, and the conductive support and the photoconductive layer are combined with each other to further improve the contrast. A layer configuration in which an insulating layer is formed between the layers has been proposed (see Japanese Patent Publication No. 57-55140 and Japanese Patent Application Laid-Open No. 56-43665).
その他、特開昭49−52643号には上記導電支持体と光
導電層との間に該光導電層に比べて暗抵抗の高い有機光
導電層を形成した層構成が、また、特公昭57−46067号
には透明支持体上に透明電極層、光導電性注入阻止層及
び光導電層を順次積層した層構成も提案されている。In addition, JP-A-49-52643 discloses a layer structure in which an organic photoconductive layer having a higher dark resistance than the photoconductive layer is formed between the conductive support and the photoconductive layer. No. 46067 also proposes a layer configuration in which a transparent electrode layer, a photoconductive injection blocking layer and a photoconductive layer are sequentially laminated on a transparent support.
前記光導電層にはSe,Se−Te,Se−As,Te−As,ZnO,ZnCd
S,CdS,CdS・nCdCO3,CdSe,CdTe,PbO,Sb2S3などの無機材
料や、ポリビニルカルバゾール、アントラセン、アント
ラキノンなどの有機材料が用いられていた。Se, Se-Te, Se-As, Te-As, ZnO, ZnCd
Inorganic materials such as S, CdS, CdS.nCdCO 3 , CdSe, CdTe, PbO, and Sb 2 S 3 and organic materials such as polyvinylcarbazole, anthracene, and anthraquinone have been used.
しかしながら、これらの光導電材料は光感度が充分に
高くなく、そのために静電潜像形成時に大きな露光エネ
ルギー(数十〜数百ルックス・秒〔lux・sec〕)を必要
としていた。However, these photoconductive materials do not have sufficiently high photosensitivity, and thus require a large exposure energy (tens to hundreds of lux seconds) when forming an electrostatic latent image.
そこで、近年急速に発展してきたLEDアレイやELアレ
イから成る光プリントヘッドを用いた場合、複写装置の
小型化を成し得るが、その反面、消費電力を小さくする
要求に対しては、感光体の感度が不足し、満足し得なか
った。Therefore, when an optical print head composed of an LED array or an EL array, which has been rapidly developed in recent years, is used, the size of the copying apparatus can be reduced. Was insufficient and I was not satisfied.
また、TESI法は感光体が現像器やクリーナーに接して
いないために通常のカールソン法に比べて感光体表面の
摩耗や傷発生が少なくなり、その感光体を長寿命化させ
ることができるが、その反面、従来の光導電材料では、
その表面硬度が高くなく、そのために静電記録紙や転写
ローラとの接触に起因して感光体表面が摩耗したり、そ
の表面に傷が生じるという問題点がある。In addition, since the photoconductor does not come in contact with a developing device or a cleaner, the TESI method has less wear and scratches on the surface of the photoconductor than the ordinary Carlson method, and can extend the life of the photoconductor. On the other hand, with conventional photoconductive materials,
There is a problem that the surface hardness is not high, so that the surface of the photoreceptor is worn or scratched due to contact with the electrostatic recording paper or the transfer roller.
従って本発明は上記事情に鑑みて案出されたものであ
り、その目的は可視光領域の光に対して高い感度で得ら
れ、しかも、長寿命化を達成した同時静電潜像転写方式
に好適な電子写真感光体を提供することにある。Accordingly, the present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a simultaneous electrostatic latent image transfer method that can be obtained with high sensitivity to light in the visible light region and that has a long life. An object of the present invention is to provide a suitable electrophotographic photosensitive member.
本発明は、透光性電極上に透光性絶縁層とアモルファ
スシリコン光導電層とを順次積層してなる感光体に対し
LEDヘッドまたはELヘッドによる上記透光性電極側から
の画像露光と同時に透光性電極に電圧印加する同時静電
潜像転写方式に適用する電子写真感光体であって、上記
透光性絶縁層をカーボン、酸素または窒素を含有させて
バンドギャップ1.9eV以上、抵抗率1013Ωcm以上のアモ
ルファスシリコン系透光性絶縁層でもって構成して、ア
モルファスシリコン光導電層上に、カーボン、酸素、窒
素またはゲルマニウムを含有させ組成式Si1-XAx(A:C,
N,O,Ge)にて0.5≦x≦0.95に規定したアモルファスシ
リコン系表面層を被覆したことを特徴とする(以下アモ
ルファスシリコンをa−Siと略す)。The present invention relates to a photoconductor in which a light-transmitting insulating layer and an amorphous silicon photoconductive layer are sequentially laminated on a light-transmitting electrode.
An electrophotographic photoreceptor applied to a simultaneous electrostatic latent image transfer method in which a voltage is applied to the translucent electrode simultaneously with image exposure from the translucent electrode side by an LED head or an EL head, wherein the translucent insulating layer Is composed of an amorphous silicon-based light-transmitting insulating layer having a band gap of 1.9 eV or more and a resistivity of 10 13 Ωcm or more containing carbon, oxygen or nitrogen, and carbon, oxygen and nitrogen are formed on the amorphous silicon photoconductive layer. Or containing germanium and having the composition formula Si 1-X A x (A: C,
(N, O, Ge) to cover an amorphous silicon-based surface layer defined as 0.5 ≦ x ≦ 0.95 (amorphous silicon is abbreviated as a-Si).
次に本発明を詳述する。 Next, the present invention will be described in detail.
第1図及び第2図は本発明電子写真感光体の典型的層
構成を表す図である。FIG. 1 and FIG. 2 are views showing typical layer constitutions of the electrophotographic photoreceptor of the present invention.
