JP3046087B2 - Image forming device - Google Patents

Image forming device

Info

Publication number
JP3046087B2
JP3046087B2 JP3064004A JP6400491A JP3046087B2 JP 3046087 B2 JP3046087 B2 JP 3046087B2 JP 3064004 A JP3064004 A JP 3064004A JP 6400491 A JP6400491 A JP 6400491A JP 3046087 B2 JP3046087 B2 JP 3046087B2
Authority
JP
Japan
Prior art keywords
layer
image
photoconductor
light
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3064004A
Other languages
Japanese (ja)
Other versions
JPH06118741A (en
Inventor
孝夫 河村
成司 秋田
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3064004A priority Critical patent/JP3046087B2/en
Publication of JPH06118741A publication Critical patent/JPH06118741A/en
Application granted granted Critical
Publication of JP3046087B2 publication Critical patent/JP3046087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コロナ帯電を不要とし
て露光と現像とがほぼ同時に行えるように組み合わせた
電子写真方式に用いられる画像形成装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus used in an electrophotographic system in which exposure and development are performed almost simultaneously without corona charging.

【0002】[0002]

【従来の技術】従来、電子写真方式の画像形成装置とし
ては、コロナ放電により感光体に帯電を行なうカールソ
ン方式が広く用いられている。この方式では、ドラム状
あるいはベルト状の感光体の周囲に、コロナ帯電器、露
光手段、現像手段、転写手段、クリーニング手段、除電
手段等を配置し、帯電、露光、現像、転写、定着のプロ
セスを経て、記録紙上に画像を形成するため、装置の構
成や画像形成プロセスが複雑になり、コロナ放電用には
高電圧電源が必要であり、またコロナ放電のためにオゾ
ンが発生して周囲に悪影響を与える等の問題があった。
2. Description of the Related Art Conventionally, as an electrophotographic image forming apparatus, a Carlson method for charging a photosensitive member by corona discharge has been widely used. In this method, a corona charger, an exposing unit, a developing unit, a transferring unit, a cleaning unit, a discharging unit, and the like are arranged around a drum-shaped or belt-shaped photoconductor, and a charging, exposing, developing, transferring, and fixing process is performed. After that, an image is formed on the recording paper, which complicates the configuration of the device and the image forming process.A high-voltage power supply is required for corona discharge, and ozone is generated due to corona discharge, causing There were problems such as adverse effects.

【0003】これらの問題に対して近時、コロナ放電を
不要とする電子写真方式が提案されている(特開昭58-4
4445号、特開昭58-153957 号、特開昭61-46961号、特開
昭62−280772号など)。
In order to solve these problems, an electrophotographic system which does not require corona discharge has recently been proposed (Japanese Patent Laid-Open No. 58-4 / 1983).
4445, JP-A-58-153957, JP-A-61-46961, JP-A-62-280772, etc.).

【0004】上記提案の電子写真方式によれば、透光性
支持体上に透光性導電層と光導電層とを順次積層したド
ラム状もしくはベルト状感光体に対して、透光性支持体
側より露光器により露光するとともに、現像バイアス供
給用の電源によりバイアス電圧を印加した現像器上の導
電性磁性トナーからなる磁気ブラシでもって感光体表面
を摺擦させ、これによって帯電と露光と現像とをほぼ同
時に行ない、感光体上にトナー像を形成する。そのトナ
ー像は、転写ローラを用いて記録紙に転写され、定着手
段により定着されて記録画像となる。一方、感光体上に
残留したトナーは、現像器で回収され、再利用される。
According to the electrophotography system proposed above, a drum-shaped or belt-shaped photoconductor in which a light-transmitting conductive layer and a photoconductive layer are sequentially laminated on a light-transmitting support is placed on the light-transmitting support side. The surface of the photoreceptor is rubbed with a magnetic brush made of conductive magnetic toner on the developing device to which a bias voltage is applied by a power source for supplying a developing bias while being exposed by an exposing device. At substantially the same time to form a toner image on the photoreceptor. The toner image is transferred to recording paper using a transfer roller and fixed by a fixing unit to form a recorded image. On the other hand, the toner remaining on the photoreceptor is collected by a developing device and reused.

【0005】また、このような電子写真方式において、
上記光導電層にアモルファスシリコン(以下アモルファ
スシリコンをa-Siと略す)層を用いることが提案されて
いる(特開昭63-240553 号、特開平2-106761号)。
In such an electrophotographic system,
It has been proposed to use an amorphous silicon (hereinafter, amorphous silicon is abbreviated as a-Si) layer for the photoconductive layer (JP-A-63-240553 and JP-A-2-106761).

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、本発
明者等の実験によれば、上記提案の電子写真方式におい
ては、十分な画像濃度を有し、かつ高い画像品質を備え
た画像を得るのは困難であった。また、a-Si光導電層を
備えた感光体を用いた場合においても、その層厚を小さ
くして良好な画像を得ようとしても、未だ満足しえるよ
うな画像濃度が得られず、またバイアス電圧を高めて画
像濃度を高めようとしても、感光体の絶縁耐圧が低いた
めに絶縁破壊されやすく、これによって所望通りの画像
濃度が得られないという問題点があり、感光体の層構成
の改善が必要であった。
However, according to experiments conducted by the present inventors, in the above-described proposed electrophotographic method, an image having a sufficient image density and high image quality can be obtained. Was difficult. Also, even when using a photoreceptor having an a-Si photoconductive layer, even if an attempt is made to obtain a good image by reducing the layer thickness, a satisfactory image density has not yet been obtained, and Even if an attempt is made to increase the image density by increasing the bias voltage, the dielectric strength of the photoreceptor is low, so that the dielectric breakdown is apt to occur, which causes a problem that the desired image density cannot be obtained. Improvement was needed.

【0007】従って本発明の目的は、叙上の問題点を解
決し、コロナ放電を不要とする電子写真方式において十
分な画像濃度と良好な画像品質を有する高信頼性かつ高
品質の画像形成装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a highly reliable and high quality image forming apparatus having a sufficient image density and good image quality in an electrophotographic system which does not require corona discharge. Is to provide.

【0008】[0008]

【問題点を解決するための手段】本発明の画像形成装置
は、透光性支持体上に透光性導電層を形成し、この透光
性導電層上に絶縁性キャリア注入阻止層と、厚みが0.
5〜5μmであるa−Si系光導電層と、アモルファス
シリコンカーバイド(以下、アモルファスシリコンカー
バイドをa−SiCと略す)などからなる絶縁層もしく
は暗抵抗率が1013Ω・cm以上の高抵抗層による表面
層とを順次積層した感光体と、感光体の上記表面層側に
配設した現像手段と、上記感光体に現像剤による画像を
形成させるべく上記透光性支持体側から照射する光源と
から成り、更に上記光導電層を光源により90%の光が
吸収される厚みに対し、さらに厚み0.1〜2.0μm
を加えて形成し、しかも、感光体と現像手段とを双方の
最近接部位にて逆方向に移動させて現像剤溜りを設け、
この現像剤溜りに対し光源により照射せしめたことを特
徴とする。
According to the image forming apparatus of the present invention, a light-transmitting conductive layer is formed on a light-transmitting support, and an insulating carrier injection blocking layer is formed on the light-transmitting conductive layer; The thickness is 0.
An a-Si based photoconductive layer having a thickness of 5 to 5 [mu] m; an insulating layer made of amorphous silicon carbide (hereinafter, amorphous silicon carbide is abbreviated as a-SiC) or a high resistance layer having a dark resistivity of 10 < 13 > [Omega]. And a developing means disposed on the surface layer side of the photoconductor, and a light source for irradiating the photoconductor with light from the transparent support side to form an image with a developer. And the thickness of the photoconductive layer is 0.1 to 2.0 μm with respect to the thickness at which 90% of the light is absorbed by the light source.
In addition, the photosensitive member and the developing means are moved in the opposite directions at the closest portions of both to provide a developer reservoir,
The developer reservoir is irradiated with a light source.