これらの図においては、1は透光性支持体であり、こ
の支持体1の上に透光性電極層2及びa−Si系光導電層
3を順次積層するか、もしくはその間にa−Si系透光性
絶縁層としての中間層4を介して積層する。そして、光
導電層3の上にa−Si系絶縁層としての表面層5を形成
する。In these figures, reference numeral 1 denotes a light-transmitting support, on which a light-transmitting electrode layer 2 and an a-Si based photoconductive layer 3 are sequentially laminated, or an a-Si They are laminated via an intermediate layer 4 as a system light-transmitting insulating layer. Then, a surface layer 5 as an a-Si based insulating layer is formed on the photoconductive layer 3.
上記透光性支持体1は板状、ドラム状、シート状、ベ
ルト状などの形状をなし、その材料にはガラス、石英、
サファイア等の透明な無機材料、また、弗素樹脂、ポリ
エステル、ポリカーボネート、ポリエチレン、ポリエチ
レンテレフタレート、ビニロン、エポキシ、マイラー等
の透明な有機樹脂、更にまたオプチカルファイバー、セ
ルフォック光学プレート等がある。The translucent support 1 has a shape such as a plate shape, a drum shape, a sheet shape, and a belt shape.
There are transparent inorganic materials such as sapphire, transparent organic resins such as fluororesin, polyester, polycarbonate, polyethylene, polyethylene terephthalate, vinylon, epoxy and mylar, as well as optical fibers and selfoc optical plates.
上記透光性電極層2にはITO(インジウム・スズ・酸
化物)、酸化錫、酸化鉛、酸化インジウム、ヨウ化銅等
の透明導電性材料を用いたり、或いは蒸気スパッタリン
グによりAl,Ni,Au等の金属を半透明になる程度に薄く形
成してもよい。The transparent electrode layer 2 is made of a transparent conductive material such as ITO (indium tin oxide), tin oxide, lead oxide, indium oxide, copper iodide, or Al, Ni, Au by vapor sputtering. Or the like may be formed thin enough to be translucent.
上記a−Si系光導電層3や中間層4または表面層5は
グロー放電分解法、スパッタリング法、ECR法、蒸着法
などにより成膜形成し、その形成に当たってダングリン
グボンド終端用の元素、例えば水素(H)やハロゲンを
含有させる。The a-Si-based photoconductive layer 3, the intermediate layer 4, or the surface layer 5 is formed by a glow discharge decomposition method, a sputtering method, an ECR method, a vapor deposition method, or the like. Contains hydrogen (H) and halogen.
a−Si系光導電層3にはそのシリコン元素の一部をカ
ーボン、酸素、窒素、ゲルマニウム、スズ、イオウなど
の元素と置換して導電率やバンドギャップ、硬度などの
物性を適宜変えてもよい。光源としてLEDヘッドを用い
た場合にはa−Si系の層により有効に受光されるが、EL
ヘッドを用いた場合、その発光波長は短波長側へシフト
しており、そのためa−Si層にカーボン、酸素、窒素な
どの元素を含有させてバンドギャップを広げるとよい。
また、半導体レーザを用いた場合、その発光波長は長波
長側へシフトしており、そのためa−Si層にゲルマニウ
ム、スズなどの元素を含有させてバンドギャップを狭く
すればよい。In the a-Si-based photoconductive layer 3, even if a part of the silicon element is replaced with an element such as carbon, oxygen, nitrogen, germanium, tin, and sulfur, physical properties such as conductivity, band gap, and hardness are appropriately changed. Good. When an LED head is used as a light source, light is effectively received by the a-Si-based layer.
When a head is used, the emission wavelength shifts to the shorter wavelength side. Therefore, it is preferable to increase the band gap by including an element such as carbon, oxygen, or nitrogen in the a-Si layer.
When a semiconductor laser is used, its emission wavelength shifts to a longer wavelength side. Therefore, the band gap may be narrowed by containing an element such as germanium or tin in the a-Si layer.
更にまたa−Si系光導電層3に周期律表第IIIa族元素
や第Va族元素を添加して電気特性を調整することもでき
る。Further, the electrical characteristics can be adjusted by adding a group IIIa element or a group Va element of the periodic table to the a-Si-based photoconductive layer 3.
上記a−Si系光導電層3の厚みは0.1〜100μm、好適
には1〜50μmの範囲内がよく、これにより、静電潜像
の形成に必要な絶縁耐圧が確保し易くなり、また露光を
吸収して光キャリアを有効に生成でき、しかも、残留電
位の上昇を抑制することができる。The thickness of the a-Si-based photoconductive layer 3 is preferably in the range of 0.1 to 100 μm, and more preferably 1 to 50 μm, so that the dielectric strength required for forming an electrostatic latent image can be easily secured. To effectively generate photocarriers, and furthermore, it is possible to suppress an increase in residual potential.
前記中間層4は、その層自体で光導電層3での光キャ
リア生成に有効な光を吸収しないように光導電層3に比
べてバンドギャップを大きくする必要があり、それには
カーボン、酸素、窒素などの元素を含有して光学的エネ
ルギーギャップ(以下Eg optと略す)を1.9eV以上に設
定するとよい。また、電極層2から光導電層3へのキャ
リア注入を有効に阻止するために1013Ωcm以上の抵抗率
に設定するのが望ましい。The intermediate layer 4 needs to have a band gap larger than that of the photoconductive layer 3 so that the layer itself does not absorb light effective for generating photocarriers in the photoconductive layer 3. An optical energy gap (hereinafter abbreviated as Egopt) containing an element such as nitrogen is preferably set to 1.9 eV or more. Further, in order to effectively prevent the injection of carriers from the electrode layer 2 into the photoconductive layer 3, the resistivity is desirably set to 10 13 Ωcm or more.
上記中間層4の厚みは0.1〜10μm、好適には0.3〜5
μmの範囲内がよく、これにより、静電潜像の形成に必
要な絶縁耐圧が確保し易くなり、また、この中間層での
露光の吸収を抑えて光導電層3において光キャリアを有
効に生成でき、しかも、残留電位の上昇を抑制すること
ができる。The thickness of the intermediate layer 4 is 0.1 to 10 μm, preferably 0.3 to 5 μm.
The range of μm is preferable, whereby it is easy to secure the dielectric strength required for forming the electrostatic latent image. In addition, absorption of exposure in the intermediate layer is suppressed, and photocarriers are effectively used in the photoconductive layer 3. It can be generated, and the rise of the residual potential can be suppressed.
前記表面層5については硬度を高めるとともに、絶縁
性を具備させるためにカーボン、窒素、酸素などの元素
をa−Si層に含有させる。更に耐湿性を高めるためにゲ
ルマニウム元素を含有させてもよい。これらの含有元素
をAとして表示し、その含有比率をa-Si1-x(A:C,N,O,G
e)により示した場合、 0.3≦x≦1.0 好適には、 0.5≦x≦0.95 に設定すればよい。For the surface layer 5, elements such as carbon, nitrogen, and oxygen are contained in the a-Si layer in order to increase hardness and provide insulation. Further, a germanium element may be contained in order to increase the moisture resistance. These contained elements are indicated as A, and the content ratio is a-Si 1-x (A: C, N, O, G
In the case indicated by e), 0.3 ≦ x ≦ 1.0, preferably, 0.5 ≦ x ≦ 0.95.
この表面層5の厚みは0.05〜5μm、好適には0.1〜
3μmの範囲内がよく、この範囲内であれば、感光体の
絶縁耐圧や表面硬度を高め、耐湿性などの耐環境性も高
め、また残留電位の上昇を抑制することができる。The thickness of the surface layer 5 is 0.05 to 5 μm, preferably 0.1 to 5 μm.
The range is preferably 3 μm, and within this range, the dielectric strength and surface hardness of the photoreceptor can be increased, the environmental resistance such as moisture resistance can be increased, and the rise in residual potential can be suppressed.
かくして上記構成の電子写真感光体を同時静電潜像転
写方式に用いた場合、高い光感度をもつために静電潜像
形成時の露光エネルギが小さくなり、これにより、従来
の感光体では用いられなかったLEDヘッドやELヘッドな
どの小型かつ低消費電力の露光光源を用いることができ
る。Thus, when the electrophotographic photoreceptor having the above configuration is used in the simultaneous electrostatic latent image transfer method, the exposure energy at the time of forming the electrostatic latent image is reduced due to high light sensitivity. A small and low power consumption exposure light source such as an LED head or an EL head that could not be used can be used.
また従来の感光体に比べて高い表面硬度があり、これ
によって長寿命な電子写真感光体を提供することができ
た。因にアモルファスAs2Se3層のビッカース硬度は150k
g/mm2であり、有機系光導電層はそれ以下の硬度である
が、これに対してa−Si層のビッカース硬度は1500〜20
00kg/mm2であり、それにカーボン、酸素、窒素を添加す
ると一層高硬度となる。Also, the surface hardness is higher than that of the conventional photoreceptor, so that a long-life electrophotographic photoreceptor can be provided. The Vickers hardness of the amorphous As 2 Se 3 layer is 150k
a g / mm 2, although an organic photoconductive layer is less hardness, the Vickers hardness of the hand a-Si layer 1500-20
00 kg / mm 2 , and when carbon, oxygen and nitrogen are added thereto, the hardness becomes higher.
更に中間層4や表面層5を形成した場合、感光体の絶
縁耐圧を高め、バックグラウンド電荷の転写を抑制で
き、その結果、コントラストが高く、バックのかぶりの
ない良好な画像が得られる。Further, when the intermediate layer 4 and the surface layer 5 are formed, the withstand voltage of the photoreceptor can be increased, and the transfer of background charge can be suppressed. As a result, a good image with high contrast and no fogging of the back can be obtained.
尚、上記の電子写真感光体においては透光性支持体1
の上に透光性電極層2を積層しているが、その他透光性
支持体1を導電性材料を用いて形成し、それに電極機能
をもたせ、上記電極層2を不要としてもよい。In the above electrophotographic photoreceptor, the translucent support 1
Although the light-transmitting electrode layer 2 is laminated thereon, the light-transmitting support 1 may be formed by using a conductive material and provided with an electrode function, so that the electrode layer 2 is not required.
次に本発明の実施例を述べる。 Next, examples of the present invention will be described.
(電子写真複写機の構成) 第3図は本例に用いられる電子写真複写機の構成であ
る。(Configuration of Electrophotographic Copying Machine) FIG. 3 shows a configuration of the electrophotographic copying machine used in this embodiment.
同図において、ドラム状透光性支持体1の上に透光性
電極層2や光導電層3及び表面層5を順次積層して成る
感光体ドラム6の内側にLEDヘッド7及びイレースラン
プ8を配置する。透光性電極層2に対して電圧を直流電
源9により印加することができる。10は導電ローラ、11
は現像器、12は定着器であり、感光体6と導電ローラ10
の間に静電転写紙13が搬送される。In FIG. 1, an LED head 7 and an erase lamp 8 are provided inside a photosensitive drum 6 in which a light-transmitting electrode layer 2, a photoconductive layer 3 and a surface layer 5 are sequentially laminated on a drum-shaped light-transmitting support 1. Place. A voltage can be applied to the translucent electrode layer 2 by the DC power supply 9. 10 is a conductive roller, 11
Denotes a developing device, and 12 denotes a fixing device.
During this time, the electrostatic transfer paper 13 is transported.