【0009】[0009]

【実施例】以下、本発明を実施例により説明する。図1
は本発明画像形成装置1による電子写真方法を表す模式
図であり、図中、2は透光性支持体3上に透光性導電層
4と絶縁性キャリア注入阻止層5aと光導電層5と表面
層6が積層されたドラム状の感光体、7は露光手段とし
てのLEDヘッド、8は現像器、9は転写ローラであ
る。LEDヘッド7と現像器8は、感光体2のある一部
を介して、ほぼ対称的に配置される。10はイレース用
光源としてのLEDアレイであり、感光体2の外側に配
置してもよい。現像器8においては、例えば8極の円柱
状の磁極ローラ11と、その外周に亘って配設された導
電性スリーブ12とから成り、更にトナー受13に貯蔵
された現像剤としての一成分磁性導電性トナーはスリー
ブ12の外周へ配送され、磁気ブラシ14を形成する。
また、スリーブ12と透光性導電層4との間にはバイア
ス電源15が設けられ、その両者4、15の間に感光体
2の電位特性に応じて+或いは−の0〜300Vの電圧
を印加する。16は感光体2の表面に形成されたトナー
層、17は記録紙、18は残留トナーである。これ以外
に現像剤の回転手段と感光体2の回転手段とを設ける。
The present invention will be described below with reference to examples. FIG.
FIG. 1 is a schematic view showing an electrophotographic method using the image forming apparatus 1 of the present invention. In the drawing, reference numeral 2 denotes a translucent conductive layer 4, an insulating carrier injection blocking layer 5a, and a photoconductive layer 5 on a translucent support 3. And a drum-shaped photoconductor on which a surface layer 6 is laminated, 7 is an LED head as exposure means, 8 is a developing device, and 9 is a transfer roller. The LED head 7 and the developing device 8 are arranged substantially symmetrically via a part of the photoconductor 2. Reference numeral 10 denotes an LED array as an erasing light source, which may be arranged outside the photoconductor 2. The developing unit 8 includes, for example, a columnar magnetic pole roller 11 having eight poles and a conductive sleeve 12 disposed around the outer circumference thereof. The conductive toner is delivered to the outer periphery of sleeve 12 to form magnetic brush 14.
A bias power supply 15 is provided between the sleeve 12 and the light-transmitting conductive layer 4, and a voltage of 0 to 300 V of + or − is applied between the two according to the potential characteristics of the photoconductor 2. Apply. Reference numeral 16 denotes a toner layer formed on the surface of the photoconductor 2, reference numeral 17 denotes recording paper, and reference numeral 18 denotes residual toner. In addition, a rotating means for the developer and a rotating means for the photoconductor 2 are provided.

【0010】かくして上記構成の画像形成装置によれ
ば、回転する感光体2の透光性支持体3にLEDヘッド
7より画像露光の光を照射し、a-Si系光導電層5の内部
に正孔と電子を発生させると、現像器8側に+のバイア
ス電圧を印加してあれば、そのバイアス電圧によって電
子はa-Si系光導電層5の表面側へ移動し、磁気ブラシ1
4の末端の正電荷と打ち消し合い、感光体2の表面に導
電性トナーが付着される。そして、その導電性トナーは
転写ローラ9により記録紙17上に転写され、次いで定
着される。
Thus, according to the image forming apparatus having the above structure, the light-transmitting support 3 of the rotating photoreceptor 2 is irradiated with light for image exposure from the LED head 7 so that the inside of the a-Si photoconductive layer 5 is formed. When holes and electrons are generated, if a positive bias voltage is applied to the developing device 8 side, the electrons move to the surface side of the a-Si photoconductive layer 5 by the bias voltage, and the magnetic brush 1
The conductive toner is canceled on the positive charge at the terminal of the photosensitive member 4 and adheres to the surface of the photoconductor 2. Then, the conductive toner is transferred onto the recording paper 17 by the transfer roller 9 and then fixed.

【0011】露光手段にはここではLEDヘッドを用い
たが、レーザや液晶シャッタ等を用いたものでも良い。
イレース用光源10にも、LEDアレイの他、ハロゲン
ランプや蛍光灯、ELアレイ等の光源が使用可能であ
る。
Although the LED head is used here as the exposure means, a means using a laser or a liquid crystal shutter may be used.
As the erasing light source 10, a light source such as a halogen lamp, a fluorescent lamp, and an EL array can be used in addition to the LED array.

【0012】また図2は上記感光体2の一部と現像手段
8により形成される現像剤溜り19を表す説明図であ
る。
FIG. 2 is an explanatory view showing a part of the photoreceptor 2 and a developer reservoir 19 formed by the developing means 8.

【0013】現像剤を保持させる現像器8は、導電性の
スリーブ12と、その内部に配置された磁極ローラ11
とから成り、現像剤の搬送は、磁極ローラ11を固定し
てスリーブ12を回転してもよく、またはスリーブ12
を固定して内部の磁極ローラ11を回転しても良い。
The developing device 8 for holding the developer includes a conductive sleeve 12 and a magnetic pole roller 11 disposed therein.
The developer may be conveyed by fixing the magnetic pole roller 11 and rotating the sleeve 12, or
May be fixed and the internal magnetic pole roller 11 may be rotated.

【0014】ここで現像剤を感光体2と逆方向に回転さ
せると、両者の摩擦で現像器8と感光体2の最近接部位
よりも下流側(現像剤が離れる側)に現像剤溜り19が
生じる。現像剤溜り19は図の破線で区切った部分であ
る。即ち現像剤の本来の高さよりもはみ出した部分が現
像剤溜り19であり、現像剤の搬送速度や現像剤の高
さ、スリーブ12と感光体2の表面とのギャップ等は、
感光体2の回転速度や必要とする現像剤溜り19の大き
さに応じて適宜設定する。
Here, when the developer is rotated in the opposite direction to the photosensitive member 2, the friction between the two causes the developer reservoir 19 to be located downstream (the side where the developer is separated) from the closest part between the developing device 8 and the photosensitive member 2. Occurs. The developer reservoir 19 is a portion separated by a broken line in the figure. That is, the portion of the developer protruding from the original height is the developer reservoir 19, and the transport speed of the developer, the height of the developer, and the gap between the sleeve 12 and the surface of the photoreceptor 2 are:
It is set appropriately according to the rotation speed of the photoconductor 2 and the required size of the developer reservoir 19.

【0015】尚、感光体と現像剤とを逆方向に回転させ
ると、両者の摩擦により現像手段と感光体との最近接部
位よりも下流側に現像剤溜りが発生し、現像剤を感光体
と同方向に回転させ、現像剤の周速を感光体の周速より
も大きくする場合よりも、安定で再現性が高い。従っ
て、現像剤溜りを安定して再現性良く得るためには感光
体と現像剤とを逆方向に回転させることが好ましい。
When the photosensitive member and the developer are rotated in opposite directions, a developer pool is generated downstream of the closest portion between the developing means and the photosensitive member due to friction between the photosensitive member and the developer. And more stable and higher reproducibility than when the peripheral speed of the developer is made higher than the peripheral speed of the photoconductor. Therefore, in order to stably obtain the developer reservoir with good reproducibility, it is preferable to rotate the photoconductor and the developer in opposite directions.

【0016】また20は制御電極であり、この制御電極
20はスリーブ12上で感光体2との最近接部位に設
け、絶縁体21でスリーブ12と絶縁する。制御電極2
0は、感光体2や現像剤に均一な電界が加わるように、
スリーブ12の長さ方向に沿った帯状とする。
Reference numeral 20 denotes a control electrode. The control electrode 20 is provided on the sleeve 12 at a position closest to the photosensitive member 2, and is insulated from the sleeve 12 by an insulator 21. Control electrode 2
0 is such that a uniform electric field is applied to the photoconductor 2 and the developer.
The belt 12 is shaped like a band along the length direction of the sleeve 12.

【0017】尚、制御電極20の電位を現像手段の電位
と独立に設定するための電圧印手段22を設けておき、
制御電極20に電圧を印加すると画像濃度が向上するた
めの制御電極20には電圧印加手段22を設けておくと
こが好ましい。
A voltage marking means 22 for setting the potential of the control electrode 20 independently of the potential of the developing means is provided.
It is preferable to provide a voltage applying means 22 to the control electrode 20 so that the image density is improved when a voltage is applied to the control electrode 20.

【0018】現像剤には例えば導電性磁性トナーを用い
るが、これは磁気ブラシ14および現像剤溜り19を形
成し、必要な導電性を有すれば、1成分の現像剤でも良
く、導電性のキャリアと絶縁性のトナーとを所定の混合
比で混合して必要な導電率にした2成分の現像剤を用い
ても良い。
As the developer, for example, a conductive magnetic toner is used, which forms the magnetic brush 14 and the developer reservoir 19, and may be a one-component developer if it has the necessary conductivity. A two-component developer having a required conductivity by mixing a carrier and an insulating toner at a predetermined mixing ratio may be used.

【0019】画像露光を行なう位置は、感光体2の表面
と現像スリーブ12との最近接位置Aではなく、感光体
2の逆方向回転で下流側に形成した現像剤溜り19の位
置Bとし、好ましくは現像剤溜り19の中でも下流側の
後半部とする。現像剤溜り19の位置で露光を行なうこ
とにより、露光までの間に感光体2の帯電が十分に行な
われ、帯電前の感光体2の電位の履歴の影響が抑えられ
ると共に、感光体2の表面の残留トナーや画像背景部の
トナーの回収が十分に行なわれる。更に、感光体2が十
分に帯電されてから露光を行なって電荷を消失させるた
めに、現像剤と感光体2との電気的引力が強く、良好な
トナー像16が形成される。そして、トナー像16の形
成後は感光体2が現像剤溜り19から速やかに離れるた
め、感光体2の表面のトナー像16が現像剤の衝突や摩
擦等のような機械的な力により乱されることがなく、良
好な解像度のトナー像16が得られる。
The position where image exposure is performed is not the closest position A between the surface of the photosensitive member 2 and the developing sleeve 12, but the position B of the developer reservoir 19 formed on the downstream side by the reverse rotation of the photosensitive member 2. Preferably, it is the latter half of the developer reservoir 19 on the downstream side. By performing the exposure at the position of the developer reservoir 19, the photoconductor 2 is sufficiently charged before the exposure, and the influence of the potential history of the photoconductor 2 before charging is suppressed. The toner remaining on the surface and the toner in the image background are sufficiently collected. Furthermore, since the photosensitive member 2 is sufficiently charged and exposed to light to eliminate the charge, the electric attraction between the developer and the photosensitive member 2 is strong, and a good toner image 16 is formed. After the toner image 16 is formed, the photoconductor 2 is quickly separated from the developer reservoir 19, so that the toner image 16 on the surface of the photoconductor 2 is disturbed by mechanical force such as collision or friction of the developer. Thus, the toner image 16 having a good resolution can be obtained.