このような構成において、先ず感光体ドラム6の透光
性電極層2と導電ローラ10の間に静電転写紙13を介して
電圧を印加するとともに、LEDヘッド7により画像露光
を行うと、光導電層3における光キャリア発生と光キャ
リア搬送により感光体表面に画像露光に応じた電荷潜像
が形成され、次いで感光体ドラム6の回転に伴って、静
電転写紙13が感光体ドラム6と剥離する際、両者間の空
隙における気中放電により静電転写紙13上に電荷潜像の
転写が行われる。この静電潜像は引き続いて現像器11に
よりトナー像として現像され、定着器12により定着され
る。一方、感光体ドラム6は、その後、イレースランプ
8の光照射により残留電荷が消去され、次の潜像形成に
用いられる。In such a configuration, when a voltage is first applied between the translucent electrode layer 2 of the photosensitive drum 6 and the conductive roller 10 via the electrostatic transfer paper 13 and image exposure is performed by the LED head 7, light A charge latent image corresponding to image exposure is formed on the surface of the photoconductor by photocarrier generation and photocarrier transport in the conductive layer 3, and then, the electrostatic transfer paper 13 is brought into contact with the photoconductor drum 6 with the rotation of the photoconductor drum 6. At the time of peeling, a charge latent image is transferred onto the electrostatic transfer paper 13 by air discharge in a gap between the two. The electrostatic latent image is subsequently developed as a toner image by the developing device 11 and fixed by the fixing device 12. On the other hand, the photoreceptor drum 6 is thereafter erased from the residual charges by light irradiation of the erase lamp 8, and is used for forming the next latent image.
(例1) 透明な円筒状ガラス基板の周面に透光性電極層2とし
てITO層を電子ビーム蒸着法により1000Åの厚みで形成
し、次いで、その上に容量結合型グロー放電分解装置を
用いて第1表の成膜条件によりa−Si系光導電層を積層
した。(Example 1) An ITO layer is formed on the peripheral surface of a transparent cylindrical glass substrate as the light-transmitting electrode layer 2 to a thickness of 1000 mm by an electron beam evaporation method, and then a capacitively coupled glow discharge decomposition apparatus is used thereon. The a-Si based photoconductive layer was laminated under the film forming conditions shown in Table 1.
かくして得られた感光体を第3図の電子写真複写機に
装着し、その感光体内部にLEDヘッドを配し、波長660n
m、露光量1.0μJ/cm2の条件で画像露光を行いながら、
導電ローラを介して感光体と静電転写紙との間に+500V
の電圧を印加した。そして、静電転写紙上に静電潜像を
形成し、続いて、この静電潜像を負帯電トナーの2成分
方式の現像機を用いて現像し、得られたトナー像を熱定
着して露光部に対応した画像を得た。この画像を評価し
たところ、O.D.が1.0の画像濃度を有し、バックのかぶ
りもなく、解像力も良好な画像であった。 The photoreceptor thus obtained was mounted on the electrophotographic copying machine shown in FIG. 3, and an LED head was arranged inside the photoreceptor.
m, while the image exposure under the conditions of exposure 1.0μJ / cm 2,
+ 500V between photoreceptor and electrostatic transfer paper via conductive roller
Was applied. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and subsequently, the electrostatic latent image is developed using a two-component developing machine for negatively charged toner, and the obtained toner image is thermally fixed. An image corresponding to the exposed part was obtained. When this image was evaluated, it was an image having an image density of OD of 1.0, no fogging of the back, and a good resolution.
(例2) (例1)の電子写真感光体を作製するに当たって、a
−Si系光導電層に代えて光導電性微粉末CdS・nCdCO
3(0.8≦n≦1.0)を金属活性剤とともにアクリル樹脂
に分散させて熱硬化した厚み30μmの光導電層を形成
し、その他は(例1)と同一構成とした。(Example 2) In producing the electrophotographic photosensitive member of (Example 1), a
-Photoconductive fine powder CdS ・ nCdCO instead of Si-based photoconductive layer
3 (0.8 ≦ n ≦ 1.0) was dispersed in an acrylic resin together with a metal activator to form a thermosetting photoconductive layer having a thickness of 30 μm, and the other configuration was the same as that of (Example 1).
かくして得られた感光体を(例1)と同様に電子写真
複写機に装着し、感光体内部にLEDヘッドを配して、波
長660nm、露光量10.μJ/cm2の条件で画像露光を行いな
がら、導電ローラを介して感光体と静電転写紙との間に
−800Vの電圧を印加した。そして、静電転写紙上に静電
潜像を形成し、続いて、この静電潜像を正帯電トナーの
2成分方式の現像機を用いて現像し、得られたトナー像
を熱定着して露光部に対応した画像を得た。この画像を
評価したところ、光導電層の光感度が不足のために十分
な静電潜像が形成されず、濃度がほとんど得られない画
像であった。The photoreceptor thus obtained was mounted on an electrophotographic copying machine in the same manner as in (Example 1), an LED head was arranged inside the photoreceptor, and image exposure was performed under the conditions of a wavelength of 660 nm and an exposure of 10. μJ / cm 2. While performing, a voltage of -800 V was applied between the photosensitive member and the electrostatic transfer paper via the conductive roller. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then the electrostatic latent image is developed using a two-component developing machine of positively charged toner, and the obtained toner image is thermally fixed. An image corresponding to the exposed part was obtained. When this image was evaluated, a sufficient electrostatic latent image was not formed due to insufficient photosensitivity of the photoconductive layer, and an image with almost no density was obtained.
(例3) 透明な円筒状ガラス基板の周面にITO層を電子ビーム
蒸着法により1000Åの厚みで形成し、次いで容量結合型
グロー放電分解装置を用いて第2表の成膜条件により光
導電層及びアモルファスシリコンカーバイド(以下a−
SiCと略す)からなる表面層を積層した。(Example 3) An ITO layer was formed on the peripheral surface of a transparent cylindrical glass substrate to a thickness of 1000 mm by an electron beam evaporation method, and then photoconductive using a capacitively coupled glow discharge decomposition apparatus under the film forming conditions shown in Table 2. Layer and amorphous silicon carbide (hereinafter a-
A surface layer made of SiC) was laminated.