【0020】尚、現像剤溜りの部分で露光を行ない、好
ましくは、現像剤溜りの上流側よりも下流側で露光する
と、
It is to be noted that, when the exposure is performed in the developer pool, and preferably when the exposure is performed on the downstream side of the upstream side of the developer pool,

【0021】(1)露光前の感光体と現像剤との接触距
離が大きく、均一で十分な帯電が得られ、この結果均一
で十分な濃度のトナー像が得られる
(1) The contact distance between the photosensitive member and the developer before exposure is long, and uniform and sufficient charging can be obtained. As a result, a uniform and sufficient density toner image can be obtained.

【0022】(2)露光前の現像剤と感光体との接触距
離が大きいため、感光体表面の残留トナーおよび画像背
景部に付着するトナーを十分に回収して地かぶりを小さ
くできる
(2) Since the contact distance between the developer and the photoreceptor before the exposure is long, the residual toner on the photoreceptor surface and the toner adhering to the image background can be sufficiently recovered to reduce the background fog.

【0023】(3)露光後に感光体は現像剤から速やか
に離れるため、現像剤によって感光体の露光部が再帯電
されるために感光体とトナーの付着力が弱まり、感光体
表面に付着したトナーが現像手段に回収されてトナー濃
度が低下するといった問題を小さくできる
(3) The photosensitive member quickly separates from the developer after the exposure, so that the exposed portion of the photosensitive member is recharged by the developer, so that the adhesion between the photosensitive member and the toner is weakened and the toner adheres to the surface of the photosensitive member. The problem that the toner is collected by the developing means and the toner concentration is reduced can be reduced.

【0024】(4)露光後に感光体は現像剤から速やか
に離れるため、感光体表面に形成されたトナー像と現像
剤との摩擦等の機械的な力によるトナー像の乱れを小さ
くできる
(4) Since the photoconductor quickly separates from the developer after exposure, disturbance of the toner image due to mechanical force such as friction between the toner image formed on the photoconductor surface and the developer can be reduced.

【0025】(5)露光位置での現像手段と感光体との
距離が大きいため、現像手段の磁力等による感光体表面
の付着トナーの回収やトナー像の乱れを小さくできる等
の利点を有し、均一な画像形成が行えるため、画像露光
を行う位置は現像溜りの部分、好ましくは現像剤溜りの
下流側で行うのが良い。
(5) Since the distance between the developing means and the photoreceptor at the exposure position is large, there is an advantage that the toner adhered to the photoreceptor surface due to the magnetic force of the developing means and the like and the disturbance of the toner image can be reduced. In order to form a uniform image, it is preferable that the image exposure is performed at the developing pool, preferably at the downstream side of the developer pool.

【0026】現像剤溜り19の位置では、感光体2の表
面と現像スリーブ12とが最も近接する位置Aよりも、
感光体2の表面と磁極ローラ11の距離が大きくなる。
このため、現像剤を磁極ローラ11の側に吸引する磁力
は弱く、感光体2の表面に形成されたトナー像16の一
部が磁力によって現像手段の側に回収されて画像濃度が
低下したり、磁力により乱されて解像度が低下したりす
ることを防止できる。
At the position of the developer reservoir 19, the position of the surface A of the photosensitive member 2 and the developing sleeve 12 is closer than the position A where it is closest.
The distance between the surface of the photoconductor 2 and the magnetic pole roller 11 increases.
Therefore, the magnetic force that attracts the developer toward the magnetic pole roller 11 is weak, and a part of the toner image 16 formed on the surface of the photoreceptor 2 is collected by the magnetic force toward the developing unit, and the image density is reduced. In addition, it is possible to prevent the resolution from being lowered by being disturbed by the magnetic force.

【0027】更に帯状の制御電極20を設け、その電位
を電源22により所定の電位に調整する。例えば制御電
極20を接地し、透光性導電層4と共通電位にする。あ
るいはスリーブ12の電位に対してその電位を低くもし
くは高く設定する。
Further, a belt-shaped control electrode 20 is provided, and its potential is adjusted to a predetermined potential by a power supply 22. For example, the control electrode 20 is grounded and set to the same potential as the translucent conductive layer 4. Alternatively, the potential is set lower or higher than the potential of the sleeve 12.

【0028】このようにスリーブ12とは独立に電位を
印加できる制御電極20を設けると、感光体2の表面電
位を現像剤を介して中和し、あるいは感光体2の表面の
電位を揃え、以前のプロセスでの帯電や露光の有無等に
よる感光体2の履歴の影響を打ち消すことができ、この
結果、繰り返し使用時、例えば1枚の画像を得るために
感光体2を数回転させる場合等に、安定した現像状態と
記録画像とが得られる。ここで制御電極20の電位を調
整すると、画像濃度や地かぶり等に対する最適画像形成
条件を調整して得ることができる。また、制御電極20
の電位を高くし、スリーブ12の電位を低くすることに
より、非露光部にトナーが付着し、露光部にはトナーが
付着しない、いわゆる反転現像も可能になった。
As described above, when the control electrode 20 capable of applying a potential independently of the sleeve 12 is provided, the surface potential of the photosensitive member 2 is neutralized through the developer, or the potential of the surface of the photosensitive member 2 is made uniform. The influence of the history of the photoconductor 2 due to the presence or absence of charging or exposure in the previous process can be canceled out. As a result, when the photoconductor 2 is repeatedly used, for example, when the photoconductor 2 is rotated several times to obtain one image, In addition, a stable developed state and a recorded image can be obtained. Here, when the potential of the control electrode 20 is adjusted, it is possible to adjust and obtain optimum image forming conditions for image density, background fog, and the like. The control electrode 20
By raising the potential of the sleeve 12 and lowering the potential of the sleeve 12, the toner adheres to the non-exposed portion and the toner does not adhere to the exposed portion, so-called reversal development has become possible.

【0029】感光体2の表面に形成されたトナー像16
は次いで記録紙17に転写され、定着されて記録画像と
なり、転写されずに感光体2の表面に残った残留トナー
18は、次の画像形成プロセスにおいて現像手段に回収
されて再利用される。
The toner image 16 formed on the surface of the photosensitive member 2
Is transferred to a recording paper 17 and fixed to form a recorded image. The residual toner 18 remaining on the surface of the photoreceptor 2 without being transferred is collected by a developing unit in the next image forming process and reused.

【0030】更に、転写後の感光体2にイレース用光源
10により除電光を照射することにより、以前のプロセ
スでの帯電や露光の有無等による感光体2の履歴の影響
をより効果的に打ち消すことができ、繰り返し使用時に
おける残像現象などの画像上の問題を抑制することが出
来る。また、感光体2の光導電層5と表面層6との界面
にトラップされたキャリアを消去し、感光体2とその表
面の残留トナーとの電気的な引力をなくして、残留トナ
ーを現像器8に回収され易くすることが出来る。
Further, by irradiating the light-removing light from the eraser light source 10 to the photoreceptor 2 after the transfer, the influence of the history of the photoreceptor 2 due to the charging or the presence or absence of the exposure in the previous process is more effectively canceled. It is possible to suppress an image problem such as an afterimage phenomenon at the time of repeated use. Further, the carrier trapped at the interface between the photoconductive layer 5 and the surface layer 6 of the photoconductor 2 is erased to eliminate the electric attraction between the photoconductor 2 and the residual toner on the surface thereof, and the residual toner is developed. 8 can be easily collected.

【0031】これらの図において、感光体2はドラム状
透光性支持体3の外周面に透光性導電層4を形成し、更
にその透光性導電層4の上に絶縁性キャリア注入阻止層
5a、光導電層5および表面層6を積層した構成であ
る。
In these figures, the photosensitive member 2 has a light-transmitting conductive layer 4 formed on the outer peripheral surface of a drum-shaped light-transmitting support 3, and furthermore, has an insulating carrier injection prevention on the light-transmitting conductive layer 4. This is a configuration in which a layer 5a, a photoconductive layer 5, and a surface layer 6 are stacked.

【0032】上記透光性支持体3を構成する材料には、
パイレックスガラス、ソーダガラス、ホウ珪酸ガラスな
ど、また石英、サファイアなどの無機質系、並びに弗素
樹脂、ポリエステル、ポリカーボネート、ポリエチレン
テレフタレート、ビニロン、エポキシ、マイラーなどの
有機樹脂系が挙げられる。
The material constituting the translucent support 3 includes:
Examples include pyrex glass, soda glass, borosilicate glass, and the like; inorganic materials such as quartz and sapphire; and organic resin materials such as fluorine resin, polyester, polycarbonate, polyethylene terephthalate, vinylon, epoxy, and mylar.