かくして得られた感光体の表面層におけるSi1-xCxの
x値は0.7であり、そして、その感光体を電子写真複写
機に装着し、感光体内部にLEDヘッドを配して波長660n
m、露光量1.0μJ/cm2の条件で画像露光を行いながら、
導電ローラを介して感光体と静電転写紙との間に+500V
の電圧を印加した。そして、静電転写紙上に静電潜像を
形成し、続いてこの静電潜像を負帯電トナーの2成分方
式の現像機を用いて現像し、得られたトナー像を熱定着
して露光部に対応した画像を得た。この画像を評価した
ところ、(例1)と同様に、O.D.が1.0の画像濃度を有
し、バックのかぶりもなく、解像力も良好な画像であっ
た。 The x value of Si 1-x C x in the surface layer of the photoreceptor thus obtained was 0.7, and the photoreceptor was mounted on an electrophotographic copying machine, and an LED head was arranged inside the photoreceptor to obtain a wavelength of 660 nm.
m, while the image exposure under the conditions of exposure 1.0μJ / cm 2,
+ 500V between photoreceptor and electrostatic transfer paper via conductive roller
Was applied. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then the electrostatic latent image is developed using a two-component developing machine of negatively charged toner, and the obtained toner image is thermally fixed and exposed. An image corresponding to the part was obtained. When this image was evaluated, it was an image having an image density of OD of 1.0, no fogging of the back, and a good resolution as in (Example 1).
また、この画像評価試験において、露光量1.2μJ/cm2
の条件で画像露光を行いながら、+700Vの電圧を印加し
て同様に画像を得たところ、O.D.が1.2の画像濃度を有
し、バックのかぶりもなく、解像力も良好な画像であっ
た。In this image evaluation test, the exposure amount was 1.2 μJ / cm 2
When an image was similarly obtained by applying a voltage of +700 V while performing image exposure under the conditions described above, the image had an image density of OD of 1.2, no fogging of the back, and a good resolution.
(例4) 透明な円筒状ガラス基板の周面にITO層を電子ビーム
蒸着法により1000Åの厚みで形成し、次いで容量結合型
グロー放電分解装置を用いて第3表の成膜条件でa−Si
系光導電層と表面層を積層した。(Example 4) An ITO layer was formed on the peripheral surface of a transparent cylindrical glass substrate to a thickness of 1000 mm by an electron beam evaporation method, and then a-g under a film forming condition shown in Table 3 using a capacitively coupled glow discharge decomposition apparatus. Si
A system photoconductive layer and a surface layer were laminated.
かくして得られた感光体の表面層におけるSi1-xNxの
x値は0.60であり、その感光体を電子写真複写機に装着
し、感光体内部にLEDヘッドを配して波長660nm、露光量
1.0μJ/cm2の条件で画像露光を行いながら、導電ローラ
を介して感光体と静電転写紙との間に+500Vの電圧を印
加して、静電転写紙上に静電潜像を形成した。そして、
続いてこの静電潜像を負帯電トナーの2成分方式の現像
機を用いて現像し、得られたトナー像を熱定着して露光
部に対応した画像を得た。この画像を評価したところ、
O.D.が1.0の画像濃度を有し、バックのかぶりもなく、
解像力も良好な画像であった。 The x value of Si 1-x N x in the surface layer of the photoreceptor thus obtained was 0.60, the photoreceptor was mounted on an electrophotographic copying machine, an LED head was arranged inside the photoreceptor, and a wavelength of 660 nm was exposed. amount
While performing image exposure under the condition of 1.0 μJ / cm 2, a voltage of +500 V was applied between the photosensitive member and the electrostatic transfer paper through the conductive roller to form an electrostatic latent image on the electrostatic transfer paper. . And
Subsequently, the electrostatic latent image was developed using a two-component developing machine for negatively charged toner, and the obtained toner image was thermally fixed to obtain an image corresponding to an exposed portion. After evaluating this image,
OD has an image density of 1.0, no fogging of the back,
The image had a good resolving power.
次に露光量1.2μJ/cm2の条件で画像露光を行いなが
ら、+700Vの電圧を印加して静電転写紙上に静電潜像を
形成し、続いてこの静電潜像を負帯電トナーの2成分方
式の現像機を用いて現像し、得られたトナー像を熱定着
して露光部に対応した画像を得た。この画像を評価した
ところ、O.D.が1.2の画像濃度を有し、バックのかぶり
もなく、解像力も良好な画像であった。Next, while performing image exposure under the condition of an exposure amount of 1.2 μJ / cm 2 , a voltage of +700 V is applied to form an electrostatic latent image on the electrostatic transfer paper. The image was developed using a two-component developing machine, and the obtained toner image was thermally fixed to obtain an image corresponding to the exposed portion. When this image was evaluated, it was an image having an image density of OD of 1.2, no fogging of the back, and a good resolution.
これに対して(例1)の感光体について、露光量1.2
μJ/cm2の条件で画像露光を行いながら、+700Vの電圧
を印加して静電転写紙上に静電潜像を形成し、続いてこ
の静電潜像を負帯電トナーの2成分方式の現像機を用い
て現像し、得られたトナー像を熱定着して露光部に対応
した画像を得た。この画像を評価したところ、ほぼ全面
に亘って感光体の絶縁破壊に起因する斑点状のノイズが
見られ、解像力に劣っていた。On the other hand, for the photoconductor of (Example 1), the exposure amount was 1.2
While performing image exposure under the condition of μJ / cm 2 , a voltage of +700 V is applied to form an electrostatic latent image on the electrostatic transfer paper, and then the electrostatic latent image is developed in a two-component system using negatively charged toner. The toner image was heat-fixed to obtain an image corresponding to the exposed portion. When this image was evaluated, spot-like noise due to dielectric breakdown of the photoreceptor was observed over almost the entire surface, and the resolution was poor.
(例5) 透明な円筒状ガラス基板の周面にITO層を電子ビーム
蒸着法により1000Åの厚みで形成し、次いで容量結合型
グロー放電分解装置を用いて第4表の成膜条件で中間
層、光導電層及び表面層を積層した。(Example 5) An ITO layer was formed on the peripheral surface of a transparent cylindrical glass substrate to a thickness of 1000 mm by an electron beam evaporation method, and then an intermediate layer was formed using a capacitively coupled glow discharge decomposition apparatus under the film forming conditions shown in Table 4. , A photoconductive layer and a surface layer.