【0033】上記透光性導電層4を構成する材料には、
インジウム・スズ・酸化物(ITO)、酸化錫、酸化
鉛、酸化インジウム、ヨウ化銅などがあり、また半透明
になる程度に薄くしたAl、Ni、Auなどから成る金
属層を用いてもよい。その層形成法には真空蒸着法、活
性反応蒸着法、RFスパッタリング法、DCスパッタリ
ング法、RFマグネトロンスパッタリング法、DCマグ
ネトロンスパッタリング法、熱CVD法、プラズマCV
D法、スプレー法、塗布法、浸漬法などがある。
The material forming the transparent conductive layer 4 includes:
There are indium-tin-oxide (ITO), tin oxide, lead oxide, indium oxide, copper iodide, and the like, and a metal layer made of Al, Ni, Au, or the like thinned to be translucent may be used. . The layer forming method includes vacuum deposition, active reactive deposition, RF sputtering, DC sputtering, RF magnetron sputtering, DC magnetron sputtering, thermal CVD, and plasma CV.
D method, spray method, coating method, dipping method and the like.

【0034】絶縁性キャリア注入阻止層5aは感光体2
表面がバイアス電圧を印加されつつ現像剤と接着した際
に、透光性導電層4からa-Si系光導電層5へのキャリア
の注入を阻止することにより、露光部と非露光部との静
電コントラストを高めて画像濃度を向上させると共に、
現像におけるバックグラウンドのかぶりを低減する。
The insulating carrier injection blocking layer 5a is
When the surface adheres to the developer while a bias voltage is applied, injection of carriers from the translucent conductive layer 4 into the a-Si based photoconductive layer 5 is prevented, so that the exposed portion and the non-exposed portion can be separated. In addition to improving the image density by increasing the electrostatic contrast,
Reduces background fogging during development.

【0035】この層5aには、絶縁性のa-SiC、a-Si
O、a-SiN、a-SiON、a-SiCON等のa-Si系絶縁層
や、ポリエチレンテレフタレートやパリレン、ポリ四フ
ッ化エチレン、ポリイミド、ポリフッ化エチレンプロピ
レン、ウレタン樹脂、エポキシ樹脂、ポリエステル樹
脂、ポリカーボネート樹脂、酢酸セルローズ樹脂、その
他の有機絶縁層等を用いると良い。
This layer 5a has insulating a-SiC, a-SiC
O, a-SiN, a-SiON, a-Si based insulating layer such as a-SiCON, polyethylene terephthalate and parylene, polytetrafluoroethylene, polyimide, polyfluoroethylene propylene, urethane resin, epoxy resin, polyester resin, It is preferable to use a polycarbonate resin, a cellulose acetate resin, another organic insulating layer, or the like.

【0036】この層5aには、絶縁性と共に、透光性支
持体3側からの画像露光の光を吸収しないように透光性
が高く(光学的バンドギャップが大きい、または光透過
率が高い)、更に透光性導電層4やa-Si系光導電層5と
の密着性が良く、a-Si系光導電層5の形成時の加熱等に
も大きな変質を起こさないといった特性が必要である。
絶縁層から成るキャリア注入阻止層5aの厚みは、0.
01〜5μm、好適には0.1〜3μmの範囲内が良
い。
The layer 5a has a high light-transmitting property (a large optical band gap or a high light transmittance) as well as an insulating property so as not to absorb the light for image exposure from the light-transmitting support 3 side. ) In addition, it is necessary to have good adhesion to the light-transmitting conductive layer 4 and the a-Si-based photoconductive layer 5, and not to cause a large deterioration in heating or the like when forming the a-Si-based photoconductive layer 5. It is.
The thickness of the carrier injection blocking layer 5a made of an insulating layer is set to 0.1 mm.
The range is preferably from 01 to 5 μm, and more preferably from 0.1 to 3 μm.

【0037】光導電層5には、特にa-Si系光導電層を用
いるのがよく、このa-Si系層は、例えばグロー放電分解
法、スパッタリング法、ECR法、蒸着法などにより形
成し、その形成に当たってダングリングボンド終端用に
水素(H)やハロゲン元素を1〜40原子%含有させ
る。また、この層の暗導電率や光導電率などの電気的特
性、光学的バンドギャップなどについて所望の特性を得
るために、周期律表第III a族元素(以下周期律表第II
I a族元素をIII a族元素と略す)や第Va族元素(以
下Va族元素と略す)を含有させたり、カーボン
(C)、窒素(N)、酸素(O)等の元素を含有させる
とよい。就中、アモルファスシリコンカーバイド(以下
アモルファスシリコンカーバイドをa-SiC と略す)を光
導電層5に用いる場合には、Si1-X x のx値を0<x
≦0.5 、好適には0.05≦x≦0.45の範囲に設定するとよ
く、この範囲であれば、a-Si層よりも高抵抗となり、か
つ良好なキャリアの走行が確保できるという点で望まし
い。III a族元素やVa族元素としては、それぞれB元
素やP元素が共有結合性に優れて半導体特性を敏感に変
え得る点で、その上優れた光感度が得られるという点で
望ましい。
As the photoconductive layer 5, it is particularly preferable to use an a-Si based photoconductive layer. The a-Si based layer is formed by, for example, a glow discharge decomposition method, a sputtering method, an ECR method, a vapor deposition method or the like. In the formation thereof, hydrogen (H) or a halogen element is contained in an amount of 1 to 40 atomic% for dangling bond termination. In addition, in order to obtain desired electrical characteristics such as dark conductivity and photoconductivity of the layer and optical band gap, an element belonging to Group IIIa of the periodic table (hereinafter referred to as II of the periodic table).
Group Ia elements are abbreviated as Group IIIa elements), Group Va elements (hereinafter abbreviated as Group Va elements), and elements such as carbon (C), nitrogen (N), and oxygen (O). Good. In particular, when amorphous silicon carbide (hereinafter, amorphous silicon carbide is abbreviated as a-SiC) is used for the photoconductive layer 5, the x value of Si 1-X C x is set to 0 <x
≦ 0.5, preferably in the range of 0.05 ≦ x ≦ 0.45. This range is desirable in that the resistance becomes higher than that of the a-Si layer and good carrier traveling can be ensured. As the group IIIa element and the group Va element, the B element and the P element are preferable because they have excellent covalent bonding properties and can change semiconductor characteristics sensitively, and furthermore, excellent light sensitivity can be obtained.

【0038】更に、a-Si系光導電層5の中を、光キャリ
ア発生の機能を高めた層領域と、キャリア輸送の機能を
持たせた層領域とを積層したものとすると、光感度と耐
電圧等を共に高めることが出来る。
Further, when the a-Si based photoconductive layer 5 is formed by laminating a layer region having an enhanced photocarrier generation function and a layer region having a carrier transport function, the photosensitivity and the photosensitivity can be improved. Both the withstand voltage and the like can be increased.

【0039】この際、光励起層領域は、光キャリアの生
成を高めるため、(1)成膜時の条件において、(2)
低成膜速度で成膜する、(3)H2 やHeでの希釈率を
高める、(4)ドープする元素を輸送層よりも多く含有
させる等すると良い。
At this time, in order to enhance the generation of photocarriers, the photoexcitation layer region should be formed under the following conditions:
It is preferable to form the film at a low film forming rate, (3) increase the dilution ratio with H 2 or He, and (4) to include a larger amount of the element to be doped than the transport layer.

【0040】また、キャリア輸送層領域は、主に感光体
2の耐圧を高めると共に励起層領域から注入されたキャ
リアを感光体2表面へスムーズに走行させる役割を持つ
が、この層領域においても光励起層領域を透過してきた
光によりキャリア生成が行われ、感光体2の光感度に寄
与する。
The carrier transport layer region mainly serves to increase the breakdown voltage of the photoreceptor 2 and to allow the carriers injected from the excitation layer region to smoothly travel to the surface of the photoreceptor 2. Carriers are generated by the light transmitted through the layer region, which contributes to the photosensitivity of the photoconductor 2.

【0041】a-Si系光導電層5の厚みは、露光波長の光
に対するこの層の吸収係数から求まる光吸収の深さに対
して更に0.1〜2.0μmを加えた厚みとする。
The thickness of the a-Si-based photoconductive layer 5 is a thickness obtained by further adding 0.1 to 2.0 μm to the depth of light absorption determined from the absorption coefficient of this layer for light having an exposure wavelength.

【0042】図3に、代表的なa-Si:H層(Egop
t:1.76eV)における、光の波長に対する吸収係
数から求めた光吸収の深さの変化を示す。図3よりa-S
i:H層において入射光の90%が吸収される深さは、
波長550nmに対しては約0.4μm、一般的なEL
の発光波長である580nmに対しては約0.6μm、
600nmに対しては約0.8μm、一般的なLEDの
一つである波長660nmに対しては約2.2μm、7
00nmに対しては約3.8μmであることがわかる。
FIG. 3 shows a typical a-Si: H layer (Egop
(t: 1.76 eV) shows the change in the depth of light absorption obtained from the absorption coefficient with respect to the wavelength of light. AS from Figure 3
The depth at which 90% of the incident light is absorbed in the i: H layer is
About 0.4 μm for wavelength 550 nm, general EL
About 0.6 μm for the emission wavelength of 580 nm,
About 0.8 μm for 600 nm, about 2.2 μm, 7 for a wavelength of 660 nm which is one of general LEDs.
It can be seen that it is about 3.8 μm for 00 nm.

【0043】この様な光吸収深さの変化は、使用するa-
Si系光導電層5の光吸収特性により異なるが、いずれに
せよ、a-Si系光導電層5の厚みを光の波長に対する吸収
係数から求めた光吸収の深さ、特に90%の光を吸収す
る深さに0.1〜2.0μmを加えた厚みとすることに
より、露光波長をほぼ完全に吸収して有効に光キャリア
を発生することが出来、この層の厚みを必要以上に厚く
することもなくなる。
Such a change in the light absorption depth is caused by a-
Depending on the light absorption characteristics of the Si-based photoconductive layer 5, the thickness of the a-Si based photoconductive layer 5 is determined by the absorption coefficient with respect to the wavelength of light. By setting the absorption depth to a thickness obtained by adding 0.1 to 2.0 μm, the exposure wavelength can be almost completely absorbed, and a photocarrier can be generated effectively. No more.

【0044】また、この層の厚みを上記で設定した必要
最小限とすることにより、画像形成の際のバイアス電圧
により光導電層5にかかる電界が、低いバイアス電圧で
も十分に高くなるため、良好な画像形成が行える。
By setting the thickness of this layer to the necessary minimum set above, the electric field applied to the photoconductive layer 5 by the bias voltage at the time of image formation becomes sufficiently high even at a low bias voltage. Image formation can be performed.

【0045】また、a-Si系光導電層5の中を、光励起層
領域と、輸送層領域とを積層したものとした場合には、
光励起層領域の厚みを上記吸収深さにほぼ等しく設定す
ると良い。
When the a-Si-based photoconductive layer 5 is formed by laminating a photoexcitation layer region and a transport layer region,
It is preferable that the thickness of the photoexcitation layer region is set substantially equal to the absorption depth.

【0046】表面層6には絶縁層であって、有機材料も
しくは無機材料により形成する。特にa-SiC や、アモル
ファスシリコンナイトライド(a-SiN )、アモルファス
シリコンオキサイド(a-SiO )、アモルファスシリコン
オキシカーバイド(a-SiCO)、アモルファスシリコンオ
キシナイトライド(a-SiNO)などのa-Si系絶縁層を用い
るのがよく、これらは光導電層5と同様の薄膜形成手段
により形成する。表面層6と光導電層5にa-SiC を用い
た場合には、光導電層5に含まれるカーボン量に比べて
表面層6のカーボンを多く含有させる。この表面層6に
おけるカーボン量は、Si1-X x のx値で0.3 ≦x<1.
0 、好適には0.5 ≦x≦0.95の範囲がよい。この層内で
カーボン量に勾配を形成してもよく、あるいはカーボン
とともに、N、O、Geを含有させて耐湿性を更に高め
ることができる。
The surface layer 6 is an insulating layer and is formed of an organic material or an inorganic material. In particular, a-SiC and a-Si such as amorphous silicon nitride (a-SiN), amorphous silicon oxide (a-SiO), amorphous silicon oxycarbide (a-SiCO), and amorphous silicon oxynitride (a-SiNO) It is preferable to use a system insulating layer, which is formed by the same thin film forming means as the photoconductive layer 5. When a-SiC is used for the surface layer 6 and the photoconductive layer 5, carbon in the surface layer 6 is contained more than the amount of carbon contained in the photoconductive layer 5. The amount of carbon in the surface layer 6 is represented by the following equation : x ≦ Si 1−X C x 0.3 ≦ x <1.
0, preferably in the range of 0.5 ≦ x ≦ 0.95. A gradient may be formed in the carbon amount in this layer, or N, O, and Ge may be contained together with carbon to further improve the moisture resistance.

【0047】表面層6の厚みは0.05〜5μm、好適には
0.1 〜3μmにすればよく、0.05μm未満の場合には、
この層6で十分な絶縁耐圧の向上や、光キャリアを効果
的にトラップしてトナー像の形成に寄与させることが出
来ず、また、繰り返し使用した場合、磨耗により寿命も
劣る。5μmを越えた場合には精細な電荷パターンを形
成するに当たって、この層6中で電界(電気力線)が膜
面方向に広がりを生じ、これにより、解像力の低下をき
たし、十分な解像度が得られない。また、表面に残留す
る電荷が多くなって残留電位が高くなるため、画像濃度
の低下やバックのかぶり或いは繰り返し使用における画
像濃度の変化等の問題が生じる。
The thickness of the surface layer 6 is 0.05 to 5 μm, preferably
0.1 to 3 μm, and if less than 0.05 μm,
The layer 6 cannot sufficiently improve the withstand voltage or effectively trap optical carriers to contribute to the formation of a toner image. In addition, when used repeatedly, the life is inferior due to abrasion. When the thickness exceeds 5 μm, an electric field (lines of electric force) spreads in the film surface direction in this layer 6 to form a fine charge pattern, thereby lowering the resolution and obtaining a sufficient resolution. I can't. Further, since the amount of charge remaining on the surface increases and the residual potential increases, problems such as a reduction in image density, fogging of a back, and a change in image density during repeated use occur.

【0048】表面層6をa-SiC高抵抗表面層とした場合
には、a-SiC系光導電層5と同様の薄膜形成手段により
形成する。そして、この表面層6の暗抵抗率は、1013
Ω・cm以上となるように、C含有量や不純物添加量、
成膜条件を適宜設定する。
When the surface layer 6 is an a-SiC high resistance surface layer, it is formed by the same thin film forming means as the a-SiC photoconductive layer 5. The dark resistivity of the surface layer 6 is 10 13
C content and impurity addition amount so as to be Ω · cm or more,
The film forming conditions are appropriately set.

【0049】このように表面層6の暗抵抗率が1013Ω
・cm以上であると、現像剤を通してのバイアスによる
電荷の注入を阻止して露光部と非露光部との電位コント
ラストを高め、感光体2の表面により多くのトナーを引
き付けてトナー像の濃度を増し、画像濃度を十分に高め
ることが出来ると共に、バックのかぶりを抑制すること
ができる。
As described above, the dark resistivity of the surface layer 6 is 10 13 Ω.
If it is not less than cm, the injection of charges due to the bias through the developer is prevented, the potential contrast between the exposed and unexposed portions is increased, and more toner is attracted to the surface of the photoconductor 2 to reduce the density of the toner image. And the image density can be sufficiently increased, and the fogging of the back can be suppressed.

【0050】また、感光体2の絶縁耐圧を高めることが
できる。
Further, the dielectric strength of the photosensitive member 2 can be increased.

【0051】更に、通常の絶縁層を用いた場合には、画
像形成後にも絶縁層に光キャリアがトラップされ続けて
しまい、通常のイレース露光では残留電位を消去出来な
いという問題があるが、a-SiC高抵抗層の場合には、表
面からの正電荷は有効に阻止するが、光導電層5からの
負電荷は比較的通し易いという性質を持つため、画像形
成後の残留電位は、通常のイレース露光により効果的に
消去出来、連続して画像形成が行えるという利点もあ
る。
Further, when a normal insulating layer is used, photocarriers continue to be trapped in the insulating layer even after image formation, and there is a problem that the residual potential cannot be erased by normal erase exposure. In the case of the -SiC high resistance layer, the positive electric charge from the surface is effectively blocked, but the negative electric charge from the photoconductive layer 5 is relatively easy to pass. There is also an advantage that the image can be effectively erased by the erase exposure and the image can be continuously formed.

【0052】またa-Si系光導電層5との密着性が良好で
あると共に、耐磨耗性、耐環境性等の特性も高くなり、
長期にわたって安定した画像形成が行える。
In addition to having good adhesion to the a-Si-based photoconductive layer 5, characteristics such as abrasion resistance and environmental resistance are also improved.
Stable image formation can be performed over a long period of time.

【0053】このa-Si1-X X X値は0.3≦ X
1.0、好適には0.5≦ X≦0.95に設定するのが
良く、層内でC量に勾配を持たせてもよい。また、Cと
同時にN、O、Geを含有させると、耐湿性を更に高め
ることが出来る。
The X value of the a-Si 1-X C X is 0.3 ≦ X <
1.0, preferably 0.5 ≦ X ≦ 0.95, and the C content may have a gradient in the layer. When N, O, and Ge are contained at the same time as C, the moisture resistance can be further enhanced.

【0054】このa-SiC高抵抗層の厚みは、0.05〜
5μm、好適には0.1〜3μmの範囲内が良い。
The thickness of the a-SiC high resistance layer is 0.05 to
5 μm, preferably within the range of 0.1 to 3 μm.

【0055】かくして得られる感光体層の全体の膜厚
は、上記の設定によるが、露光光源としてLEDやEL
を用いた場合には、約1〜15μm、好適には2〜10
μmの範囲内が良く、この範囲内であれば、露光が十分
に吸収されて良好な光感度を示すと共に、感光体として
の耐圧も確保でき、低いバイアス電圧でも良好な画像が
得られる。
The total thickness of the photoreceptor layer thus obtained depends on the above setting, but the LED or EL is used as an exposure light source.
When used, about 1 to 15 μm, preferably 2 to 10 μm
The range of μm is good, and within this range, the exposure is sufficiently absorbed and good photosensitivity is exhibited, the withstand voltage of the photoreceptor can be secured, and a good image can be obtained even with a low bias voltage.

【0056】次に実施例を個々詳述する。本発明の画像
形成装置を(例1)(例5)(例7)(例9)(例1
1)(例12)により説明し、比較例を(例2)(例
3)(例4)(例6)(例8)(例10)(例13)に
て述べる。
Next, each embodiment will be described in detail. (Example 1) (Example 5) (Example 7) (Example 9) (Example 1)
1) (Example 12), and comparative examples are described in (Example 2) (Example 3) (Example 4) (Example 6) (Example 8) (Example 10) (Example 13).

【0057】(例1)透明な円筒状ガラス基板の外周面
に、透光性導電層としてITO層を活性反応蒸着法によ
り1000Åの厚みで形成し、次いでその上に容量結合型グ
ロー放電分解装置を用いて表1の成膜条件によりa-Si注
入阻止層、a-Si光導電層、a-SiC 高抵抗表面層を順次積
層して、感光体Aを作製した。
(Example 1) An ITO layer was formed on the outer peripheral surface of a transparent cylindrical glass substrate as a light-transmitting conductive layer to a thickness of 1000 ° by an active reactive vapor deposition method, and then a capacitively coupled glow discharge decomposition apparatus was formed thereon. The a-Si injection blocking layer, the a-Si photoconductive layer, and the a-SiC high resistance surface layer were sequentially laminated under the film forming conditions shown in Table 1 to prepare a photoconductor A.

【0058】[0058]

【表1】 [Table 1]

【0059】この感光体Aを図2に示すような画像形成
装置に装着し、そして、スリーブ12と透光性導電層4
との間にVs=+30Vの電圧を印加し、波長660n
m、露光量0.5 μJ/cm2 の条件で画像露光を行い、
感光体上にトナー像を形成し、そのトナー像を記録紙に
転写し、熱定着を行って画像を得た。
The photosensitive member A is mounted on an image forming apparatus as shown in FIG.
And a voltage of Vs = + 30 V is applied between the
m, image exposure under the condition of exposure amount 0.5 μJ / cm 2 ,
A toner image was formed on the photoreceptor, the toner image was transferred to a recording paper, and heat-fixed to obtain an image.

【0060】この画像を評価したところ、光学濃度(以
下、O.D.と記す。)が1.3 の画像濃度を有し、バッ
クのかぶりのない解像度の良好な画像であった。
When this image was evaluated, it was an image having an optical density (hereinafter, referred to as OD) of 1.3 and having good resolution without fogging of the background.

【0061】(例2)感光体Aを作製するに当たり、a-
Si光導電層の厚みを、光源のLEDの波長660nmの
光を90%吸収する厚み約2.2μmより小さい1.5
μmとし、感光体Bを作製した。
(Example 2) In producing the photoconductor A, a-
The thickness of the Si photoconductive layer is set to 1.5, which is smaller than the thickness of about 2.2 μm for absorbing 90% of the light of the wavelength 660 nm of the LED of the light source.
μm, and photoreceptor B was prepared.

【0062】この感光体Bを(例1)と同様に図2の構
成の光背面記録方式の電子写真装置に装着し、感光体層
の電界が同一となるようにバイアス電圧を+20Vとし
て、他は同様の条件で画像評価を行ったところ、光キャ
リアの発生が十分に行われず、画像濃度が0.8と不十
分であった。
This photoconductor B was mounted on an electro-optical recording apparatus of the optical backside recording type having the structure shown in FIG. 2 in the same manner as in (Example 1), and the bias voltage was set to +20 V so that the electric field of the photoconductor layer was the same. When image evaluation was performed under the same conditions, photocarriers were not sufficiently generated, and the image density was 0.8, which was insufficient.

【0063】(例3)感光体Aを作製するに当たり、a-
Si光導電層の厚みを、光源のLEDの波長660nmの
光を90%吸収する厚み約2.2μmより3.0μm大
きい5.2μmとし、感光体Cを作製した。
(Example 3) In producing the photosensitive member A, a-
Photoconductor C was fabricated by setting the thickness of the Si photoconductive layer to 5.2 μm, which is 3.0 μm larger than the thickness of about 2.2 μm that absorbs 90% of the light of 660 nm wavelength of the LED of the light source.

【0064】この感光体Cを(例1)と同様に図2の構
成の光背面記録方式の電子写真装置に装着し、感光体層
の電界が同一となるようにバイアス電圧を+60Vとし
て、他は同様の条件で画像評価を行ったところ、画像濃
度が1.2でバックのかぶりや解像力も概ね良好な画像
が得られた。
This photoconductor C was mounted on an electro-optical recording apparatus of the optical backside recording type having the configuration shown in FIG. 2 in the same manner as in (Example 1), and the bias voltage was set to +60 V so that the electric field of the photoconductor layer was the same. The image was evaluated under the same conditions. As a result, an image having an image density of 1.2 and an image having generally good fog and resolution was obtained.

【0065】しかし、バイアス電圧を+30Vとして同
様の条件で画像評価を行ったところ、十分な電位コント
ラストが得られず、画像濃度が0.9と低い画像であっ
た。
However, when the image evaluation was performed under the same conditions with the bias voltage set to +30 V, sufficient potential contrast was not obtained, and the image had an image density as low as 0.9.

【0066】(例4)感光体Aを作製するに当たり、a-
SiC注入阻止層を形成せず、他は同様にして感光体Dを
作製した。
(Example 4) In producing the photosensitive member A, a-
Photoconductor D was prepared in the same manner except that no SiC injection blocking layer was formed.

【0067】この感光体Dを(例1)と同様に図2の構
成の光背面記録方式の電子写真装置に装着し、(例1)
と同様の条件で画像評価を行ったところ、画像のバック
のかぶりが見られ、感光体Aよりも劣る結果であった。
This photosensitive member D was mounted on an electrophotographic apparatus of the optical backside recording type having the structure shown in FIG. 2 in the same manner as in (Example 1), and (Example 1)
The image was evaluated under the same conditions as in Example 1. As a result, fogging of the back of the image was observed, and the result was inferior to that of Photoconductor A.

【0068】(例5)感光体Aを作製するに当たり、a-
SiC注入阻止層に代えて、ポリイミドからなる厚み0.
2μmの絶縁層を塗布・乾燥法により形成した。更にそ
の上に、容量結合型グロー放電分解装置を用いて、(例
1)と同様のa-Si光導電層とa-SiC高抵抗表面層とを順
次積層して、感光体Eを作製した。
(Example 5) In producing the photosensitive member A, a-
Instead of the SiC injection blocking layer, a polyimide layer having a thickness of 0.
An insulating layer of 2 μm was formed by a coating and drying method. Further, an a-Si photoconductive layer and an a-SiC high-resistance surface layer similar to those in (Example 1) were sequentially laminated thereon by using a capacitively-coupled glow discharge decomposition apparatus, thereby producing a photoconductor E. .

【0069】この感光体Eを図2の構成の光背面記録方
式の電子写真装置に装着し、(例1)と同様の条件で画
像評価を行ったところ、O.D.が1.3の画像濃度を
有し、バックのかぶりのない、解像度の良好な画像であ
った。
This photoreceptor E was mounted on an electrophotographic apparatus of the optical backside recording type having the configuration shown in FIG. 2 and image evaluation was performed under the same conditions as in (Example 1). D. Has an image density of 1.3, has no fogging of the background, and has a good resolution.

【0070】(例6)感光体Aを作製するに当たり、a-
SiC高抵抗表面層を積層せず、その他は感光体Aと同様
の条件により、a-SiC高抵抗表面層を有しない感光体F
を作製した。
(Example 6) In producing the photosensitive member A, a-
Photoconductor F having no a-SiC high resistance surface layer under the same conditions as Photoconductor A, except that the SiC high resistance surface layer is not laminated.
Was prepared.

【0071】この感光体Fを図2の構成の光背面記録方
式の電子写真装置に装着し、(例1)と同様の条件で画
像評価を行ったところ、電位コントラストが不十分で画
像濃度が低く、バックのかぶりも目立つ画像であり、感
光体Aよりも劣る結果であった。
This photoconductor F was mounted on an electrophotographic apparatus of the optical backside recording type having the structure shown in FIG. 2 and image evaluation was performed under the same conditions as in (Example 1). The image was low and the fogging of the back was conspicuous, and the result was inferior to that of the photoconductor A.

【0072】(例7)(例1)の感光体作製に当たっ
て、表1に示す各層に代えて表2に示す成膜条件により
a-SiC注入阻止層、a-Si光導電層、絶縁性a-SiC 表面層
を順次形成し、その他は(例1)と同じ条件により作製
して感光体Gを作った。
(Example 7) In producing the photoreceptor of (Example 1), the film forming conditions shown in Table 2 were used instead of the layers shown in Table 1.
An a-SiC injection blocking layer, an a-Si photoconductive layer, and an insulating a-SiC surface layer were sequentially formed, and the other components were manufactured under the same conditions as in Example 1 to obtain a photoconductor G.

【0073】[0073]

【表2】 [Table 2]

【0074】この感光体を図2の構成の構成の光背面記
録方式の電子写真装置に装着し、その感光体内部の現像
器と対向する位置にLEDヘッドを配し、現像電極と感
光体の透光性電極層との間に+30Vの電圧を印加しな
がら、波長660nm、露光量0.5μJ/cm2 の条
件で画像露光を行い、感光体上にトナー像を形成し、そ
のトナー像を記録紙に転写し、熱定着を行って画像を得
た。この画像を評価したところ、O.D.が1.3の画
像濃度を有し、バックのかぶりのない、解像度の良好な
画像であった。
This photoreceptor is mounted on an electrophotographic apparatus of the optical backside recording type having the configuration shown in FIG. 2, and an LED head is arranged at a position inside the photoreceptor opposite to the developing device. While applying a voltage of +30 V between the transparent electrode layer and the substrate, image exposure is performed under the conditions of a wavelength of 660 nm and an exposure amount of 0.5 μJ / cm 2 to form a toner image on a photoconductor, and the toner image is formed. The image was transferred to a recording paper and heat-fixed to obtain an image. When this image was evaluated, O.D. D. Has an image density of 1.3, has no fogging of the background, and has a good resolution.

【0075】(例8)感光体Gを作製するに当たり、a-
Si光導電層の厚みを、光源のLEDの波長660nmの
光を90%吸収する厚み約2.2μmより小さい1.5
μmとし、感光体Hを作製した。
(Example 8) In producing the photoconductor G, a-
The thickness of the Si photoconductive layer is set to 1.5, which is smaller than the thickness of about 2.2 μm for absorbing 90% of the light of the wavelength 660 nm of the LED of the light source.
μm, and photoreceptor H was prepared.

【0076】この感光体Hを(例7)と同様に図2の構
成の光背面記録方式の電子写真装置に装着し、感光体層
の電界が同一となるようにバイアス電圧を+20Vとし
て、他は同様の条件で画像評価を行ったところ、光キャ
リアの発生が十分に行われず、画像濃度が0.8と不十
分であった。
This photoconductor H was mounted on an electro-optical recording apparatus of the optical backside recording type having the configuration shown in FIG. 2 in the same manner as in (Example 7), and the bias voltage was set to +20 V so that the electric field of the photoconductor layer was the same. When image evaluation was performed under the same conditions, photocarriers were not sufficiently generated, and the image density was 0.8, which was insufficient.

【0077】(例9)感光体Gを作製するに当たり、a-
Si光導電層の厚みを、光源のLEDの波長660nmの
光を90%吸収する厚み約2.2μmより3.0μm大
きい5.2μmとし、感光体Iを作製した。
(Example 9) In producing the photoconductor G, a-
Photoconductor I was manufactured by setting the thickness of the Si photoconductive layer to 5.2 μm, which is 3.0 μm larger than the thickness of about 2.2 μm that absorbs 90% of the light of 660 nm wavelength of the LED of the light source.

【0078】この感光体Iを(例7)と同様に図2の構
成の光背面記録方式の電子写真装置に装着し、感光体層
の電界が同一となるようにバイアス電圧を+60Vとし
て、他は同様の条件で画像評価を行ったところ、画像濃
度が1.2でバックのかぶりや解像力も概ね良好な画像
が得られた。
This photoconductor I was mounted on an electro-photographic apparatus of the optical backside recording system having the structure shown in FIG. 2 in the same manner as in (Example 7), and the bias voltage was set to +60 V so that the electric field of the photoconductor layer was the same. The image was evaluated under the same conditions. As a result, an image having an image density of 1.2 and an image having generally good fog and resolution was obtained.

【0079】しかし、バイアス電圧を+30Vとして同
様の条件で画像評価を行ったところ、十分な電位コント
ラストが得られず、画像濃度が0.9と低い画像であっ
た。
However, when image evaluation was performed under the same conditions with the bias voltage set to +30 V, sufficient potential contrast was not obtained, and the image had an image density as low as 0.9.

【0080】(例10)感光体Gを作製するに当たり、
a-SiC注入阻止層を形成せず、他は同様にして感光体J
を作製した。
(Example 10) In manufacturing the photoconductor G,
a-SiC injection blocking layer is not formed, and
Was prepared.

【0081】この感光体Jを(例7)と同様に図2の構
成の光背面記録方式の電子写真装置に装着し、(例7)
と同様の条件で画像評価を行ったところ、画像のバック
のかぶりが見られ、感光体Gよりも劣る結果であった。
This photoconductor J was mounted on an electrophotographic apparatus of the optical backside recording type having the configuration shown in FIG. 2 in the same manner as in (Example 7), and (Example 7)
When the image was evaluated under the same conditions as in the above, fogging of the back of the image was observed, and the result was inferior to that of the photoconductor G.

【0082】(例11)感光体Gを作製するに当たり、
a-SiC注入阻止層に代えて、ポリイミドからなる厚み
0.2μmの絶縁層を塗布・乾燥法により形成した。更
にその上に、容量結合型グロー放電分解装置を用いて、
(例7)と同様のa-Si光導電層と絶縁性のa-SiC表面層
とを順次積層して、感光体Kを作製した。
(Example 11) In manufacturing the photoconductor G,
Instead of the a-SiC injection blocking layer, a 0.2 μm thick insulating layer made of polyimide was formed by a coating and drying method. Furthermore, using a capacitively coupled glow discharge decomposition device,
An a-Si photoconductive layer similar to (Example 7) and an insulating a-SiC surface layer were sequentially laminated to produce a photoconductor K.

【0083】この感光体Kを図2の構成の光背面記録方
式の電子写真装置に装着し、(例7)と同様の条件で画
像評価を行ったところ、O.D.が1.3の画像濃度を
有し、バックのかぶりのない、解像度の良好な画像であ
った。
This photoreceptor K was mounted on an electrophotographic apparatus of the optical rear recording type having the structure shown in FIG. 2 and the image was evaluated under the same conditions as in (Example 7). D. Has an image density of 1.3, has no fogging of the background, and has a good resolution.

【0084】(例12)感光体Gを作製するに当たり、
a-SiC表面層に代えて、パリレンからなる厚み0.1μ
mの絶縁層を真空蒸着法により形成し、その他は感光体
Gと同様の条件により、絶縁性の表面層を有しない感光
体Lを作製した。
(Example 12) In producing the photoconductor G,
Instead of a-SiC surface layer, 0.1μ thick parylene
A photoconductor L having no insulating surface layer was manufactured under the same conditions as the photoconductor G except that an insulating layer of m was formed by a vacuum evaporation method.

【0085】この感光体Lを図2の構成の光背面記録方
式の電子写真装置に装着し、(例7)と同様の条件で画
像評価を行ったところ、O.D.が1.3の画像濃度を
有し、バックのかぶりのない、解像度の良好な画像であ
った。
This photoreceptor L was mounted on an electrophotographic apparatus of the optical backside recording type having the structure shown in FIG. 2 and image evaluation was performed under the same conditions as in (Example 7). D. Has an image density of 1.3, has no fogging of the background, and has a good resolution.

【0086】(例13)感光体Gを作製するに当たり、
a-SiC表面層を作製せず、その他は感光体Gと同様の条
件により、絶縁性の表面層を有しない感光体Mを作製し
た。
(Example 13) In manufacturing the photoconductor G,
Photoreceptor M having no insulating surface layer was prepared under the same conditions as photoreceptor G except that no a-SiC surface layer was prepared.

【0087】この感光体Mを図2の構成の光背面記録方
式の電子写真装置に装着し、(例7)と同様の条件で画
像評価を行ったところ、電位コントラストが不十分で画
像濃度が低く、バックのかぶりも目立つ画像であり、感
光体Gよりも劣る結果であった。
This photoconductor M was mounted on the electrophotographic apparatus of the optical backside recording type having the structure shown in FIG. 2 and image evaluation was performed under the same conditions as in (Example 7). The image was low and the fogging of the back was conspicuous, and the result was inferior to that of the photoconductor G.

【0088】[0088]

【発明の効果】本発明の画像形成装置によれば、絶縁層
からなるキャリア注入阻止層を積層したことにより、画
像形成の際に透光性導電層からa-Si系光導電層へのキャ
リアの注入を阻止することが出来るため、露光部と非露
光部との静電コントラストを高めて画像濃度を向上させ
ると共に、現像におけるバックグラウンドのかぶりを低
減することができた。
According to the image forming apparatus of the present invention, the carrier from the light-transmitting conductive layer to the a-Si-based photoconductive layer is formed during image formation by laminating the carrier injection blocking layer comprising an insulating layer. , The electrostatic contrast between the exposed and non-exposed areas was increased to improve the image density and to reduce the background fog during development.

【0089】また、本発明の画像形成装置によれば、a-
Si系光導電層の厚みを、光の波長に対する吸収係数から
求めた90%の光を吸収する深さに0.1〜2.0μm
を加えた厚みとすることにより、露光波長をほぼ完全に
吸収して有効に光キャリアを発生することができた。
According to the image forming apparatus of the present invention, a-
The thickness of the Si-based photoconductive layer is set to a depth of 0.1 to 2.0 μm to absorb 90% of light obtained from an absorption coefficient with respect to the wavelength of light.
By adding the thickness, the exposure wavelength was almost completely absorbed, and photocarriers could be generated effectively.

【0090】また、a-Si系光導電層の厚みを上記で設定
した必要最小限とすることにより、画像形成の際のバイ
アス電圧により光導電層にかかる電圧が、低いバイアス
電圧でも十分に高くなるため、良好な画像形成が行え
る。
Further, by setting the thickness of the a-Si based photoconductive layer to the necessary minimum set as described above, the voltage applied to the photoconductive layer due to the bias voltage at the time of image formation can be sufficiently increased even at a low bias voltage. Therefore, good image formation can be performed.

【0091】更にまた、本発明の画像形成装置によれ
ば、a-Si系光導電層の上にa-SiC高抵抗層を積層するこ
とにより、画像形成において、現像剤からのキャリアの
注入を阻止して画像のコントラストを高めて画像濃度を
高めることができ、またバックのかぶりを抑制すること
により、良好なトナー像形成を行うことができた。
Further, according to the image forming apparatus of the present invention, by laminating an a-SiC high-resistance layer on an a-Si-based photoconductive layer, injection of carriers from a developer can be performed in image formation. By blocking the image, the image density could be increased by increasing the contrast of the image, and good toner image formation could be performed by suppressing the back fog.

【0092】また感光体の絶縁耐圧や耐磨耗性、耐環境
性等の特性が高められ、長期にわたって安定した画像形
成が行える。
Further, the characteristics such as the dielectric strength of the photoreceptor, the abrasion resistance, the environmental resistance and the like are improved, and a stable image can be formed over a long period.

【0093】更にまたa-Si系光導電層の上に絶縁層を積
層することにより、画像形成において、現像剤からのキ
ャリアの注入を阻止して画像のコントラストを高め、バ
ックのかぶりを抑制すると共に、画像露光部において絶
縁層を介して光導電層と現像剤との間に電荷対を形成す
ることにより、良好なトナー像形成を行うことが出来、
画像濃度を高めることができた。
Further, by laminating an insulating layer on the a-Si-based photoconductive layer, in image formation, injection of carriers from a developer is prevented to enhance the contrast of the image and suppress fogging of the back. In addition, by forming a charge pair between the photoconductive layer and the developer via the insulating layer in the image exposure section, it is possible to form a good toner image,
The image density could be increased.

【0094】また感光体の絶縁耐圧や耐磨耗性、耐環境
性等の特性が高められ、長期にわたって安定した画像形
成が行える。
In addition, the photoreceptor has improved characteristics such as withstand voltage, abrasion resistance, and environmental resistance, so that a stable image can be formed over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる電子写真方法を示す模式図であ
る。
FIG. 1 is a schematic view showing an electrophotographic method according to the present invention.

【図2】本発明の電子写真方法の要部構成図である。FIG. 2 is a configuration diagram of a main part of the electrophotographic method of the present invention.

【図3】波長に対する光吸収の深さを表す線図である。FIG. 3 is a diagram illustrating a light absorption depth with respect to a wavelength.

【符号の説明】[Explanation of symbols]

2 感光体 7 LEDヘッド 8 現像器 9 転写ローラ 10 イレース用光源 4 透光性導電層 5 光導電層 5a キャリア注入阻止層 6 表面層 2 Photoconductor 7 LED Head 8 Developing Device 9 Transfer Roller 10 Erase Light Source 4 Translucent Conductive Layer 5 Photoconductive Layer 5a Carrier Injection Blocking Layer 6 Surface Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 浩 滋賀県八日市市蛇溝町長谷野1166番地の 6京セラ株式会社滋賀八日市工場内 (56)参考文献 特開 平1−227166(JP,A) 特開 平2−106761(JP,A) 特開 昭57−17952(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 15/05 G03G 5/08 105 - 360 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Ito 6166 Kyocera Co., Ltd. Shiga Yokaichi Plant at 1166 Haseno, Jabizo-cho, Yokaichi City, Shiga Prefecture (56) References JP-A 1-227166 (JP, A) 2-106761 (JP, A) JP-A-57-17952 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G03G 15/05 G03G 5/08 105-360

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透光性支持体上に透光性導電層を形成し、
該透光性導電層上に絶縁性キャリア注入阻止層と、厚み
が0.5〜5μmであるアモルファスシリコン系光導電
層と、絶縁層もしくはアモルファスシリコンカーバイド
から成る暗抵抗率が1013Ω・cm以上の高抵抗層によ
る表面層とを順次積層した感光体と、該感光体の上記表
面層側に配設した現像手段と、上記感光体に現像剤によ
る画像を形成させるべく上記透光性支持体側から照射す
る光源とから成るとともに、上記光導電層を該光源によ
り90%の光が吸収される厚みに対し、さらに厚み0.
1〜2.0μmを加えて形成し、かつ前記感光体と現像
手段とを双方の最近接部位にて逆方向に移動させて現像
剤溜りを設け、該現像剤溜りに対し光源により照射せし
めたことを特徴とする画像形成装置。
1. A light-transmitting conductive layer is formed on a light-transmitting support,
An insulating carrier injection blocking layer, an amorphous silicon-based photoconductive layer having a thickness of 0.5 to 5 μm, an insulating layer or amorphous silicon carbide on the light transmitting conductive layer.
A photoreceptor dark resistivity by sequentially laminating a surface layer according to 10 13 Ω · cm or more high-resistance layer composed of a developing means disposed on the surface layer side of the photoreceptor, developer to the photosensitive member And a light source for irradiating from the translucent support side to form an image by the light source.
90% of the light that is absorbed by
1 to 2.0 .mu.m , and the photosensitive member and the developing means were moved in opposite directions at the closest portions of both to provide a developer reservoir, and the developer reservoir was irradiated with a light source. An image forming apparatus comprising:
JP3064004A 1991-03-04 1991-03-04 Image forming device Expired - Lifetime JP3046087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064004A JP3046087B2 (en) 1991-03-04 1991-03-04 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064004A JP3046087B2 (en) 1991-03-04 1991-03-04 Image forming device

Publications (2)

Publication Number Publication Date
JPH06118741A JPH06118741A (en) 1994-04-28
JP3046087B2 true JP3046087B2 (en) 2000-05-29

Family

ID=13245619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064004A Expired - Lifetime JP3046087B2 (en) 1991-03-04 1991-03-04 Image forming device

Country Status (1)

Country Link
JP (1) JP3046087B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566621B2 (en) 2000-03-30 2004-09-15 キヤノン株式会社 Electrophotographic photoreceptor and apparatus using the same
US6534228B2 (en) 2000-05-18 2003-03-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member and image forming apparatus
US6636715B2 (en) 2000-05-22 2003-10-21 Canon Kabushiki Kaisha Photosensitive member and image forming apparatus having the same
JP3913067B2 (en) 2001-01-31 2007-05-09 キヤノン株式会社 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP5020712B2 (en) * 2007-06-14 2012-09-05 キヤノン株式会社 Image forming method
JP5853658B2 (en) * 2011-12-09 2016-02-09 株式会社リコー Photoconductor, process cartridge, image forming device

Also Published As

Publication number Publication date
JPH06118741A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
JP3046087B2 (en) Image forming device
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
JP2971166B2 (en) Image forming device
JP2985984B2 (en) Image forming device
JP3020698B2 (en) Image forming device
JP3113404B2 (en) Image forming device
JP2959599B2 (en) Two-component developer and image forming method
JP3140115B2 (en) Image forming method
JP3140116B2 (en) Image forming method
JP3004114B2 (en) Image forming method
JP3037487B2 (en) Image forming device
JPH04324464A (en) Image forming method
JPH04270360A (en) Image forming device
JP2913066B2 (en) Electrophotographic photoreceptor
JP3157891B2 (en) Image forming device
JP2920663B2 (en) Electrophotographic photoreceptor
JP3000311B2 (en) Image forming device
JPH04301667A (en) Image forming device
JP2948937B2 (en) Image forming device
JP3004106B2 (en) Image forming device
JP4249751B2 (en) Image forming apparatus
JPH05107845A (en) Image forming method
JP2000214617A (en) Image forming device
JPH0561300A (en) Image forming device
JPH05150590A (en) Image forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

EXPY Cancellation because of completion of term