かくして得られた感光体の表面層におけるSi1-xNxの
x値は0.7であり、その感光体を電子写真複写機に装着
し、感光体内部にLEDヘッドを配して波長660nm、露光量
1.0μJ/cm2の条件で画像露光を行いながら、導電ローラ
を介して感光体と静電転写紙との間に+500Vの電圧を印
加して、静電転写紙上に静電潜像を形成した。そして、
続いてこの静電潜像を負帯電トナーの2成分方式の現像
機を用いて現像し、得られたトナー像を熱定着して露光
部に対応した画像を得た。この画像を評価したところ、
O.D.が1.0の画像濃度を有し、バックのかぶりもなく、
解像力も良好な画像であった。 The x value of Si 1-x N x in the surface layer of the photoreceptor thus obtained was 0.7, the photoreceptor was mounted on an electrophotographic copying machine, and an LED head was arranged inside the photoreceptor, and a wavelength of 660 nm was exposed. amount
While performing image exposure under the condition of 1.0 μJ / cm 2, a voltage of +500 V was applied between the photosensitive member and the electrostatic transfer paper through the conductive roller to form an electrostatic latent image on the electrostatic transfer paper. . And
Subsequently, the electrostatic latent image was developed using a two-component developing machine for negatively charged toner, and the obtained toner image was thermally fixed to obtain an image corresponding to an exposed portion. After evaluating this image,
OD has an image density of 1.0, no fogging of the back,
The image had a good resolving power.
次に露光量1.2μJ/cm2の条件で画像露光を行いなが
ら、+800Vの電圧を印加して静電転写紙上に静電潜像を
形成し、続いてこの静電潜像を負帯電トナーの2成分方
式の現像機を用いて現像し、得られたトナー像を熱定着
して露光部に対応した画像を得た。この画像を評価した
ところ、O.D.が1.3の画像濃度を有し、バックのかぶり
もなく、解像力も良好な画像であった。Next, while performing image exposure under the condition of an exposure amount of 1.2 μJ / cm 2 , a voltage of +800 V is applied to form an electrostatic latent image on the electrostatic transfer paper. The image was developed using a two-component developing machine, and the obtained toner image was thermally fixed to obtain an image corresponding to the exposed portion. When this image was evaluated, it was an image having an image density of OD of 1.3, no fogging of the back, and good resolving power.
(例6) 本例において、(例5)の感光体を作製するに当た
り、光導電層と中間層は第4表に示す通りの成膜条件で
形成し、表面層は形成せず、更にその他を(例5)と同
じように作製した。(Example 6) In this example, in producing the photoreceptor of (Example 5), the photoconductive layer and the intermediate layer were formed under the film forming conditions shown in Table 4, and the surface layer was not formed. Was prepared in the same manner as in (Example 5).
かくして得られた感光体を第3図の電子写真複写機に
装着し、その感光体内部にLEDヘッドを配し、波長660n
m、露光量1.0μJ/cm2の条件で画像露光を行いながら、
導電ローラを介して感光体と静電転写紙との間に+500V
の電圧を印加した。そして、静電転写紙上に静電潜像を
形成し、続いて、この静電潜像を負帯電トナーの2成分
方式の現像機を用いて現像し、得られたトナー像を熱定
着して露光部に対応した画像を得た。この画像を評価し
たところ、O.D.が1.0の画像濃度を有し、バックのかぶ
りもなく、解像力も良好な画像であった。The photoreceptor thus obtained was mounted on the electrophotographic copying machine shown in FIG. 3, and an LED head was arranged inside the photoreceptor.
m, while the image exposure under the conditions of exposure 1.0μJ / cm 2,
+ 500V between photoreceptor and electrostatic transfer paper via conductive roller
Was applied. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and subsequently, the electrostatic latent image is developed using a two-component developing machine for negatively charged toner, and the obtained toner image is thermally fixed. An image corresponding to the exposed part was obtained. When this image was evaluated, it was an image having an image density of OD of 1.0, no fogging of the back, and a good resolution.
次に露光量1.2μJ/cm2の条件で画像露光を行いなが
ら、+800Vの電圧を印加して静電転写紙上に静電潜像を
形成し、続いてこの静電潜像を負帯電トナーの2成分方
式の現像機を用いて現像し、得られたトナー像を熱定着
して露光部に対応した画像を得た。この画像を評価した
ところ、画像の一部に感光体の絶縁破壊に起因する斑点
状のノイズが見られ、解像力に劣っていた。Next, while performing image exposure under the condition of an exposure amount of 1.2 μJ / cm 2 , a voltage of +800 V is applied to form an electrostatic latent image on the electrostatic transfer paper. The image was developed using a two-component developing machine, and the obtained toner image was thermally fixed to obtain an image corresponding to the exposed portion. When this image was evaluated, spot-like noise due to dielectric breakdown of the photoreceptor was observed in a part of the image, and the resolution was poor.
(例7) 透明な円筒状ガラス基板の周面にITO層を電子ビーム
蒸着法により1000Åの厚みで形成し、次いで容量結合型
グロー放電分解装置を用いて第5表の成膜条件により中
間層、光導電層及び表面層を積層した。(Example 7) An ITO layer was formed on the peripheral surface of a transparent cylindrical glass substrate to a thickness of 1000 mm by an electron beam evaporation method, and then an intermediate layer was formed using a capacitively coupled glow discharge decomposition apparatus under the film forming conditions shown in Table 5. , A photoconductive layer and a surface layer.
かくして得られた感光体の表面層におけるSi1-xNxの
x値は0.6であり、その感光体を電子写真複写機に装着
し、感光体内部にLEDヘッドを配して波長660nm、露光量
1.0μJ/cm2の条件で画像露光を行いながら、導電ローラ
を介して感光体と静電転写紙との間に−500Vの電圧を印
加した。そして、静電転写紙上に静電潜像を形成し、続
いてこの静電潜像を正帯電トナーの2成分方式の現像機
を用いて現像し、得られたトナー像を熱定着して露光部
に対応した画像を得た。この画像を評価したところ、O.
D.が1.0の画像濃度を有し、バックのかぶりもなく、解
像力も良好な画像であった。 The x value of Si 1-x N x in the surface layer of the photoreceptor thus obtained was 0.6, and the photoreceptor was mounted on an electrophotographic copying machine, and an LED head was arranged inside the photoreceptor, and a wavelength of 660 nm was exposed. amount
While performing image exposure under the condition of 1.0 μJ / cm 2 , a voltage of −500 V was applied between the photosensitive member and the electrostatic transfer paper via the conductive roller. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then the electrostatic latent image is developed using a two-component developing machine of positively charged toner, and the obtained toner image is thermally fixed and exposed. An image corresponding to the part was obtained. When I evaluated this image, O.
D. had an image density of 1.0, no fogging of the background, and a good resolution.
次に露光量1.2μJ/cm2の条件で画像露光を行いなが
ら、−800Vの電圧を印加して静電転写紙上に静電潜像を
形成し、続いてこの静電潜像を正帯電トナーの2成分方
式の現像機を用いて現像し、得られたトナー像を熱定着
して露光部に対応した画像を得た。この画像を評価した
ところ、O.D.が1.3の画像濃度を有し、バックのかぶり
もなく、解像力も良好な画像であった。Next, while performing image exposure under the condition of an exposure amount of 1.2 μJ / cm 2 , a voltage of −800 V is applied to form an electrostatic latent image on the electrostatic transfer paper. And the resulting toner image was heat-fixed to obtain an image corresponding to the exposed portion. When this image was evaluated, it was an image having an image density of OD of 1.3, no fogging of the back, and good resolving power.
また、この画像評価試験において、露光光源のLEDヘ
ッドを波長585nmのELヘッドに変え、−500Vの電圧を印
加して露光量0.9μJ/cm2の条件で画像露光を行いなが
ら、同様に画像を得たところ、同じく良好な画像が得ら
れa−Si系光導電層よりも波長の短い光により高感度な
特性を示すことが確かめられた。Further, in the image evaluation test, changing the LED head of the exposure light source EL head wavelength 585 nm, while the image exposure with a voltage applied to the condition of the exposure amount 0.9μJ / cm 2 of -500 V, the same images As a result, the same good image was obtained, and it was confirmed that light having a shorter wavelength than the a-Si based photoconductive layer exhibited high sensitivity characteristics.
(耐湿性試験) 次に(例3)、(例4)、(例5)及び(例7)の各
感光体を30℃、85%RHの環境下の第3図電子写真複写機
に装着し、いずれも1万枚のランニングコピー試験を行
ったところ、良好な画像が保たれていた。これに対して
表面層のない(例1)(例7)の各感光体においては、
除々に解像力が低下する点が認められた。(Moisture Resistance Test) Next, each of the photoconductors of (Example 3), (Example 4), (Example 5) and (Example 7) is mounted on an electrophotographic copying machine shown in FIG. 3 under an environment of 30 ° C. and 85% RH. However, when a running copy test of 10,000 sheets was performed, good images were maintained. On the other hand, in each photoconductor having no surface layer (Example 1) (Example 7),
It was observed that the resolving power gradually decreased.
以上の通り、本発明の電子写真感光体によれば、高い
光感度のa−Si系光導電層を用いているので、静電潜像
形成時の露光エネルギが小さくなり、これにより、LED
ヘッドやELヘッドなどの小型かつ低消費電力の露光光源
を用いることができた。As described above, according to the electrophotographic photoreceptor of the present invention, since the a-Si-based photoconductive layer having high photosensitivity is used, the exposure energy at the time of forming an electrostatic latent image is reduced.
A small and low power consumption exposure light source such as a head and an EL head could be used.
また本発明の電子写真感光体によれば、高硬度の表面
層を積層することにより更に摩耗や傷付きに強い長寿命
の感光体とすることができ、そのため、これまでの電子
写真装置においては感光体は消耗品として扱われていた
のに対して、本発明の感光体を使用することにより電子
写真装置の寿命とほぼ同等の寿命になり、その結果、感
光体の交換の必要がない安価な電子写真装置を提供する
ことが可能になる。Further, according to the electrophotographic photoreceptor of the present invention, by laminating a surface layer having high hardness, a long-life photoreceptor that is more resistant to abrasion and damage can be obtained. While the photoreceptor has been treated as a consumable item, the use of the photoreceptor of the present invention has a life almost equivalent to the life of the electrophotographic apparatus, and as a result, the photoreceptor does not need to be replaced. It is possible to provide a simple electrophotographic apparatus.
しかも本発明の電子写真感光体によれば、表面層を積
層することより感光体の絶縁耐圧が高められ、絶縁破壊
等の問題を防止出来るようになる。また、この表面層が
絶縁性であるために静電潜像形成時に非露光部における
バックグラウンド電荷の転写を抑制することができ、こ
れにより、コントラストの高い静電潜像が得られる。Moreover, according to the electrophotographic photoreceptor of the present invention, the dielectric strength of the photoreceptor can be increased by laminating the surface layer, and problems such as dielectric breakdown can be prevented. Further, since the surface layer is insulative, the transfer of the background charge in the non-exposed portion during the formation of the electrostatic latent image can be suppressed, whereby a high-contrast electrostatic latent image can be obtained.
更に本発明の電子写真感光体によれば、透光性電極層
とa−Si系光導電層との間に絶縁層を設けることにより
電極層から光導電層へのキャリアの注入を有効に阻止で
き、これにより、感光体の絶縁耐圧を高め、かつバック
グラウンド電荷の転写を抑制することができ、その結
果、コントラストが高く、バックのかぶりのない良好な
画像を得ることが出来る。また、電極層の上に直接光導
電層を形成する場合に比べて電極層との密着性が高くな
るため、光導電層の剥離等の問題点を回避できる。Further, according to the electrophotographic photoreceptor of the present invention, by providing an insulating layer between the translucent electrode layer and the a-Si based photoconductive layer, injection of carriers from the electrode layer to the photoconductive layer can be effectively prevented. Thus, the withstand voltage of the photoconductor can be increased, and the transfer of background charge can be suppressed. As a result, a good image with high contrast and no back fog can be obtained. In addition, since the adhesion to the electrode layer is higher than when the photoconductive layer is formed directly on the electrode layer, problems such as peeling of the photoconductive layer can be avoided.
第1図及び第2図は本発明電子写真感光体の層構成を表
す断面図であり、第3図はTESI法の説明図である。 1……透光性支持体 2……透光性電極層 3……アモルファスシリコン系光導電層 4……中間層 5……表面層1 and 2 are cross-sectional views showing the layer structure of the electrophotographic photoreceptor of the present invention, and FIG. 3 is an explanatory view of the TESI method. DESCRIPTION OF SYMBOLS 1 ... Translucent support 2 ... Translucent electrode layer 3 ... Amorphous silicon type photoconductive layer 4 ... Intermediate layer 5 ... Surface layer
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G03G 15/18 G03G 15/00 115 (72)発明者 伊藤 浩 滋賀県八日市市蛇溝町長谷野1166番地の 6 京セラ株式会社滋賀八日市工場内 (56)参考文献 特開 平2−173756(JP,A) 特開 平2−176765(JP,A) 特開 平1−296254(JP,A) 特開 平2−245766(JP,A) (58)調査した分野(Int.Cl.6,DB名) G03G 5/00 - 5/16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI G03G 15/18 G03G 15/00 115 (72) Inventor Hiroshi Ito 1166, Haseno, Jabizo-cho, Yokaichi City, Shiga Prefecture 6 Kyocera Corporation Shiga Yokaichi Plant (56) References JP-A-2-173756 (JP, A) JP-A-2-176765 (JP, A) JP-A-1-296254 (JP, A) JP-A-2-245766 (JP, A A) (58) Field surveyed (Int. Cl. 6 , DB name) G03G 5/00-5/16
Claims (1)
スシリコン光導電層とを順次積層してなる感光体に対し
LEDヘッドまたはELヘッドによる上記透光性電極側から
の画像露光と同時に透光性電極に電圧印加する同時静電
潜像転写方式に適用する電子写真感光体であって、前記
透光性絶縁層をカーボン、酸素または窒素を含有させた
バンドギャップ1.9eV以上、抵抗率1013Ωcm以上のアモ
ルファスシリコン系透光性絶縁層でもって構成して、前
記アモルファスシリコン光導電層上に、カーボン、酸
素、窒素またはゲルマニウムを含有させ組成式Si1-XAx
(A:C,N,O,Ge)にて0.5≦x≦0.95に規定したアモルフ
ァスシリコン系表面層を被覆したことを特徴とする電子
写真感光体。1. A photosensitive member comprising a light-transmitting electrode and a light-transmitting insulating layer and an amorphous silicon photoconductive layer sequentially laminated on the light-transmitting electrode.
An electrophotographic photoreceptor applied to a simultaneous electrostatic latent image transfer method in which a voltage is applied to the translucent electrode simultaneously with image exposure from the translucent electrode side by an LED head or an EL head, wherein the translucent insulating layer Is composed of an amorphous silicon-based light-transmitting insulating layer having a band gap of 1.9 eV or more containing resistivity of 10 13 Ωcm or more containing carbon, oxygen or nitrogen, and on the amorphous silicon photoconductive layer, carbon, oxygen, Composition formula Si 1-X A x containing nitrogen or germanium
An electrophotographic photoreceptor characterized in that (A: C, N, O, Ge) is coated with an amorphous silicon-based surface layer defined as 0.5 ≦ x ≦ 0.95.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20447690A JP2920663B2 (en) | 1990-07-31 | 1990-07-31 | Electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20447690A JP2920663B2 (en) | 1990-07-31 | 1990-07-31 | Electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0488353A JPH0488353A (en) | 1992-03-23 |
JP2920663B2 true JP2920663B2 (en) | 1999-07-19 |
Family
ID=16491162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20447690A Expired - Fee Related JP2920663B2 (en) | 1990-07-31 | 1990-07-31 | Electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2920663B2 (en) |
-
1990
- 1990-07-31 JP JP20447690A patent/JP2920663B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0488353A (en) | 1992-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4869982A (en) | Electrophotographic photoreceptor containing a toner release material | |
JPH07120953A (en) | Electrophotographic photoreceptor and image forming method using the same | |
JP2920663B2 (en) | Electrophotographic photoreceptor | |
JP3046087B2 (en) | Image forming device | |
JP2913066B2 (en) | Electrophotographic photoreceptor | |
JP2920668B2 (en) | Electrophotographic photoreceptor | |
US5087543A (en) | Electrophotographic printer | |
JP3987443B2 (en) | Photoconductor, image forming method and image forming apparatus using the photoconductor | |
US5587773A (en) | Electrophotographic apparatus for performing image exposure and development simultaneously | |
JP2985984B2 (en) | Image forming device | |
JPH0458256A (en) | Electrophotographic sensitive body | |
JP3000311B2 (en) | Image forming device | |
JP3004114B2 (en) | Image forming method | |
JP2948937B2 (en) | Image forming device | |
EP0606757B1 (en) | Electrophotographic apparatus for performing image exposure and development simultaneously | |
JP3330009B2 (en) | Electrophotographic equipment | |
JPH0728332A (en) | Image forming device | |
CA1146003A (en) | Imaging method using a dielectric overcoated photoreceptor which is charged negatively, then positively and exposed | |
JP2638183B2 (en) | Image forming device | |
JP3878752B2 (en) | Image forming apparatus | |
JP3206742B2 (en) | Island photoreceptor and image recording apparatus using the same | |
JP2638182B2 (en) | Image forming device | |
JP2678612B2 (en) | Image forming method | |
JP3140116B2 (en) | Image forming method | |
JP3004106B2 (en) | Image forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |