JPH0728332A - Image forming device - Google Patents

Image forming device

Info

Publication number
JPH0728332A
JPH0728332A JP17184293A JP17184293A JPH0728332A JP H0728332 A JPH0728332 A JP H0728332A JP 17184293 A JP17184293 A JP 17184293A JP 17184293 A JP17184293 A JP 17184293A JP H0728332 A JPH0728332 A JP H0728332A
Authority
JP
Japan
Prior art keywords
layer
photoconductor
type semiconductor
semiconductor layer
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17184293A
Other languages
Japanese (ja)
Inventor
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP17184293A priority Critical patent/JPH0728332A/en
Publication of JPH0728332A publication Critical patent/JPH0728332A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electrophotographic system image forming device capable of forming an image by using a thin film photoreceptor layer. CONSTITUTION:In the image forming device, an electrifying means 3, an exposing means 4, a developing means 5 having the formation of a conductive magnetic brush and a developing bias voltage applying means 6 are successively disposed on the photosensitive body layer side of an elecrtrophotographic photoreceptor 2 obtained by an a-Si system photosensitive body layer is laminated on an electric conductive substrate, the photosensitive body layer is constituted so that film thickness is 2-24mum and the surface protective layer of an insulator or a semiinsulator is laminated on a layer where a P-type semiconductor layer and an I-type or N-type semiconductor layer or the N-type semiconductor layer and the I-type or P-type semiconductor layer are successively laminated from a substrate side and the potential difference between the exposing/ nonexposing parts of the surface of the photoreceptor on a developing part is set 10-240V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子写真方式の画像形成
装置に関し、特に感光体層にアモルファスシリコン系光
導電層を用いた感光体と、導電性磁気ブラシによる低電
位現像法とを組み合わせた画像形成装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic image forming apparatus, in particular, a combination of a photoconductor using an amorphous silicon photoconductive layer as a photoconductor layer and a low potential developing method using a conductive magnetic brush. The present invention relates to an image forming apparatus.

【0002】[0002]

【従来の技術】従来、最も一般的な電子写真記録法とし
ては、感光体上の高い電位コントラストを利用して現像
するカールソン法が広く実用化されている。このカール
ソン法は、ドラム状あるいはベルト状の感光体の周囲
に、コロナ帯電器、露光手段、現像手段、転写手段、ク
リーニング手段、除電手段等を配置し、帯電、露光、現
像、転写、定着のプロセスを経て、記録紙上に画像を形
成するものである。そして上記コロナ帯電器には5〜6
kV程度の高電圧が印加され、帯電直後の感光体の表面
電位(初期帯電電位)は500〜1000Vとなり、現
像位置における感光体の暗部表面電位(暗部現像電位)
も400〜800Vと高い。また、感光体表面に表面電
位の分布により形成された静電潜像の現像には、通常は
絶縁性磁性キャリアと絶縁性トナーからなる2成分現像
剤あるいは1成分絶縁性磁性トナーを用いた、絶縁性磁
気ブラシ現像法が用いられている。
2. Description of the Related Art Conventionally, as the most general electrophotographic recording method, the Carlson method of developing by utilizing high potential contrast on a photoconductor has been widely put into practical use. In the Carlson method, a corona charger, an exposing unit, a developing unit, a transferring unit, a cleaning unit, a discharging unit, and the like are arranged around a drum-shaped or belt-shaped photosensitive member to charge, expose, develop, transfer, and fix. An image is formed on a recording paper through a process. And 5-6 in the corona charger
A high voltage of about kV is applied, the surface potential of the photoconductor immediately after charging (initial charging potential) becomes 500 to 1000 V, and the dark surface potential (dark development potential) of the photoconductor at the developing position.
Is as high as 400-800V. For developing the electrostatic latent image formed on the surface of the photoconductor by the distribution of the surface potential, a two-component developer or an one-component insulating magnetic toner usually composed of an insulating magnetic carrier and an insulating toner is used. An insulating magnetic brush development method is used.

【0003】このカールソン法用の感光体に必要とされ
る感光体層には、比誘電率εr が8以下と小さく暗抵抗
率ρd も1×1013Ω・cm以上である、絶縁性の感光
体材料であるセレン(Se)系や有機光導電体(OP
C)材料が最も多く用いられてきたが、その感光体層は
20〜80μmもの厚膜であった。
The photoconductor layer required for the photoconductor for the Carlson method is an insulating photoconductor having a small relative permittivity εr of 8 or less and a dark resistivity ρd of 1 × 10 13 Ω · cm or more. Selenium (Se) -based materials and organic photoconductors (OP)
The material C) has been used most often, but the photoreceptor layer has a thick film of 20 to 80 μm.

【0004】これに対して近年急速に市場を拡大しつつ
あるアモルファスシリコン(以下、a−Siと略す)系
感光体材料は、εr が11〜12と大きくρd も1×1
10Ω・cm程度とやや小さいため、感光体層としては
少なくとも30μm以上の厚膜であることが必要であっ
た。
On the other hand, the amorphous silicon (hereinafter abbreviated as a-Si) type photosensitive material, which has been rapidly expanding in the market in recent years, has a large εr of 11 to 12 and a ρd of 1 × 1.
Since it is a little small, such as about 0 10 Ω · cm, it was necessary for the photosensitive layer to be a thick film of at least 30 μm or more.

【0005】また、通常のカールソン法で使用される感
光体の基体は、透光性を有しない導電性支持体でよいた
め、材料コストが安く加工が容易なアルミニウム(A
l)材が一般に使用されてきた。
Further, since the substrate of the photosensitive member used in the usual Carlson method may be a conductive support having no translucency, aluminum (A) which is low in material cost and easy to process.
l) Wood has been commonly used.

【0006】ところで近時、上記カールソン法に対して
コロナ帯電を不要とする電子写真記録法が提案されてい
る(特公平2-4900号、特公昭60-59592号、特開昭58-444
45号、特開昭58-153957 号、特開昭61-46961号、特開昭
62-280772 号等)。この記録法によれば、透光性支持体
上に透光性導電層と光導電層とを順次積層したドラム状
もしくはベルト状感光体に対して、透光性支持体側より
露光手段により露光すると共に現像バイアス供給用電源
によりバイアス電圧を印加した現像機上の導電性磁性ト
ナーからなる磁気ブラシで感光体表面を摺擦させ、これ
によって帯電と露光と現像とをほぼ同時に行ない、感光
体上にトナー像を形成する。そしてこのトナー像は、転
写ローラもしくはコロナ転写器等の転写手段を用いて記
録紙に転写され、定着手段により定着されて記録画像と
なる。一方、転写後に感光体上に残留したトナーは、現
像機で回収されて再利用される。これまで、この電子写
真記録法の現像剤には導電性磁性トナーが用いられてい
て、感光体上に形成されたトナー像の普通紙への転写が
難しいという問題点があり実用化の障害となっていた
が、最近、導電性磁性キャリアと絶縁性磁性トナーとを
組み合わせた2成分現像剤が提案され、これによって良
好な普通紙記録が可能となってきている。
By the way, recently, an electrophotographic recording method which does not require corona charging has been proposed in contrast to the above-mentioned Carlson method (Japanese Patent Publication No. 2-4900, Japanese Patent Publication No. 60-59592, and Japanese Patent Laid-Open No. 58-444).
45, JP-A-58-153957, JP-A-61-46961, JP-A-SHO
62-280772, etc.). According to this recording method, a drum-shaped or belt-shaped photoreceptor in which a light-transmissive conductive layer and a photoconductive layer are sequentially laminated on a light-transmissive support is exposed from the light-transmissive support side by an exposure means. At the same time, the surface of the photoconductor is rubbed with a magnetic brush made of conductive magnetic toner on the developing machine to which a bias voltage is applied by the power supply for developing bias, and thereby charging, exposure, and development are performed almost at the same time. Form a toner image. Then, this toner image is transferred onto a recording sheet by using a transfer unit such as a transfer roller or a corona transfer unit, and is fixed by a fixing unit to form a recorded image. On the other hand, the toner remaining on the photoconductor after the transfer is collected by the developing machine and reused. To date, conductive magnetic toner has been used as the developer in this electrophotographic recording method, and there is a problem that it is difficult to transfer the toner image formed on the photoconductor onto plain paper, which is an obstacle to practical use. However, recently, a two-component developer in which a conductive magnetic carrier and an insulating magnetic toner are combined has been proposed, which enables excellent plain paper recording.

【0007】上記記録法では潜像形成とその潜像の現像
剤による可視化がほぼ同時に行なわれるため、感光体の
帯電電位または現像電位が30〜100Vと低くて済
み、またコロナ帯電器を用いないのでコロナ放電に伴う
オゾンの発生が無く、更に露光手段が感光体内部に収容
され、感光体のクリーニング手段も不要となることか
ら、画像形成装置が小型となる等の利点がある。そして
これに使用する感光体の膜厚は、感光体の電位が低いこ
とに比例して薄くでき、数μm程度でよくなる。
In the above recording method, latent image formation and visualization of the latent image by the developer are performed almost at the same time, so that the charging potential or developing potential of the photoconductor is as low as 30 to 100 V, and no corona charger is used. Therefore, ozone is not generated due to corona discharge, the exposure unit is housed inside the photosensitive member, and the cleaning unit for the photosensitive member is not required. Therefore, there are advantages such as downsizing of the image forming apparatus. The film thickness of the photoconductor used for this can be reduced in proportion to the low potential of the photoconductor, and can be improved to about several μm.

【0008】[0008]

【発明が解決しようとする問題点】上記カールソン法で
は、コロナ帯電用に5〜6kVの高電圧電源が必要であ
り、この高電圧は人体に危険で、またコロナ放電により
発生するオゾンが周囲に悪影響を与えるといった問題が
あった。
The above-mentioned Carlson method requires a high voltage power source of 5 to 6 kV for corona charging, and this high voltage is dangerous to the human body, and ozone generated by corona discharge is in the surroundings. There was a problem that it had an adverse effect.

【0009】また静電潜像の現像には一般に絶縁性磁気
ブラシ現像法が用いられており、現像位置における感光
体表面の現像コントラスト電位(暗部と明部の電位差)
としては400〜800V以上を必要とし、そのため初
期帯電電位は500〜1000Vもの高電位であった。
An insulating magnetic brush developing method is generally used for developing the electrostatic latent image, and the developing contrast potential (potential difference between the dark portion and the light portion) on the surface of the photosensitive member at the developing position.
Is required to be 400 to 800 V or higher, and therefore the initial charging potential was as high as 500 to 1000 V.

【0010】このような高電位の帯電に必要な感光体膜
厚は、εr が小さくρdも大きいSe系やOPCでも2
0〜80μmもの厚膜であり、εr が大きくρd も比較
的小さいa−Si系感光体では、少なくとも30μm以
上の厚膜が必要であった。
The photoconductor film thickness required for such high-potential charging is 2 even in the case of Se system or OPC having a small εr and a large ρd.
A thick film having a thickness of 0 to 80 .mu.m and a large .epsilon.r and a relatively small .rho.d require a thick film of at least 30 .mu.m or more.

【0011】このように厚膜を堆積することは、高額な
真空設備を用いて堆積される感光体材料、例えばプラズ
マCVD法で製作されるa−Si系感光体にとっては長
時間の堆積時間を要するためにOPC感光体の10倍以
上のコスト高となり、技術的にも経済的にも大きな問題
であった。
Deposition of such a thick film requires a long deposition time for a photosensitive material deposited by using an expensive vacuum equipment, for example, an a-Si photosensitive material manufactured by a plasma CVD method. Therefore, the cost is 10 times or more higher than that of the OPC photoconductor, which is a big problem both technically and economically.

【0012】更にa−Si感光体では、厚膜の堆積に関
して以下の様な問題があった。 帯電から現像迄の間の非露光部(暗部)における感光
体表面電位の低下は、暗減衰と言われる。a−Si感光
体では暗減衰が100V程度と大きいため、所要の現像
電位に対し暗減衰を見込んで初期帯電電位を上げねばな
らず、耐電圧の低いa−Si感光体にとっては、長期間
の使用や高温高湿環境下での使用時に感光体層に存在す
る微小な成膜欠陥が次第に破壊されて拡大され、記録画
像に黒点もしくは白点として現われて画像品質低下の原
因となるという問題があった。
Further, the a-Si photosensitive member has the following problems regarding the deposition of a thick film. The decrease in the photoreceptor surface potential in the non-exposed area (dark area) from charging to development is called dark decay. Since the dark decay of the a-Si photoconductor is as large as about 100 V, it is necessary to increase the initial charging potential in anticipation of the dark decay with respect to the required developing potential. When used or in a high temperature and high humidity environment, minute film formation defects existing in the photoconductor layer are gradually destroyed and enlarged, and appear as black spots or white spots in the recorded image, which causes deterioration of image quality. there were.

【0013】この暗減衰の要因の一つに感光体層中での
熱励起キャリアの生成があり、この熱励起キャリアは感
光体表面に移動して帯電電荷を中和し、表面電位の減衰
を引き起こす。この熱励起キャリアの生成量は感光体層
の膜厚に比例して増加するので、暗減衰は膜厚に比例し
て大きくなる。特にa−Si感光体では、a−Si材料
のバンドギャップが狭くまた熱励起キャリアの生成中心
となるバンドギャップ中の局在準位密度も高いため、熱
励起キャリアの生成量が多く、他の感光体材料に比べて
厚膜化による暗減衰の増加量がより大きくなるという問
題があった。
One of the causes of this dark decay is the generation of thermally excited carriers in the photoconductor layer, and these thermally excited carriers move to the surface of the photoconductor to neutralize the charge and reduce the surface potential. cause. Since the amount of the thermally excited carriers generated increases in proportion to the film thickness of the photoconductor layer, the dark attenuation increases in proportion to the film thickness. Particularly in the a-Si photoconductor, since the band gap of the a-Si material is narrow and the localized level density in the band gap, which is the center of generation of thermally excited carriers, is high, the amount of thermally excited carriers generated is large, and There is a problem that the increase in dark attenuation due to the thicker film is larger than that of the photoconductor material.

【0014】電子写真でカラー画像を記録する際に
は、感光体の光感度のパンクロ性、即ち異なる露光波長
に対する光感度がほぼ一様であることが望まれる。一般
的に短波長光は感光体層で吸収されやすく透過率が低い
ので、感光体層が厚い場合には感光体層の露光側の一部
でのみ吸収されて光キャリアを生成するため、短波長光
の光感度は低くなる傾向にある。一方、長波長光は感光
体層を透過しやすく、感光体層の厚い場合にもそのほぼ
全域で光キャリアを生成するため、長波長光の光感度は
高くなる傾向にある。但し長波長光のエネルギーが感光
体層の光学的バンドギャップより小さくなると、もはや
感光体層で吸収されず急激に感度が低下する。a−Si
感光体では685nmの露光に対する光キャリア生成領
域は感光体層表面から2〜3μmに過ぎず、他の殆どの
層領域は高抵抗のキャリア輸送層として作用するため、
感光体層を厚くする程光キャリアの走行が妨げられ易
く、感度低下の要因になるという問題があった。一方、
700nmの露光に対しては光キャリア生成領域が30
μm程度と感光体層のほぼ全域にわたるため、高い感度
を呈していた。そして厚膜になる程この様な波長による
光感度の差が大きくなり、パンクロ性が悪化してカラー
画像記録に適さなくなるという問題があった。
When recording a color image by electrophotography, it is desired that the photosensitivity of the photoconductor be panchromatic, that is, the photosensitivity to different exposure wavelengths be substantially uniform. In general, short-wavelength light is easily absorbed by the photoconductor layer and has a low transmittance. Therefore, when the photoconductor layer is thick, it is absorbed by only a part of the photoconductor layer on the exposure side to generate a photocarrier. The photosensitivity of wavelength light tends to be low. On the other hand, long-wavelength light easily transmits through the photoconductor layer, and even when the photoconductor layer is thick, photocarriers are generated in almost the entire region, so that the photosensitivity of long-wavelength light tends to be high. However, when the energy of long-wavelength light becomes smaller than the optical band gap of the photoconductor layer, it is no longer absorbed by the photoconductor layer and the sensitivity sharply decreases. a-Si
In the photoconductor, the photocarrier generation region for exposure to 685 nm is only 2 to 3 μm from the photoconductor layer surface, and most of the other layer regions act as a high resistance carrier transport layer.
There is a problem that the thicker the photoreceptor layer is, the more easily the traveling of the optical carrier is obstructed, which causes a decrease in sensitivity. on the other hand,
For 700 nm exposure, the photocarrier generation region is 30
Since the thickness is about μm and covers almost the entire area of the photoconductor layer, high sensitivity is exhibited. The thicker the film, the greater the difference in the photosensitivity due to such wavelengths, and the panchromaticity deteriorates, making it unsuitable for color image recording.

【0015】前記の理由で、高電位に対応して感光
体層を厚膜化する程、光キャリアの走行距離が長くなっ
て光感度が悪化するために感光体の光感度が不足すると
いう問題があり、記録プロセスの高速化に際してプロセ
ス側の露光不足をもたらし、十分な現像コントラスト電
位を形成できず、画像濃度不足を生じる等の問題があっ
た。そのため、低コストが期待されるが光量が小さい露
光光源、例えばSi単結晶基板上にガリウム・ヒ素・リ
ン(GaAsP)系のIII −V族化合物半導体をエピタ
キシャル成長して製作したLEDアレイを用いたLED
ヘッドや、EL素子アレイを用いたELヘッド等の使用
が困難となるという問題もあった。
For the above reasons, the thicker the photoconductor layer in response to the higher potential, the longer the traveling distance of the photocarriers and the poorer the photosensitivity, so that the photosensitivity of the photoconductor becomes insufficient. However, there is a problem that the exposure of the process side becomes insufficient when the recording process is speeded up, a sufficient development contrast potential cannot be formed, and the image density becomes insufficient. Therefore, an LED using an exposure light source that is expected to be low in cost but has a small amount of light, for example, an LED array manufactured by epitaxially growing a III-V group compound semiconductor of gallium-arsenic-phosphorus (GaAsP) system on a Si single crystal substrate
There is also a problem that it is difficult to use a head or an EL head using an EL element array.

【0016】また前記の理由で、高電位に対応して
感光体層を厚膜化する程、光キャリアの走行距離が長く
なるために光キャリアの膜面方向の拡散も生じ易くなる
ことから、露光に対応した感光体表面の静電潜像の境界
がぼやけてしまい、画像の解像力が不十分となるという
問題もあった。
For the above reason, the thicker the photosensitive layer corresponding to the high potential, the longer the traveling distance of the photocarriers, so that the diffusion of the photocarriers in the film surface direction easily occurs. There is also a problem that the boundary of the electrostatic latent image on the surface of the photoconductor corresponding to the exposure is blurred and the resolution of the image becomes insufficient.

【0017】a−Si感光体では、プラズマCVD法
により270℃程度の高い基板温度で感光体層が堆積さ
れるため、成膜後のAl基体ドラムの変形量が他の感光
体材料に比べて大きい。よって、この変形抑制のために
Al基体の肉厚として通常2.5〜8mmが必要であ
り、OPC感光体での0.7〜1.2mmに比べ、基体
の材料コストが高くつくという問題もあった。更に、A
lドラム表面の鏡面加工にも旋盤による機械加工法しか
使えず、加工コストが安価な押し出し成形による鏡面加
工法が使えないという問題もあった。
In the a-Si photoconductor, since the photoconductor layer is deposited at a high substrate temperature of about 270 ° C. by the plasma CVD method, the amount of deformation of the Al base drum after film formation is larger than that of other photoconductor materials. large. Therefore, the thickness of the Al substrate is usually required to be 2.5 to 8 mm in order to suppress this deformation, and the material cost of the substrate is higher than that of the OPC photosensitive member of 0.7 to 1.2 mm. there were. Furthermore, A
There is also a problem that only a machining method using a lathe can be used for mirror surface processing of a drum surface, and a mirror surface processing method by extrusion molding, which has a low processing cost, cannot be used.

【0018】一方、OPC感光体では感光体層の形成に
は真空装置を用いず浸漬法が採用されるため、膜厚の大
小はあまりコストに反映せず、厚膜化する場合も低コス
トで製作できる。しかし、OPC感光体は感光体層の硬
度が低いため記録紙等との接触やクリーニングプロセス
による傷が生じやすく、寿命がa−Si感光体の10分
の1程度と短い。そのため、電子写真装置での使用にお
いて感光体の交換頻度が高くなり、大量の産業廃棄物を
発生するという問題を引き起こしている。
On the other hand, in the OPC photosensitive member, since the dipping method is used for forming the photosensitive member layer without using a vacuum device, the size of the film thickness is not reflected so much in the cost, and even when the film thickness is increased, the cost is reduced. Can be manufactured. However, since the OPC photoconductor has a low hardness of the photoconductor layer, the OPC photoconductor is liable to be damaged by contact with a recording paper or the like and a cleaning process, and its life is about 1/10 of that of the a-Si photoconductor. Therefore, the frequency of exchanging the photoconductor becomes high when used in an electrophotographic apparatus, which causes a problem that a large amount of industrial waste is generated.

【0019】他方、Se系感光体では感光体層は真空蒸
着法で形成されるが、膜堆積速度が比較的速いため、厚
膜化する場合のコストはOPCよりは高いもののa−S
iより低くできる。しかし、Se系感光体は人体に有害
なAs等の毒性元素を含有しているため、環境問題や公
害問題の観点から次第に使用されなくなっている。
On the other hand, in the case of the Se type photoconductor, the photoconductor layer is formed by the vacuum deposition method, but since the film deposition rate is relatively high, the cost for thickening the film is higher than that of OPC, but it is aS.
It can be lower than i. However, since the Se-based photoconductor contains a toxic element such as As which is harmful to the human body, it is gradually used from the viewpoint of environmental problems and pollution problems.

【0020】従って、a−Si感光体のような長寿命で
無公害で地球環境に良い材料からなる感光体が低コスト
で製作できれば、市場にて最も受け入れられ易いことか
ら、a−Si感光体の低コスト化が望まれている。
Therefore, if a photoconductor made of a material having a long life, no pollution, and good for the global environment, such as an a-Si photoconductor, can be manufactured at a low cost, it is most easily accepted in the market. It is desired to reduce the cost.

【0021】また、前記のコロナ帯電を不要とする電子
写真記録法によれば、これに用いる感光体の膜厚は前述
のように数μm程度でよくなる。しかし、これにa−S
i系感光体材料を用いた場合には、以下の様な問題点が
あった。
Further, according to the electrophotographic recording method which does not require the corona charging, the film thickness of the photosensitive member used therefor is about several μm as described above. However, this
When the i-type photosensitive material is used, there are the following problems.

【0022】透光性支持体と感光体層との間に積層す
る透光性導電層により、透光性支持体側からの露光の一
部が吸収されたり反射されたりするため、感光体層への
到達露光量が減少し、感度低下の一つの要因となってい
た。
The light-transmissive conductive layer laminated between the light-transmissive support and the photoconductor layer absorbs or reflects a part of the exposure from the light-transmissive support side. The amount of exposure light reached was reduced, which was one of the causes of sensitivity deterioration.

【0023】a−Si感光体層は、透光性導電層上に
キャリア注入阻止層と光導電層とを順次積層する構成を
有するが、この注入阻止層によりと同様に露光の一部
が吸収されたり反射されたりするため、感光体層の中で
も光キャリアの生成を行なう光導電層への到達露光量が
減少し、感度低下の一つの要因となっていた。
The a-Si photosensitive layer has a structure in which a carrier injection blocking layer and a photoconductive layer are sequentially laminated on a translucent conductive layer. Like the injection blocking layer, a part of the exposure is absorbed. Since the light is reflected or reflected, the amount of exposure light reaching the photoconductive layer that generates photocarriers in the photoconductor layer is reduced, which is one of the causes of sensitivity deterioration.

【0024】前記やのような吸収による露光量の
減少は、特に露光波長が短いほど著しいため、露光波長
に対する感度のムラが大きくなり、光感度のパンクロ性
が要求されるカラー画像記録への適用において問題があ
った。
The decrease in the exposure amount due to the absorption as described above is remarkable especially as the exposure wavelength is short, so that the unevenness of the sensitivity with respect to the exposure wavelength becomes large, and it is applied to a color image recording in which the panchromaticity of the photosensitivity is required. There was a problem in.

【0025】この記録法の感光体では感光体層の膜厚
は薄くてよいが、支持体が透光性でなければならない。
この透光性支持体にはa−Siの成膜時に耐熱性が必要
なため一般にガラス管が用いられるが、引抜き成形状態
のガラス管の寸法精度は必要精度より低いため、所望の
寸法精度を得るためには後加工が必要である。ところが
ガラスはAlより硬く、旋盤での切削による鏡面加工が
できないため研磨加工に頼らねばならず、加工時間が長
くかかってコストが高くなるという問題があった。更
に、支持体と感光体層の間に透光性導電層が必要なた
め、その形成工程を別途必要とするという問題もあっ
た。従ってこれらがために、この記録法の感光体はカー
ルソン法の感光体よりコスト高になってしまうという問
題があった。
In the photoconductor of this recording method, the film thickness of the photoconductor layer may be thin, but the support must be transparent.
A glass tube is generally used for this translucent support because heat resistance is required during a-Si film formation. However, since the dimensional accuracy of the glass tube in the pultrusion molding state is lower than the required accuracy, a desired dimensional accuracy is required. Post-processing is required to obtain. However, since glass is harder than Al and cannot be mirror-finished by cutting with a lathe, it has to rely on polishing, which requires a long processing time and increases costs. Further, since a translucent conductive layer is required between the support and the photoreceptor layer, there is a problem that a separate forming step is required. Therefore, because of these, there is a problem that the cost of the photoconductor of this recording method is higher than that of the photoconductor of the Carlson method.

【0026】本発明は、上述の諸問題点に鑑みて本発明
者が鋭意研究を重ねた結果成されたものであって、a−
Si感光体を用いた電子写真方式の画像形成装置におい
て、薄膜の感光体層での画像形成を可能とし、感光体層
を厚膜化することで生じる暗減衰の増加や光感度の低下
あるいは解像力の低下を無くし、a−Si感光体の良好
な電子写真特性を活かした画像形成装置を提供すること
を目的とする。
The present invention has been made as a result of intensive studies conducted by the present inventors in view of the above-mentioned problems.
In an electrophotographic image forming apparatus using a Si photoconductor, it is possible to form an image on a thin photoconductor layer, and increase dark attenuation, decrease photosensitivity, or resolving power caused by thickening the photoconductor layer. It is an object of the present invention to provide an image forming apparatus which makes good use of the excellent electrophotographic characteristics of an a-Si photoconductor without eliminating the deterioration of

【0027】また本発明は、a−Si感光体を用いた電
子写真方式の画像形成装置において、薄膜の感光体層で
の画像形成を可能とし、それによりAl基体の変形量を
減少させることでAlの肉厚を薄くし、使用する基体お
よび成膜工程について材料と加工のコストを低減した画
像形成装置を提供することを目的とする。
Further, according to the present invention, in an electrophotographic image forming apparatus using an a-Si photoconductor, it is possible to form an image on a thin photoconductor layer, thereby reducing the deformation amount of the Al substrate. An object of the present invention is to provide an image forming apparatus in which the thickness of Al is reduced and the cost of materials and processing for the substrate used and the film forming process is reduced.

【0028】[0028]

【問題点を解決するための手段】本発明の画像形成装置
は、導電性基体上にアモルファスシリコン系感光体層を
形成した電子写真用感光体に、帯電手段、露光手段及び
現像手段並びに該導電性基体と該現像手段との間に現像
バイアス電圧を印加する手段を配設すると共に、前記感
光体層を膜厚が2乃至24μmの範囲内になるように下
記(イ)乃至(へ)から選ばれる積層上に絶縁体もしく
は半絶縁体の表面層を被覆した積層構成とし、且つ前記
現像手段に導電性磁性キャリアと絶縁性トナーとの組合
せもしくは1成分導電性磁性トナーから成る現像剤によ
り導電性磁気ブラシを形成して、該磁気ブラシと接触す
る前記感光体表面の露光領域と非露光領域の電位差を1
0乃至240Vの範囲内に設定せしめたことを特徴とす
るものである。 (イ)P型半導体層上にI型半導体層を積層する。 (ロ)P型半導体層上にN型半導体層を積層する。 (ハ)P型半導体層上にI型半導体層とN型半導体層を
順次積層する。 (ニ)N型半導体層上にI型半導体層を積層する。 (ホ)N型半導体層上にP型半導体層を積層する。 (ヘ)N型半導体層上にI型半導体層とP型半導体層を
順次積層する。
The image forming apparatus of the present invention comprises a charging means, an exposing means, a developing means, and a conductive means for an electrophotographic photoreceptor having an amorphous silicon type photoreceptor layer formed on a conductive substrate. A means for applying a developing bias voltage is provided between the photosensitive substrate and the developing means, and the photosensitive layer is formed from the following (a) to (e) so that the film thickness is within the range of 2 to 24 μm. A laminated structure in which a surface layer of an insulating material or a semi-insulating material is coated on a selected laminated material, and the developing means is electrically conductive by a combination of a conductive magnetic carrier and an insulating toner or a developer composed of a one-component conductive magnetic toner. A magnetic brush is formed, and the potential difference between the exposed area and the non-exposed area on the surface of the photoconductor that contacts the magnetic brush is set to 1
It is characterized in that it is set within the range of 0 to 240V. (A) An I-type semiconductor layer is laminated on the P-type semiconductor layer. (B) An N-type semiconductor layer is laminated on the P-type semiconductor layer. (C) An I-type semiconductor layer and an N-type semiconductor layer are sequentially stacked on the P-type semiconductor layer. (D) An I-type semiconductor layer is laminated on the N-type semiconductor layer. (E) A P-type semiconductor layer is laminated on the N-type semiconductor layer. (F) An I-type semiconductor layer and a P-type semiconductor layer are sequentially stacked on the N-type semiconductor layer.

【0029】また本発明の画像形成装置は、導電性基体
上に感光体層を形成した電子写真用感光体に、帯電手
段、露光手段及び現像手段並びに該導電性基体と該現像
手段との間に現像バイアス電圧を印加する手段を配設す
ると共に、前記感光体層の膜厚dと比誘電率εr との関
係を下記式のように設定し、且つ前記現像手段に導電性
磁性キャリアと絶縁性トナーとの組合せもしくは1成分
導電性磁性トナーから成る現像剤により導電性磁気ブラ
シを形成して、該磁気ブラシと接触する前記感光体表面
の露光領域と非露光領域の電位差を10乃至240Vの
範囲内に設定せしめたことを特徴とするものである。 d ≦ 24μm εr ≧ 2 d/εr ≦ 9
Further, the image forming apparatus of the present invention comprises an electrophotographic photosensitive member having a photosensitive layer formed on a conductive substrate, a charging unit, an exposing unit and a developing unit, and a space between the conductive substrate and the developing unit. Is provided with a means for applying a developing bias voltage, the relationship between the film thickness d of the photoconductor layer and the relative permittivity εr is set as shown in the following formula, and the developing means is insulated from the conductive magnetic carrier. A conductive magnetic brush is formed from a combination of a conductive toner or a developer composed of a one-component conductive magnetic toner, and the potential difference between the exposed region and the non-exposed region of the surface of the photoconductor contacting the magnetic brush is 10 to 240V. It is characterized by being set within the range. d ≤ 24 μm εr ≥ 2 d / εr ≤ 9

【0030】[0030]

【作用】以下、本発明を詳細に説明する。図1は、本発
明の感光体を用いた低電位現像法の電子写真方式による
画像形成装置1の概略構成図である。同図中、2は感光
体、3は帯電手段としてのコロナ帯電器、4は露光手
段、5は現像手段、6は感光体2と現像手段5との間に
現像バイアス電圧を印加するための電源、7は転写手段
としてのコロナ転写器、8は普通紙や各種加工紙やOH
Pシート等の記録紙、9はクリーナー、10は除電手段
としてのイレーサー、11は定着手段としての熱ローラ
ー定着器である。また12は感光体2の表面に形成され
たトナー像、13は転写後の残留トナーである。これ以
外に現像剤の回転手段と感光体2の回転手段とを設け
る。ここで帯電手段3には接触帯電法による帯電手段、
例えば導電性ゴムローラーを接触させる帯電ローラーや
導電性ブラシを接触させる帯電ブラシあるいは導電性磁
性粒子により形成した導電性磁気ブラシを接触させる粒
子帯電器等を用いてもよい。いずれの場合も低電位帯電
でよいため、帯電用電源の電圧を低くできる。またコロ
ナ帯電器を用いる場合も、帯電電位が低いためコロナハ
ウスの幅を狭めることができ、小型化が図れる。なお、
オゾン発生を抑制する観点からは接触帯電法を用いるこ
とが好ましい。また帯電極性は正負のいずれでもよく、
感光体の特性に応じて適宜選択される。露光手段4には
ここではLEDヘッドを用いたが、レーザ、液晶シャッ
タアレイ、ELヘッド、蛍光体ドットアレイヘッド、プ
ラズマイメージバー等を用いてもよい。また、複写機の
場合にはハロゲンランプ等の光源を用いた原稿からの反
射光を、レンズやミラーを組み合わせた光学系によって
感光体表面にスリット状に照射する。転写手段7にはこ
こではコロナ転写器を用いたが、転写用導電性ゴムロー
ラー等を用いてもよい。この転写極性は正負のいずれで
もよいが、通常は帯電と逆極性とする。クリーナー9に
はここではゴム製ブレードを用いたが、ゴム製ローラー
やブラシローラー等、あるいはこれらの組合せでもよ
い。除電手段としてのイレーサー10にはここではLE
Dアレイを用いて光照射を行なったが、蛍光灯やハロゲ
ンランプ、ELアレイその他の光源でもよく、あるいは
交流コロナ放電や交流電圧印加等の電気的除電方法でも
よい。定着手段11には熱ローラー定着を用いたが、フ
ラッシュ定着や圧力定着等でもよい。
The present invention will be described in detail below. FIG. 1 is a schematic configuration diagram of an electrophotographic image forming apparatus 1 using a photoconductor of the present invention as a low potential developing method. In the figure, 2 is a photoconductor, 3 is a corona charger as a charging unit, 4 is an exposing unit, 5 is a developing unit, and 6 is a developing bias voltage applied between the photoconductor 2 and the developing unit 5. A power source, 7 is a corona transfer device as transfer means, and 8 is plain paper or various processed papers or OH.
A recording sheet such as a P sheet, 9 is a cleaner, 10 is an eraser as a charge eliminating unit, and 11 is a heat roller fixing device as a fixing unit. Further, 12 is a toner image formed on the surface of the photoconductor 2, and 13 is residual toner after transfer. In addition to this, a rotating means for the developer and a rotating means for the photoconductor 2 are provided. Here, the charging means 3 is a charging means by a contact charging method,
For example, a charging roller that contacts a conductive rubber roller, a charging brush that contacts a conductive brush, or a particle charger that contacts a conductive magnetic brush formed of conductive magnetic particles may be used. In either case, since low potential charging is sufficient, the voltage of the charging power source can be lowered. Also, when a corona charger is used, the width of the corona house can be narrowed because the charging potential is low, and the size can be reduced. In addition,
From the viewpoint of suppressing ozone generation, it is preferable to use the contact charging method. The charging polarity may be positive or negative,
It is appropriately selected according to the characteristics of the photoconductor. Although the LED head is used here as the exposure means 4, a laser, a liquid crystal shutter array, an EL head, a phosphor dot array head, a plasma image bar, or the like may be used. Further, in the case of a copying machine, the light reflected from the original using a light source such as a halogen lamp is irradiated in a slit shape on the surface of the photoconductor by an optical system in which a lens and a mirror are combined. Although a corona transfer device is used here as the transfer means 7, a transfer conductive rubber roller or the like may be used. The transfer polarity may be either positive or negative, but normally it is opposite to that of charging. A rubber blade is used here as the cleaner 9, but a rubber roller, a brush roller, or the like, or a combination thereof may be used. Here, the eraser 10 as the charge eliminating means has LE
Although light irradiation was performed using the D array, a fluorescent lamp, a halogen lamp, an EL array, or other light source may be used, or an electric charge removal method such as AC corona discharge or AC voltage application may be used. Although the heat roller fixing is used as the fixing unit 11, flash fixing or pressure fixing may be used.

【0031】上記構成の画像形成装置1によれば、帯
電、露光、現像のプロセスを経て感光体表面上にトナー
像12が形成され、そのトナー像12が転写手段7によ
り転写材8に転写され、定着手段11によって定着され
て記録画像が得られる。一方、転写後の感光体表面は、
残留トナー13がクリーナー9によって除去され、表面
電位がイレーサー10によって消去されて、再び次の画
像形成プロセスに至り、繰り返して画像形成が行なわれ
る。
According to the image forming apparatus 1 having the above-mentioned structure, the toner image 12 is formed on the surface of the photoconductor through the processes of charging, exposing and developing, and the toner image 12 is transferred onto the transfer material 8 by the transfer means 7. Then, it is fixed by the fixing means 11 to obtain a recorded image. On the other hand, the surface of the photoconductor after transfer is
The residual toner 13 is removed by the cleaner 9, the surface potential is erased by the eraser 10, and the next image forming process is reached again, and the image is repeatedly formed.

【0032】ここで、画像形成装置1の現像部を図2の
要部拡大図により説明する。図2において、2は導電性
基体14に感光体層15が積層された感光体、5は現像
機である。現像機5は例えば8極の円柱状磁極ローラー
16とその外周に沿って配設された導電性スリーブ17
とから成り、更にトナー受け18に貯蔵された現像剤と
しての1成分導電性磁性トナーまたは導電性磁性キャリ
アと絶縁性トナーからなる2成分現像剤がスリーブ17
の外周へ配送され、磁気ブラシ19を形成する。またス
リーブ17と基体14の間に設けられた電源6により、
その両者17と14の間に感光体2の電位特性に応じて
+或は−の0〜240Vの電圧が印加される。なお図中
の矢印は、感光体2及び磁気ブラシ19の移動方向を示
す。
Now, the developing section of the image forming apparatus 1 will be described with reference to an enlarged view of the main part of FIG. In FIG. 2, reference numeral 2 is a photoconductor in which the photoconductor layer 15 is laminated on the conductive substrate 14, and 5 is a developing machine. The developing machine 5 includes, for example, a cylindrical magnetic pole roller 16 having eight poles and a conductive sleeve 17 arranged along the outer circumference thereof.
And a two-component developer composed of a one-component conductive magnetic toner or a conductive magnetic carrier and an insulating toner stored in a toner receiver 18 as a developer.
To form the magnetic brush 19. Further, by the power source 6 provided between the sleeve 17 and the base 14,
A voltage of + or −0 to 240 V depending on the potential characteristics of the photoconductor 2 is applied between the both 17 and 14. The arrow in the figure indicates the moving direction of the photoconductor 2 and the magnetic brush 19.

【0033】次に、本発明の画像形成装置1において行
なわれる低電位現像法の作用を、図3〜図5を用いて詳
述する。図3(a)は、従来の感光体と現像法による現
像部の模式図である。同図において20は導電性基体2
1に感光体層22を積層した感光体、23は現像機の導
電性スリーブ、24は絶縁性磁性キャリアと絶縁性トナ
ーの2成分現像剤からなる絶縁性磁気ブラシである。ま
た同図中においてd1 とd2 は各々感光体層と現像剤の
厚みを、ε1 とε2 は各々感光体層と現像剤の誘電率
を、ρ1 とρ2 は各々感光体層と現像剤の電気抵抗率
を、Vd およびV1 とV2 は各々現像電位および感光体
層と現像剤にかかる電位を表わす。この従来のカールソ
ン法による現像法では、絶縁性磁性キャリアと絶縁性ト
ナーからなる2成分現像剤あるいは1成分絶縁性磁性ト
ナーによる絶縁性の磁気ブラシ24を、感光体20表面
と導電性スリーブ23間で形成する。従って、現像部に
おける感光体と現像剤との等価回路は感光体の静電容量
1 と現像剤の静電容量C2 との直列接続と考えてよ
い。この等価回路を図3(b)に示す。同図に示すC0
はC1 とC2 との合成静電容量であり、+Qd および−
d は現像バイアス電圧によりC0 に誘導される正電荷
および負電荷である。このC0 は真空の誘電率をε
0 (=8.85×10-14(F/cm))として次式で
求められる。C1 =(ε1 /d1 )×ε0 、 C2
(ε2 /d2 )×ε0 より C0 =1/〔(1/C1 )+(1/C2 )〕 =ε0 /〔(d1 /ε1 )+(d2 /ε2 )〕 ・・・(1) 従来の現像法では感光体層と現像剤のいずれも絶縁体に
近く、ρ1 とρ2 はどちらも1×1013Ω・cm以上の
大きな値であり、図3(b)の等価回路においては無視
できる。これに対して、現像剤の電気抵抗率がより小さ
くなったり絶縁性から導電性へ移行するなどして無視で
きない場合は、導電性スリーブ近傍の現像剤の電気抵抗
率は現像剤の密度が高いため急激に小さくなり導電性に
なると考えてよいが、感光体近傍の現像剤の電気抵抗率
は現像剤の密度が小さいため高抵抗のままで変わらない
ため、この減少した高抵抗の現像剤の厚みを前記絶縁性
現像剤の厚みd2 とみなして上式で同様に求めてよい。
また、現像剤が導電性となった場合にはd2 を0とみな
せばよい。
Next, the operation of the low potential developing method performed in the image forming apparatus 1 of the present invention will be described in detail with reference to FIGS. FIG. 3A is a schematic view of a conventional photoconductor and a developing section by a developing method. In the figure, 20 is a conductive substrate 2.
1 is a photoreceptor having a photoreceptor layer 22 laminated thereon, 23 is a conductive sleeve of a developing machine, and 24 is an insulating magnetic brush composed of a two-component developer of an insulating magnetic carrier and an insulating toner. In the figure, d 1 and d 2 are the thicknesses of the photoconductor layer and the developer, ε 1 and ε 2 are the dielectric constants of the photoconductor layer and the developer, and ρ 1 and ρ 2 are the photoconductor layers. and the electrical resistivity of the developer, V d and V 1 and V 2 each represent potential applied to the development potential and the photosensitive layer developer. In the conventional developing method by the Carlson method, an insulating magnetic brush 24 made of a two-component developer composed of an insulating magnetic carrier and an insulating toner or a one-component insulating magnetic toner is provided between the surface of the photoconductor 20 and the conductive sleeve 23. To form. Therefore, the equivalent circuit of the photoconductor and the developer in the developing section can be considered to be a series connection of the capacitance C 1 of the photoconductor and the capacitance C 2 of the developer. This equivalent circuit is shown in FIG. C 0 shown in FIG.
Is the combined capacitance of C 1 and C 2 , + Q d and −
Q d is a positive charge and a negative charge induced in C 0 by the developing bias voltage. This C 0 is the dielectric constant of the vacuum ε
0 (= 8.85 × 10 −14 (F / cm)) is obtained by the following equation. C 1 = (ε 1 / d 1 ) × ε 0 , C 2 =
From (ε 2 / d 2 ) × ε 0 C 0 = 1 / [(1 / C 1 ) + (1 / C 2 )] = ε 0 / [(d 1 / ε 1 ) + (d 2 / ε 2 )] (1) In the conventional developing method, both the photoreceptor layer and the developer are close to the insulator, and both ρ 1 and ρ 2 are large values of 1 × 10 13 Ω · cm or more. This can be ignored in the equivalent circuit of 3 (b). On the other hand, when the electric resistivity of the developer becomes smaller and the electric conductivity of the developer cannot be ignored because it changes from insulating to conductive, the electric resistivity of the developer near the conductive sleeve has a high density of the developer. Therefore, it can be considered that the electric resistance of the developer near the photoconductor becomes high resistance because the density of the developer is small and does not change. The thickness may be regarded as the thickness d 2 of the insulating developer and may be similarly calculated by the above equation.
Further, when the developer becomes conductive, d 2 may be regarded as 0.

【0034】ところで、露光により表面電位が低下した
感光体の明部では感光体の表面電荷が存在しないため、
現像バイアス電圧Vd により、感光体層の導電性基体近
傍に−Qd の負電荷が、また現像剤の中でキャリアより
電気抵抗率の大きいトナーに+Qd の正電荷が、それぞ
れ次式に示す大きさで誘導される。 Qd =C0 ×Vd =ε0 ×Vd /〔(d1 /ε1 )+(d2 /ε2 )〕・・・(2) 感光体の明部においては、この感光体層の導電性基体近
傍の負電荷−Qd と現像剤中のトナーの正電荷+Qd
が引力を及ぼし合い、トナーが感光体表面へ引き付けら
れる力を受けて感光体表面上にトナー像が形成される。
この際、上式においてQd が大きくなるほど記録画像の
濃度は濃くなるが、同じ濃度を与えるQd を得るのに必
要な現像電位Vd は、同じ感光体層の項d1 /ε1 に対
して現像剤層の項d2 /ε2 が小さくなれば低くて済む
ことになる。このことが導電性現像剤を用いたときに低
電位現像を可能ならしめる原理であると考える。
By the way, since there is no surface charge of the photoconductor in the bright portion of the photoconductor whose surface potential is lowered by the exposure,
Due to the developing bias voltage V d , a negative charge of −Q d is generated in the vicinity of the conductive substrate of the photoconductor layer, and a positive charge of + Q d is added to the toner having a larger electric resistivity than the carrier in the developer. It is induced at the indicated size. In the light area of Q d = C 0 × V d = ε 0 × V d / [(d 1 / ε 1) + (d 2 / ε 2) ] (2) photosensitive member, the photosensitive layer The negative charge −Q d in the vicinity of the conductive substrate and the positive charge + Q d of the toner in the developer exert an attractive force on each other, and the toner attracts the surface of the photosensitive member to form a toner image on the surface of the photosensitive member. To be done.
At this time, the higher the Q d in the above formula, the higher the density of the recorded image, but the developing potential V d required to obtain the Q d giving the same density is the same as the term d 1 / ε 1 of the same photoreceptor layer. On the other hand, the smaller the term d 2 / ε 2 of the developer layer, the lower the requirement. This is considered to be the principle that enables low-potential development when a conductive developer is used.

【0035】例えば、a−Si感光体を例として記録濃
度O.D.=1.3を得るには、感光体層をε1 =1
2、d1 =40μmとし、絶縁性の現像剤層としてε2
=4、d2 =40μmとすると、Vd は800V必要で
あり、このときのQd は0.053μC/cm2 とな
る。これに対し、導電性の現像剤層としてε2 =0、d
2=0μmとすると、同じQd を得るのに必要なVd
200Vとなり、従来の厚膜の感光体を用いても、低電
位現像が可能となる。
For example, taking an a-Si photosensitive member as an example, the recording density O. D. = 1.3, the photoreceptor layer has ε 1 = 1
2, d 1 = 40 μm, and ε 2 as an insulating developer layer
= 4 and d 2 = 40 μm, V d needs to be 800 V, and Q d at this time is 0.053 μC / cm 2 . On the other hand, as a conductive developer layer, ε 2 = 0, d
When 2 = 0 μm, V d required to obtain the same Q d is 200 V, and low potential development is possible even with a conventional thick film photoreceptor.

【0036】次に、a−Si感光体を例にその層構成と
帯電及び現像時の作用を説明する。図4に従来の正帯電
a−Si感光体20の層構成を表わす断面図を示す。2
1はAl等から成る導電性基体であり、その上に例えば
P型にヘビードープされたa−Siから成るキャリア注
入阻止層25と、例えばI型あるいはライトドープのN
型a−Siから成る光導電層26と、例えばa−SiC
やa−SiN等のa−Si系高抵抗材料から成る表面層
27とが順次積層されている。
Next, the layer structure of the a-Si photoconductor and the action during charging and development will be described. FIG. 4 is a sectional view showing the layer structure of a conventional positively charged a-Si photoconductor 20. Two
Reference numeral 1 is a conductive substrate made of Al or the like, on which a carrier injection blocking layer 25 made of, for example, P-type heavy-doped a-Si, and an I-type or light-doped N-type.
Type a-Si photoconductive layer 26 and, for example, a-SiC
And a surface layer 27 made of an a-Si based high resistance material such as a-SiN.

【0037】このa−Si感光体20に従来の高電位の
正帯電が与えられると、P型にヘビードープされた膜厚
1〜5μm程度のキャリア注入阻止層25には、光導電
層26との接合部にかかる電界によって多数キャリアが
追い出される層領域である空乏層は出来ず、全層が半導
体層の性質を維持しており絶縁層と見なされることはな
い。一方、I型あるいはライトドープのN型である光導
電層26には、注入阻止層25に比べてキャリア密度が
小さいため空乏層28が形成される。この場合の光導電
層26は、絶縁層と見なされるほど高抵抗な層領域の空
乏層28と、半導体層の性質を維持している層領域とに
分けて考えられることになる。
When this conventional a-Si photoconductor 20 is positively charged at a high potential in the related art, the P-type heavy-doped carrier injection blocking layer 25 having a film thickness of about 1 to 5 μm forms a photoconductive layer 26. A depletion layer, which is a layer region in which majority carriers are driven out by the electric field applied to the junction, cannot be formed, and all the layers maintain the properties of the semiconductor layer and are not regarded as insulating layers. On the other hand, the depletion layer 28 is formed in the I-type or light-doped N-type photoconductive layer 26 because the carrier density is smaller than that of the injection blocking layer 25. In this case, the photoconductive layer 26 can be considered as being divided into a depletion layer 28 in a layer region having a resistance high enough to be regarded as an insulating layer and a layer region maintaining the properties of the semiconductor layer.

【0038】上記のような厚膜の感光体に対して低電位
現像を用いる場合には、感光体層の帯電電位が低いた
め、注入阻止層25と光導電層26との接合部にかかる
電界が小さく、多数キャリアが追い出される層領域も小
さくなるので、空乏層28の幅は無視できるようにな
る。即ち、膜厚30〜80μmの光導電層26には薄い
空乏層28ができるが、その厚みは高々0.1〜2μm
程度であり、従来の膜厚の光導電層26においては、ほ
ぼ絶縁層と見なされる高抵抗の空乏層28による耐電圧
及び帯電への寄与は極めて小さくなる。
When low-potential development is used for the above-mentioned thick-film photoreceptor, the electric potential applied to the junction between the injection blocking layer 25 and the photoconductive layer 26 is low because the charge potential of the photoreceptor layer is low. Is small and the layer region from which majority carriers are driven out is also small, so that the width of the depletion layer 28 can be ignored. That is, a thin depletion layer 28 is formed in the photoconductive layer 26 having a film thickness of 30 to 80 μm, but the thickness thereof is at most 0.1 to 2 μm.
In the photoconductive layer 26 having the conventional film thickness, the contribution of the high resistance depletion layer 28, which is regarded as an insulating layer, to the withstand voltage and charging is extremely small.

【0039】これに対して、本発明の光導電層のように
感光体層の総膜厚が2〜24μmである場合は、低電位
現像を用いて帯電電位を低くしても光導電層中に占める
空乏層の割合が大きくなって大部分が空乏層となるた
め、感光体層の見かけの抵抗率が高くなる。その結果、
感光体層の膜厚当たりの帯電や耐電圧が大きくなり、十
分な画像濃度が得られることとなる。
On the other hand, when the total thickness of the photoconductor layer is 2 to 24 μm like the photoconductive layer of the present invention, even if the charging potential is lowered by using low potential development, the photoconductive layer in the photoconductive layer is reduced. Since the ratio of the depletion layer to the whole becomes large and most of the depletion layer becomes the depletion layer, the apparent resistivity of the photoconductor layer increases. as a result,
The charge and withstand voltage per film thickness of the photoconductor layer increase, and a sufficient image density can be obtained.

【0040】このことをより詳しく説明するために、図
5(a)に本発明の感光体2と低電位現像法の現像部と
の模式図を、また図5(b)にその等価回路を示す。図
5(a)において2は導電性基体14上にキャリア注入
阻止層29と光導電層30と表面層31とからなる感光
体層15が積層された感光体、17は現像機の導電性ス
リーブ、19は1成分導電性磁性トナーまたは導電性磁
性キャリアと絶縁性トナーとからなる2成分現像剤によ
り形成された磁気ブラシを表わす。ここで、1成分導電
性磁性トナーまたは2成分現像剤には電気抵抗率が10
10Ω・cm以下、好適には108 Ω・cm以下、より好
適には102 〜105 Ω・cmのものが用いられる。ま
た、絶縁性トナーには電気抵抗率が1011Ω・cm以
上、好適には1013Ω・cm以上のものが用いられ、導
電性磁性キャリアとの混合により2成分現像剤としての
電気抵抗率を前記の値に調整する。そして図5(b)に
おいてC3 は図3(b)と同様な感光体の静電容量C1
と現像剤の静電容量C2 との合成静電容量であり、+Q
D 及び−QD は現像バイアス電圧VD によりC3 に誘導
される正電荷及び負電荷を表わす。
In order to explain this in more detail, FIG. 5 (a) is a schematic diagram of the photoconductor 2 of the present invention and the developing section of the low potential developing method, and FIG. 5 (b) is its equivalent circuit. Show. In FIG. 5A, reference numeral 2 is a photoconductor in which a photoconductor layer 15 including a carrier injection blocking layer 29, a photoconductive layer 30, and a surface layer 31 is laminated on a conductive substrate 14, and 17 is a conductive sleeve of a developing machine. , 19 represents a magnetic brush formed of a one-component conductive magnetic toner or a two-component developer composed of a conductive magnetic carrier and an insulating toner. Here, the electrical resistivity of the one-component conductive magnetic toner or the two-component developer is 10
It is 10 Ω · cm or less, preferably 10 8 Ω · cm or less, and more preferably 10 2 to 10 5 Ω · cm. As the insulating toner, one having an electric resistivity of 10 11 Ω · cm or more, preferably 10 13 Ω · cm or more is used, and the electric resistivity as a two-component developer is obtained by mixing with the conductive magnetic carrier. To the above value. In FIG. 5B, C 3 is the electrostatic capacitance C 1 of the photosensitive member similar to that in FIG. 3B.
+ Q is the combined electrostatic capacity of the electrostatic capacity C 2 of the developer and + Q
D and -Q D represent the positive and negative charges induced in C 3 by the developing bias voltage V D.

【0041】低電位現像剤は、図5(a)に示すように
導電性磁気ブラシ19を感光体2表面と導電性スリーブ
17間で穂立ち状に形成する。ここで、本発明の感光体
の電気抵抗率ρ1 は1×1013Ω・cm程度であり、現
像剤の電気抵抗率ρ2 は1×105 Ω・cm以下である
ので、現像剤のρ2 は無視できる。従って、両者2、1
7間が電気抵抗率ρ2 の低い導電性材料で占められたと
考えてよいため、図5(b)に示す等価回路のC3 は、
現像剤の容量C2 を無視して感光体の容量C1のみと見
なしてよい。即ち、C3 は次式で求められる。 C3 =C1 =ε0 ×(ε1 /d1 ) ・・・(3) そして、露光後の感光体の明部では表面電荷が存在しな
いため、現像バイアス電圧VD により、感光体層のキャ
リア注入阻止層29に−QD の負電荷が、また現像剤中
でキャリアより電気抵抗率の大きいトナーに+QD の正
電荷が誘導される。この時の両端の電位はVD となり、
D は次式で求められる。 QD =C3 ×VD =ε0 ×VD /(d1 /ε1 ) ・・・(4) 低電位現像法においても従来の現像法と同様に、このQ
D が大きい程記録画像の濃度は大きくなる。従って、低
電位現像法では感光体の厚みd1 は薄い程、また感光体
の比誘電率ε1 は大きい程、更に現像電圧即ち印加バイ
アス電圧VD は高い程、記録濃度は大きくなる。
As shown in FIG. 5A, the low-potential developer forms the conductive magnetic brush 19 between the surface of the photosensitive member 2 and the conductive sleeve 17 in a spike shape. Here, since the electric resistivity ρ 1 of the photoconductor of the present invention is about 1 × 10 13 Ω · cm, and the electric resistivity ρ 2 of the developer is 1 × 10 5 Ω · cm or less, ρ 2 can be ignored. Therefore, both 2, 1
Since it can be considered that the area between 7 is occupied by a conductive material having a low electrical resistivity ρ 2 , C 3 of the equivalent circuit shown in FIG.
The developer capacity C 2 may be ignored and regarded as only the photoreceptor capacity C 1 . That is, C 3 is calculated by the following equation. C 3 = C 1 = ε 0 × (ε 1 / d 1) ··· (3) Then, the surface charge in the bright portion of the photoreceptor after exposure does not exist, the developing bias voltage V D, the photosensitive layer Negative charge of -Q D is induced in the carrier injection blocking layer 29, and positive charge of + Q D is induced in the toner having a higher electric resistivity than the carrier in the developer. The potential of both ends at this time becomes V D ,
Q D is calculated by the following equation. Q D = C 3 × V D = ε 0 × V D / (d 1 / ε 1 ) ... (4) Even in the low potential developing method, this Q
The larger D is, the higher the density of the recorded image is. Therefore, in the low-potential developing method, the thinner the thickness d 1 of the photosensitive member, the larger the relative permittivity ε 1 of the photosensitive member, and the higher the developing voltage, that is, the applied bias voltage V D, the higher the recording density.

【0042】例えば記録濃度O.D.=1.3を得るに
は従来と同様にQD =0.053μC/cm2 が必要で
あるが、感光体のε1 =12、d1 =10μmとし、現
像剤のε2 =0、d2 =0μmと見なすと、必要なVD
は50Vと低くなる。
For example, the recording density O. D. Q D = 0.053 μC / cm 2 is required to obtain = 1.3, but ε 1 = 12, d 1 = 10 μm of the photoconductor, and ε 2 = 0, d of the developer. 2 = 0 μm, the required V D
Is as low as 50V.

【0043】こうして感光体明部においては、より低い
現像バイアス電圧VD でもって感光体層に負電荷−QD
が、また感光体表面近傍のトナーに正電荷+QD が誘導
され、両者が電気的な引力を及ぼし合い、トナーが感光
体表面に引き付けられる。
[0043] Thus in the photoreceptor bright portion, the negative charge on the photosensitive layer with a lower developing bias voltage V D -Q D
However, a positive charge + Q D is induced in the toner in the vicinity of the surface of the photoconductor, and the two exert an electric attractive force to attract the toner to the surface of the photoconductor.

【0044】一方、感光体暗部においては感光体に+Q
D にほぼ等しい正の表面電荷が存在して静電的なシール
ド作用をするため、前記+QD と−QD 間の引力は働か
ないので、トナーは感光体表面に引き付けられない。よ
って、感光体の明部と暗部とに対応して感光体表面にト
ナー像が形成される。
On the other hand, in the dark area of the photoconductor, + Q is applied to the photoconductor.
Since there is a positive surface charge almost equal to D and acts as an electrostatic shield, the attraction between + Q D and -Q D does not work, so the toner cannot be attracted to the surface of the photoconductor. Therefore, a toner image is formed on the surface of the photoconductor corresponding to the bright and dark parts of the photoconductor.

【0045】コロナ帯電を不要とする電子写真記録法に
おいては、帯電と露光と現像とがほぼ同時に同じ位置で
行なわれるため、トナー像の形成は、上記の様な比較的
単純な現像プロセスのみで行なわれる場合と異なる複雑
なプロセスによると考えられる。例えば、現像中にも帯
電や露光が、また帯電中にも露光や現像が、更にまた露
光中にも帯電や現像が相互に関係し合うと考えられる。
そのため画像形成プロセスの条件調整が困難であり、現
在まだ実用化には至っていない。
In the electrophotographic recording method that does not require corona charging, charging, exposure and development are performed at substantially the same position at the same time, so that the toner image is formed only by the relatively simple developing process as described above. It is thought to be due to a complicated process different from the one carried out. For example, it is considered that charging and exposure are related to each other during development, exposure and development are related to each other during charging, and charging and development are related to each other during exposure.
Therefore, it is difficult to adjust the conditions of the image forming process, and it has not yet been put to practical use.

【0046】なお、参考として図4(b)に、コロナ帯
電を不要とする電子写真記録法に使用されるa−Si系
感光体32の代表的な層構成を示す。同図において33
はガラス等からなる透光性基体、34はITO、SnO
2 等からなる透光性導電層であり、その上にキャリア注
入阻止層25、光導電層26、表面層27が順次積層さ
れる。この記録法では露光は感光体32の透光性基体3
3側いわゆる背面から行なわれ、カールソン法とは露光
の方向が反対となる。
For reference, FIG. 4B shows a typical layer structure of the a-Si photosensitive member 32 used in the electrophotographic recording method which does not require corona charging. 33 in the figure
Is a translucent substrate made of glass or the like, 34 is ITO, SnO
It is a translucent conductive layer composed of 2 or the like, and a carrier injection blocking layer 25, a photoconductive layer 26, and a surface layer 27 are sequentially laminated thereon. In this recording method, the exposure is performed by the transparent substrate 3 of the photoconductor 32.
The exposure is performed from the so-called back surface on the third side, and the exposure direction is opposite to that of the Carlson method.

【0047】ここで、本発明の低電位現像法における現
像時の明部電位と暗部電位とのコントラスト電位の形成
についても、言及しておく。本発明の低電位現像法では
感光体の帯電電位が低くてよいため、帯電プロセスでの
帯電幅(コロナハウスの開口幅または帯電ローラーや帯
電粒子の接触幅)は狭く、帯電時間は短く(0.1秒程
度またはそれ以下)設定され、その間で感光体は急速に
帯電される。この時、帯電器の供給電流は十分に大きく
感光体の暗抵抗に起因するリーク電流による帯電ロスは
無視できると考えてよい。例えば正帯電用感光体は前記
(イ)〜(ハ)の層構成であり、帯電時の電界は逆バイ
アスとなるためリーク電流は極めて小さい。同様に負帯
電用感光体は前記(ニ)〜(ヘ)の層構成であり、帯電
時のリーク電流は極めて小さい。従って帯電時の供給電
流の大部分は帯電に消費され、感光体層のリーク電流は
無視できる程小さい。
Here, reference will also be made to the formation of the contrast potential between the light portion potential and the dark portion potential during development in the low potential developing method of the present invention. In the low-potential developing method of the present invention, since the charging potential of the photoconductor may be low, the charging width in the charging process (the opening width of the corona house or the contact width of the charging roller or charged particles) is narrow, and the charging time is short (0 . 1 second or less), during which the photoreceptor is rapidly charged. At this time, it can be considered that the supply current of the charger is sufficiently large and the charging loss due to the leak current due to the dark resistance of the photoconductor can be ignored. For example, the photoconductor for positive charging has the layer structure of the above (a) to (c), and the electric field at the time of charging is reverse bias, so that the leak current is extremely small. Similarly, the negative charging photoconductor has the layer structure of (d) to (f), and the leak current during charging is extremely small. Therefore, most of the supplied current during charging is consumed for charging, and the leak current of the photoconductor layer is so small that it can be ignored.

【0048】この様な帯電時間が短かく十分な供給電流
があると仮定できる帯電プロセスにおける帯電初期から
帯電直後迄の感光体の等価モデルは、抵抗成分を無視し
て容量成分Cのみで考えてよい。この時の感光体表面の
帯電電荷量Q0 (C/cm2)は、初期帯電電位をV0
(V)、感光体層の比誘電率をεr 、真空の誘電率をε
0 (F/cm)、感光体層の膜厚をd(cm)として次
式で求められる。 Q0 =C×V0 =(εr ×ε0 /d)×V0 ・・・(5) ここで、低電位現像法で十分な記録濃度を得るには0.
1μC/cm2 程度のQ0 と50V程度のVD が必要で
あり、これらを上式に代入するとεr /d=2.26×
104 となる。a−Si感光体層ではεr は約12であ
るので、この時のdは約5×10-4cm=5μmとな
る。
Such an equivalent model of the photosensitive member from the initial charging to immediately after charging in the charging process, which can be assumed to have a short charging time and sufficient supply current, considers only the capacitance component C, ignoring the resistance component. Good. At this time, the amount of charge Q 0 (C / cm 2 ) on the surface of the photoconductor is set to V 0 as the initial charge potential.
(V), the relative permittivity of the photoconductor layer is ε r, and the permittivity of vacuum is ε
0 (F / cm) and the film thickness of the photoconductor layer are d (cm). Q 0 = C × V 0 = (εr × ε 0 / d) × V 0 (5) Here, in order to obtain a sufficient recording density by the low potential developing method,
Q 0 of about 1 μC / cm 2 and V D of about 50 V are required, and when these are substituted into the above equation, ε r /d=2.26×
It becomes 10 4 . Since εr is about 12 in the a-Si photosensitive layer, d at this time is about 5 × 10 −4 cm = 5 μm.

【0049】次いで、本発明の低電位現像法での帯電か
ら現像迄のプロセスにおける感光体層中の電荷分布につ
いて、図6(a)〜(c)により説明する。同図は感光
体2の層構成とそれに対する各プロセスにおける電荷分
布を示す断面図であり、感光体2は導電性基体14上に
キャリア注入阻止層29と光導電層30と表面層31と
が順次積層された構成である。
Next, the charge distribution in the photosensitive layer in the process from charging to development in the low potential developing method of the present invention will be described with reference to FIGS. 6 (a) to 6 (c). This figure is a cross-sectional view showing the layer structure of the photoconductor 2 and the charge distribution in each process corresponding thereto. The photoconductor 2 has a carrier injection blocking layer 29, a photoconductive layer 30, and a surface layer 31 on a conductive substrate 14. It has a structure in which layers are sequentially stacked.

【0050】図6(a)の帯電プロセスでは、帯電手段
3により感光体層表面に帯電電荷+Q0 が付与されて注
入阻止層29には逆極性の電荷−Q0 が誘起され、感光
体層は初期帯電電位V0 に帯電する。この電位差V
0 は、実際には感光体中の各層の抵抗値に応じて分配さ
れる。
In the charging process shown in FIG. 6A, the charging means 3 imparts a charged charge + Q 0 to the surface of the photoconductor layer to induce a charge of the opposite polarity −Q 0 in the injection blocking layer 29, and the photoconductor layer. Is charged to the initial charging potential V 0 . This potential difference V
0 is actually distributed according to the resistance value of each layer in the photoreceptor.

【0051】この帯電から図6(b)の露光を経て図6
(c)の現像プロセスに至る間に、実際のプロセスでは
0.1秒から3秒程度を要するため、非露光部の帯電電
荷と帯電電位は、感光体層中での暗中放電いわゆる暗減
衰によりそれぞれQ0 →Q0’→QS 及びV0 →V0
→VS へと減少する。このプロセスでは、感光体層の等
価回路として図7に示すように容量Cと抵抗Rとの並列
回路を考えることができる。これにより、t秒経過後に
暗減衰により低下する電位V=V0 −VS (V)は次式
で求められる。 V=V0 ×exp(−t/(R×C)) =V0 ×exp(−t/τ) ・・・(6) τ=R×C=R×(ε0 ×εr/d)=ρ×ε0 ×εr ・・・(7) ここでτは時定数であり、ρは感光体層の比抵抗率であ
る。
From this charging, the exposure of FIG.
In the actual process, it takes about 0.1 to 3 seconds to reach the developing process of (c). Therefore, the charged electric charge and the charged potential of the non-exposed portion are due to dark discharge in the photoconductor layer, that is, dark decay. Q 0 → Q 0 '→ Q S and V 0 → V 0 ', respectively
→ It decreases to V S. In this process, a parallel circuit of a capacitor C and a resistor R can be considered as an equivalent circuit of the photoconductor layer as shown in FIG. As a result, the potential V = V 0 −V S (V) that decreases due to dark decay after the elapse of t seconds is obtained by the following equation. V = V 0 × exp (−t / (R × C)) = V 0 × exp (−t / τ) (6) τ = R × C = R × (ε 0 × εr / d) = ρ × ε 0 × εr (7) Here, τ is a time constant, and ρ is a specific resistance of the photoreceptor layer.

【0052】上式において、現像電位VD を初期帯電電
位V0 の半分(VD /V0 =0.5)とし、帯電から現
像までの時間tを1秒とすると、a−Si感光体層の場
合はεrが約12であるので、ρ=1.4×1012(Ω
・cm)となる。
In the above equation, assuming that the development potential V D is half the initial charging potential V 0 (V D / V 0 = 0.5) and the time t from charging to development is 1 second, the a-Si photoconductor In the case of a layer, εr is about 12, so ρ = 1.4 × 10 12
・ Cm)

【0053】実際の実測値は計算値より小さく、ノンド
ープの水素化a−Si感光体層のρは1010〜1011
あるが、後述する感光体層の不純物ドーピングや合金化
もしくは層構成により、これより大きい値の1011〜1
13にすることができる。
The actual measured value is smaller than the calculated value, and ρ of the non-doped hydrogenated a-Si photosensitive layer is 10 10 to 10 11 , but due to impurity doping, alloying or layer constitution of the photosensitive layer described later. , A larger value than 10 11 -1
It can be 0 13 .

【0054】一方、露光部の光導電層30では図6
(b)に示すように露光Eによる光キャリア35が生成
され、等価回路としての抵抗Rは3桁程度小さくなるた
め、それにより帯電電荷+Q0 ’、−Q0 ’はほぼ完全
に明中放電して、Q0 ’はほぼ0に、V0 ’も数V以下
に減衰する。
On the other hand, in the photoconductive layer 30 of the exposed portion, as shown in FIG.
As shown in (b), the photocarrier 35 is generated by the exposure E, and the resistance R as an equivalent circuit is reduced by about three digits, so that the charged charges + Q 0 ′ and −Q 0 ′ are almost completely discharged in bright light. Then, Q 0 'decreases to almost 0 and V 0 ' decreases to several V or less.

【0055】そして、図6(c)の現像プロセスに至っ
た感光体2には、非露光部は電荷保持能があるために帯
電電荷+QS と帯電電位VS を保持し、一方、露光部は
帯電電荷ほぼ0で帯電電位が数V以下であるような表面
電荷分布即ち静電潜像が形成されている。この静電潜像
が上記の低電位現像法により現像される。
In the photosensitive member 2 which has undergone the developing process of FIG. 6C, the non-exposed portion holds the charged electric charge + Q S and the charged electric potential V S because the non-exposed portion has the electric charge holding ability. Has a surface charge distribution, that is, an electrostatic latent image in which the charge is almost 0 and the charge potential is several V or less. This electrostatic latent image is developed by the low potential developing method described above.

【0056】このように、暗部においては短い帯電時間
内で帯電器からの供給電流で急速に帯電させるので、感
光体層の抵抗成分は無視できて容量成分のみで近似でき
る。そして帯電から現像までの暗減衰プロセスにおいて
は、抵抗成分と容量成分との並列回路のモデルで近似さ
れ、抵抗成分が大きくなければ現像時に十分な表面電荷
を残せない。このために必要な感光体層の平均暗抵抗率
は、a−Si感光体の実測値からもわかるように1×1
9 Ω・cm以上となる。
As described above, in the dark part, the charging is rapidly performed by the current supplied from the charging device within a short charging time, so that the resistance component of the photoconductor layer can be ignored and can be approximated only by the capacitance component. In the dark decay process from charging to development, a model of a parallel circuit of a resistance component and a capacitance component is approximated. If the resistance component is not large, sufficient surface charge cannot be left during development. The average dark resistivity of the photoconductor layer required for this purpose is 1 × 1 as can be seen from the actually measured value of the a-Si photoconductor.
It becomes more than 09 Ω · cm.

【0057】一方、明部においては露光による光キャリ
アの生成によって感光体層の抵抗成分は十分小さくな
り、表面電荷の放電は現像開始までにほぼ完了すればよ
い。これより、明部における感光体層の平均明抵抗率は
少なくとも前記平均暗抵抗率より小さく、1×109 Ω
・cm以下でなければならない。
On the other hand, in the bright area, the resistance component of the photosensitive layer is sufficiently reduced by the generation of photocarriers by the exposure, and the discharge of the surface charge may be almost completed by the start of the development. Therefore, the average bright resistivity of the photoconductor layer in the bright portion is at least smaller than the average dark resistivity, and is 1 × 10 9 Ω.
・ It must be less than or equal to cm.

【0058】本発明の低電位現像に適用される感光体層
はこれらの条件を満たさなければならないが、低電位現
像においては、明抵抗率が従来の現像法での1×1010
Ω・cm程度より小さい値の材料まで適用可能となる。
これは、低い電位で使用されるため感光体層の帯電容量
に余裕がありその分暗抵抗が小さくて良いこと、また膜
厚が薄いため熱キャリアによる暗減衰が小さいことから
もその分暗抵抗が小さくて良いこと、更に膜厚が薄くて
低電位で使用されるため感度が良いことから明抵抗の許
容幅が広いこと等によると考えられる。
The photoreceptor layer applied to the low potential development of the present invention must satisfy these conditions, but in the low potential development, the bright resistivity is 1 × 10 10 in the conventional developing method.
It can be applied to materials with a value smaller than about Ω · cm.
Since this is used at a low potential, the charge capacity of the photoconductor layer has a margin and the dark resistance may be small accordingly. Also, since the film thickness is thin, the dark attenuation due to the heat carrier is small, and therefore the dark resistance is small. Is considered to be small, and further, since the film thickness is thin and the sensitivity is good because it is used at a low potential, the allowable range of bright resistance is wide.

【0059】[0059]

【実施例】以下、実施例により本発明を具体的に説明す
る。本発明の感光体2の層構成は、図5(a)に示すよ
うに導電性基体14上に感光体層15が積層されて成
る。導電性基体14には、Al、銅、鉄、SUS等の金
属や絶縁性支持体の表面を導電処理したもの、例えばガ
ラスや樹脂類の表面に金属膜や導電膜、半導体膜等を形
成したものが、ドラム状やベルト状、シート状等の形状
で用いられる。基体にAlドラムを用いた場合、従来の
a−Siドラムに比べてa−Si光導電層の膜厚が薄く
基体にかかる応力が小さくなるので、Al材の肉厚は薄
くできる。
EXAMPLES The present invention will be specifically described below with reference to examples. The layer structure of the photoreceptor 2 of the present invention is formed by laminating a photoreceptor layer 15 on a conductive substrate 14 as shown in FIG. The conductive substrate 14 is made of a metal such as Al, copper, iron, or SUS, or the surface of an insulating support is subjected to a conductive treatment, for example, a metal film, a conductive film, or a semiconductor film is formed on the surface of glass or resin. The object is used in a drum shape, a belt shape, a sheet shape, or the like. When an Al drum is used as the substrate, the thickness of the a-Si photoconductive layer is smaller and the stress applied to the substrate is smaller than that of the conventional a-Si drum, so the thickness of the Al material can be reduced.

【0060】感光体層15はキャリア注入阻止層29と
光導電層30と表面層31とからなり、これら各層の製
作には図8に示すグロー放電分解装置を用いた。図8は
グロー放電分解装置36の概略構成図であり、37は円
筒状の金属製反応炉、38は感光体ドラム装着用の筒状
の導電性基体支持体、39は基体加熱用ヒーター、40
はa−Si成膜に用いられる筒状のグロー放電用電極板
であり、電極板40にはガス噴出口41が形成されてい
る。42は反応炉内部へガスを導入するためのガス導入
口、43はグロー放電に晒された後の残余ガスを排気す
るためのガス排出口、44は基体支持体38と電極板4
0の間でグロー放電を発生させるための高周波電源であ
る。また反応炉37は円筒体37aと、蓋体37bと、
底体37cとからなり、そして円筒体37aと蓋体37
bの間、並びに円筒体37aと底体37cの間にはそれ
ぞれ絶縁性のリング37dを設けており、これによって
高周波電源44の出力端子は円筒体37aを介してグロ
ー放電用電極板40と導通しており、接地端子は蓋体3
7bや底体37cを介して基体支持体38と導通し接地
されている。また蓋体37bの上に付設したモーター4
5により回転軸46を介して基体支持体38が回転駆動
され、これに伴って基体14も回転する。
The photoreceptor layer 15 comprises a carrier injection blocking layer 29, a photoconductive layer 30 and a surface layer 31, and the glow discharge decomposition apparatus shown in FIG. 8 was used to manufacture these layers. FIG. 8 is a schematic configuration diagram of the glow discharge decomposition apparatus 36, 37 is a cylindrical metal reaction furnace, 38 is a cylindrical conductive substrate support for mounting the photosensitive drum, 39 is a heater for heating the substrate, and 40 is a heater.
Is a cylindrical glow discharge electrode plate used for a-Si film formation, and a gas ejection port 41 is formed in the electrode plate 40. 42 is a gas inlet for introducing gas into the reaction furnace, 43 is a gas outlet for exhausting residual gas after being exposed to glow discharge, 44 is the substrate support 38 and the electrode plate 4.
It is a high frequency power supply for generating glow discharge between zero. Further, the reaction furnace 37 includes a cylindrical body 37a, a lid body 37b,
A bottom body 37c, and a cylindrical body 37a and a lid body 37.
b and between the cylindrical body 37a and the bottom body 37c, insulating rings 37d are respectively provided, so that the output terminal of the high frequency power supply 44 is electrically connected to the glow discharge electrode plate 40 through the cylindrical body 37a. The ground terminal is the lid 3
The base support 38 is electrically connected to the ground via the base 7b and the bottom 37c. Also, the motor 4 attached on the lid 37b
5, the base support 38 is rotationally driven via the rotary shaft 46, and the base 14 also rotates accordingly.

【0061】このグロー放電分解装置36を用いてa−
Si感光体ドラムを作製するには、a−Si成膜用のド
ラム状基体14を基体支持体38に装着し、a−Si生
成用ガスをガス導入口42より反応炉内部へ導入し、こ
のガスをガス噴出口41を介して基体表面へ向けて噴出
し、更にヒーター39によって基体を所要の温度に設定
すると共に、高周波電源44より高周波電力を供給して
基体支持体38と電極板40との間でグロー放電を発生
させ、更に基体14を回転させることによって基体14
の周面にa−Si膜を成膜する。
Using this glow discharge decomposition device 36, a-
To manufacture a Si photosensitive drum, the drum-shaped substrate 14 for a-Si film formation is mounted on the substrate support 38, and a-Si forming gas is introduced into the reaction furnace through the gas introduction port 42. Gas is ejected toward the surface of the substrate through the gas ejection port 41, the substrate is set to a required temperature by the heater 39, and high frequency power is supplied from the high frequency power supply 44 to the substrate support 38 and the electrode plate 40. A glow discharge is generated between the base 14 and the base 14, and the base 14 is rotated.
An a-Si film is formed on the peripheral surface of.

【0062】本発明の光導電層30を構成する材料には
特にa−Si系光導電層を用いるのがよく、このa−S
i系層は上記グロー放電分解法(プラズマCVD法)の
他に例えば反応スパッタリング法、ECRマイクロ波C
VD法、光CVD法、触媒CVD法、反応蒸着法等によ
り形成し、その形成に当たってダングリングボンド終端
用に水素(H)やハロゲン元素を1〜40原子%含有さ
せる。また、この層30の暗導電率や光導電率等の電気
的特性、光学的バンドギャップ等について所望の特性を
得るために、周期律表第IIIa族元素(以下、IIIa族元素
と略す)や周期律表第Va 族元素(以下、Va 族元素と
略す)を含有させたり、カーボン(C)、窒素(N)、
酸素(O)、ゲルマニウム(Ge)等を含有させるとよ
い。
As the material forming the photoconductive layer 30 of the present invention, it is particularly preferable to use an a-Si based photoconductive layer.
In addition to the glow discharge decomposition method (plasma CVD method), the i-based layer is formed by, for example, reactive sputtering method, ECR microwave C
It is formed by a VD method, a photo CVD method, a catalytic CVD method, a reactive vapor deposition method, or the like, and hydrogen (H) or a halogen element is contained at 1 to 40 atomic% for dangling bond termination in forming the same. Further, in order to obtain desired characteristics with respect to electrical characteristics such as dark conductivity and photoconductivity of the layer 30, optical bandgap, etc., a Group IIIa element (hereinafter abbreviated as IIIa element) of the periodic table or A periodic group Va element (hereinafter abbreviated as Va group element) is contained, carbon (C), nitrogen (N),
It is preferable to contain oxygen (O), germanium (Ge), or the like.

【0063】中でも、アモルファスシリコンカーバイド
(以下、a−SiCと略記する)を光導電層30に用い
る場合には、Si1-x x のx値を0<x≦0.5、好
適には0.05≦x≦0.45の範囲に設定するとよ
く、この範囲であればa−Si層よりも高抵抗となりか
つ良好なキャリアの走行が確保できるという点で望まし
い。IIIa族元素やVa族元素としては、それぞれB元素
やP元素が共有結合性に優れて半導体特性を敏感に変え
得る点で、その上優れた光感度が得られるという点で望
ましい。IIIa族元素やVa族元素を含まないノンドープ
のa−Siは弱いN型半導体であるが、これにIIIa族元
素を微量添加してI型としたり、その添加量を増やして
P型として用いるとよく、またVa族元素を添加するこ
とによりN型として用いるのもよい。またこの光導電層
は単一の導電型を有する単層構造だけでなく、感光体の
帯電極性に応じて、I型層とN型層を順次積層したもの
或いはI型層とP型層を順次積層したものとしてもよ
く、それにより注入阻止層との間で形成される空乏層の
広がりを増し、低電位現像に好適な感光体とすることが
できる。そして本発明におけるa−Si系光導電層30
の厚みは0.5〜24μm、好適には2〜19μm、よ
り好適には2〜15μmにするのが望ましい。
In particular, when amorphous silicon carbide (hereinafter abbreviated as a-SiC) is used for the photoconductive layer 30, the x value of Si 1-x C x is 0 <x ≦ 0.5, preferably. It is preferable to set it in the range of 0.05 ≦ x ≦ 0.45, and this range is desirable in that the resistance becomes higher than that of the a-Si layer and good carrier traveling can be secured. As the group IIIa element and the group Va element, the B element and the P element are desirable because they have excellent covalent bond properties and can sensitively change semiconductor characteristics, and in addition, excellent photosensitivity can be obtained. Non-doped a-Si containing no IIIa group element or Va group element is a weak N-type semiconductor, but if a small amount of IIIa group element is added to make it I-type, or if its amount is increased to be used as P-type. Alternatively, it may be used as an N type by adding a Va group element. Further, this photoconductive layer is not limited to a single layer structure having a single conductivity type, but may be one in which an I-type layer and an N-type layer are sequentially stacked or an I-type layer and a P-type layer depending on the charging polarity of the photoconductor. They may be sequentially laminated, whereby the depletion layer formed between the depletion layer and the injection blocking layer can be expanded and the photoreceptor can be made suitable for low potential development. Then, the a-Si-based photoconductive layer 30 in the present invention
The thickness is preferably 0.5 to 24 μm, preferably 2 to 19 μm, and more preferably 2 to 15 μm.

【0064】導電性基体14と光導電層30との間に
は、キャリア注入阻止層29を設ける。この注入阻止層
29はa−Si層またはa−SiC層のいずれでもよ
く、導電性基体14との密着性向上のためにOまたはN
等の元素を含有させるとよい。また、注入阻止層29と
光導電層30を共にa−SiC層により形成した場合
は、光導電層30に比べてC量を多くするとよい。
A carrier injection blocking layer 29 is provided between the conductive substrate 14 and the photoconductive layer 30. The injection blocking layer 29 may be either an a-Si layer or an a-SiC layer, and is O or N in order to improve the adhesion with the conductive substrate 14.
It is advisable to include such elements as. Further, when both the injection blocking layer 29 and the photoconductive layer 30 are formed of an a-SiC layer, the C content may be larger than that of the photoconductive layer 30.

【0065】また注入阻止層29には、導電性基体14
から光導電層30へのキャリア(帯電電荷と逆極性の電
荷)の注入を阻止するために不純物元素を含有させる。
即ち、負電荷キャリアの注入を阻止するためにはIIIa族
元素を1〜10,000ppm、好適には50〜5,000 ppm含
有させるとよく、一方、正電荷キャリアの注入を阻止す
るにはVa族元素を5,000 ppm以下、好適には50〜3,
000 ppm含有させるとよい。これらの元素は層厚方向
にわたって勾配を設けてもよく、その場合には層全体の
平均含有量が上記範囲内であればよい。そして、注入阻
止層29にIIIa族元素を含有した場合は正極性の帯電及
び現像バイアスと負極性の転写が用いられ、他方、ノン
ドープもしくはVa族元素を含有した場合は負極性の帯
電及び現像バイアスと正極性の転写が用いられる。
The injection blocking layer 29 is formed of the conductive substrate 14
An impurity element is contained in order to prevent injection of carriers (charges having a polarity opposite to the charge) from the photoconductive layer 30 into the photoconductive layer 30.
That is, in order to prevent the injection of negative charge carriers, the group IIIa element may be contained in an amount of 1 to 10,000 ppm, preferably 50 to 5,000 ppm, while in order to prevent the injection of positive charge carriers, a group Va element may be added. 5,000 ppm or less, preferably 50 to 3,
It is recommended to contain 000 ppm. These elements may be provided with a gradient in the layer thickness direction, in which case the average content of the entire layer should be within the above range. When the injection blocking layer 29 contains a group IIIa element, positive charging and developing bias and negative transfer are used, while when it is non-doped or contains a group Va element, negative charging and developing bias. And positive transfer is used.

【0066】上記IIIa族元素やVa族元素としてはそれ
ぞれB元素やP元素が前述の理由と同様の点で望まし
い。また上記注入阻止層29の厚みは0.01〜12μ
m、好適には0.1〜5μm、より好適には0.1〜2
μmの範囲がよく、これにより必要な注入阻止能が確保
し易くしかも残留電位の上昇を抑制できる。
As the IIIa group element and the Va group element, the B element and the P element are preferable for the same reason as described above. The thickness of the injection blocking layer 29 is 0.01 to 12 μm.
m, preferably 0.1 to 5 μm, more preferably 0.1 to 2
The range of μm is good, which makes it easy to secure the required injection blocking ability and suppress the rise of the residual potential.

【0067】また上記注入阻止層29にO及び/又はN
及び/又はCを各元素合計含有量が0.01〜30原子
%の範囲内で含有させた場合、導電性基体14からのキ
ャリアの注入を更に一層阻止することができると共に、
基体14に対する密着力も一段と高めることができる。
Further, O and / or N is added to the injection blocking layer 29.
And / or C when the total content of each element is contained in the range of 0.01 to 30 atomic%, it is possible to further prevent injection of carriers from the conductive substrate 14, and
The adhesion to the substrate 14 can be further enhanced.

【0068】光導電層30の上には、絶縁体または半絶
縁体の材料から成る表面層31が積層される。表面層3
1は、帯電電荷をトラップしかつ電荷が膜面方向で移動
して露光により形成された電荷パターンが崩れないよう
に、絶縁性層または高抵抗表面層が好ましく、比抵抗率
が静電気保持に必要な1×1012Ω・cm以上の材料を
用いるのがよい。
A surface layer 31 made of an insulating or semi-insulating material is laminated on the photoconductive layer 30. Surface layer 3
1 is preferably an insulating layer or a high resistance surface layer so as to trap the charged electric charge and prevent the electric charge from moving in the film surface direction and destroying the electric charge pattern formed by the exposure, and the specific resistance is necessary for holding static electricity. It is preferable to use a material of 1 × 10 12 Ω · cm or more.

【0069】こうした表面層には、特にa−SiCやa
−SiN、a−SiO、a−SiCO、a−SiNO等
のa−Si系高抵抗表面層を用いるのがよく、これらは
a−Si系光導電層と同様の薄膜形成手段により形成す
る。表面層31と光導電層30共にa−SiCを用いた
場合には、光導電層に含まれるC量に比べて表面層のC
を多く含有させ、表面層31におけるC量はSi1-x
x のx値で0.3≦x≦1.0、好適には0.5≦x≦
0.95の範囲がよい。これらa−Si系高抵抗表面層
にも、ダングリングボンド終端用にHやハロゲン元素を
含有させる。更に電気的特性の調整用としてIIIa族元素
やVa族元素を含有させてもよい。
Such a surface layer includes, in particular, a-SiC or a
It is preferable to use an a-Si high resistance surface layer such as -SiN, a-SiO, a-SiCO, and a-SiNO, and these are formed by the same thin film forming means as the a-Si photoconductive layer. When a-SiC is used for both the surface layer 31 and the photoconductive layer 30, the C content of the surface layer is higher than the C content of the photoconductive layer.
Is included in the surface layer 31, and the amount of C in the surface layer 31 is Si 1-x C
x value of x is 0.3 ≦ x ≦ 1.0, preferably 0.5 ≦ x ≦
A range of 0.95 is good. These a-Si based high resistance surface layers also contain H or a halogen element for dangling bond termination. Further, a group IIIa element or a group Va element may be contained for adjusting electric characteristics.

【0070】また上記の他にも、a−Cやa−B、a−
BN、a−BC、Al2 3 等の無機絶縁性材料や、シ
リコーン樹脂やポリカーボネート、ポリスチレン、ポリ
エステル、ポリブチレン、ポリエチレン、フッ素樹脂、
ポリシラン、ポリイミド樹脂、ポリウレタン、アクリル
樹脂等の樹脂系絶縁性材料を用いることもできる。
In addition to the above, aC, aB, a-
Inorganic insulating materials such as BN, a-BC and Al 2 O 3 , silicone resin, polycarbonate, polystyrene, polyester, polybutylene, polyethylene, fluororesin,
A resin-based insulating material such as polysilane, polyimide resin, polyurethane or acrylic resin can also be used.

【0071】表面層31の厚みは0.05〜10μm、
好適には0.1〜5μmにすればよく、0.05μm未
満の場合には、この層で十分な絶縁耐圧の向上や帯電電
荷を効果的にトラップして静電潜像の保持に寄与させる
ことが出来ず、また繰り返し使用した場合、摩耗により
寿命も劣る。10μmを越えた場合には、精細な電荷パ
ターンを形成するに当たってこの層中で電界が膜面方向
に広がりを生じ、これにより解像力の低下をきたし、十
分な解像度が得られない。また、表面に残留する電荷が
多くなって残留電位が高くなるため、画像濃度の低下や
バックのかぶり、あるいは繰り返し使用における画像濃
度の変化等の問題が生じる。
The surface layer 31 has a thickness of 0.05 to 10 μm,
The thickness is preferably 0.1 to 5 μm, and when it is less than 0.05 μm, this layer contributes to the improvement of sufficient withstand voltage and the effective trapping of electrostatic charge to retain an electrostatic latent image. Cannot be used, and when it is used repeatedly, it has a short life due to wear. When the thickness exceeds 10 μm, an electric field spreads in the film surface direction in this layer in forming a fine charge pattern, thereby lowering the resolution and failing to obtain sufficient resolution. Further, since the electric charges remaining on the surface increase and the residual potential increases, problems such as a decrease in image density, back fog, and a change in image density during repeated use occur.

【0072】また、表面層31と光導電層30の間に
は、変化層を設けるのがよい。この変化層は、表面層と
光導電層の中間の元素組成で構成され、層厚方向に組成
の勾配を有するのがよい。このような変化層を設けるこ
とにより、光導電層30で生成された光キャリアの表面
層31表面への走行がスムーズになる。この変化層の厚
みは、0.01〜1μm、好適には0.05〜0.5μ
m程度がよい。
A change layer may be provided between the surface layer 31 and the photoconductive layer 30. It is preferable that the change layer has an elemental composition intermediate between the surface layer and the photoconductive layer and has a composition gradient in the layer thickness direction. By providing such a change layer, the travel of the photocarriers generated in the photoconductive layer 30 to the surface of the surface layer 31 becomes smooth. The thickness of this change layer is 0.01 to 1 μm, preferably 0.05 to 0.5 μm.
m is good.

【0073】そして、上記の構成により形成される感光
体層全体の膜厚は2〜24μm、好適には2〜19μm
の範囲内とされる。
The film thickness of the entire photoconductor layer formed by the above structure is 2 to 24 μm, preferably 2 to 19 μm.
Within the range of.

【0074】また本発明のa−Si感光体の感光体層は
3層構成を基本としているので、感光体層全体の膜厚d
と比誘電率εr の比は各層の膜厚と比誘電率の比の合成
となる。これは感光体層、表面層、光導電層、注入阻止
層各々の膜厚をdT 、da 、db 、dc 、比誘電率をε
T 、εa 、εb 、εc として次式で求められる。 (dT /εT )=(da /εa )+(db /εb )+(dc /εc )・・(8) 本発明のa−Si感光体では表面層の比誘電率は他の層
とは若干異なるが、総膜厚が比較的薄いことと光導電層
と注入阻止層の比誘電率がほぼ同じであることから、全
体の比誘電率εT (=εr )を光導電層の比誘電率εb
で代表させ、膜厚dを各層の膜厚の合計dT で代表して
もよい。即ち、比誘電率をεa 、εb =εc =1
2、膜厚をda =0.5μm、db =8.0μm、dc
=0.5μmとした時には、εT =εb =12、dT
9.0(μm)と近似してよく、dT /εT (=d/ε
r )=0.8となる。
Since the photosensitive layer of the a-Si photosensitive member of the present invention is basically composed of three layers, the film thickness d of the entire photosensitive layer is
The ratio of the relative permittivity εr and the relative permittivity εr is a combination of the ratio of the film thickness of each layer and the relative permittivity. The thicknesses of the photoconductor layer, surface layer, photoconductive layer and injection blocking layer are d T , d a , d b and d c , and the relative permittivity is ε.
T , ε a , ε b , and ε c are obtained by the following equation. (D T / ε T ) = (d a / ε a ) + (d b / ε b ) + (d c / ε c ) ... (8) In the a-Si photoconductor of the present invention, the relative dielectric constant of the surface layer is The relative permittivity is slightly different from the other layers, but because the total film thickness is relatively thin and the relative permittivities of the photoconductive layer and injection blocking layer are almost the same, the overall relative permittivity ε T (= ε r) Is the relative permittivity of the photoconductive layer ε b
The film thickness d may be represented by the total film thickness d T of each layer. That is, the relative permittivity is ε a = 4 , ε b = ε c = 1
2. The film thickness is d a = 0.5 μm, d b = 8.0 μm, d c
= 0.5 μm, ε T = ε b = 12, d T =
It may be approximated to 9.0 (μm), and d T / ε T (= d / ε
r) = 0.8.

【0075】このd/εr は9以下であることが望まし
く、好適には0.05〜8、より好適には0.05〜7
がよい。d/εr が9を越えると、前記低電位現像法の
式(4)よりトナーに誘導される電荷+QD が小さくな
り、十分な記録濃度が得られない。このことは、膜厚d
が大きくなりトナーへの引力が小さくなることからもわ
かる。またd/εr が0.05より小さくなると、例え
ば比誘電率εr が12と比較的大きいa−Siでは膜厚
が0.6μm以下と薄くなるなど、感光体層の膜厚が帯
電に耐えるには不十分となるので好ましくない。
This d / εr is preferably 9 or less, preferably 0.05 to 8, and more preferably 0.05 to 7.
Is good. When d / εr exceeds 9, the charge + Q D induced in the toner becomes small according to the formula (4) of the low potential developing method, and a sufficient recording density cannot be obtained. This means that the film thickness d
It can also be seen from the fact that the value becomes large and the attractive force to the toner becomes small. When d / εr is less than 0.05, for example, the film thickness of the photoconductor layer is as thin as 0.6 μm or less for a-Si having a relatively large relative permittivity εr of 12, which makes the photoconductor layer resistant to charging. Is not preferable because it becomes insufficient.

【0076】このd/εr が0.05〜9の範囲にあれ
ば、感光体層の構成材料としては従来公知の各種光導電
材料が使用できる。感光体層の総膜厚が9μmの場合を
例にとると、d/εr はSe系感光体(εr は約7)で
は約1.3、OPC感光体(εr は約3〜4)では約2
〜3となり、いずれも十分な記録濃度が得られる。
When this d / εr is in the range of 0.05 to 9, various conventionally known photoconductive materials can be used as the constituent material of the photosensitive layer. Taking the case where the total thickness of the photoconductor layer is 9 μm as an example, d / εr is about 1.3 for the Se type photoconductor (εr is about 7) and about d for the OPC photoconductor (εr is about 3 to 4). Two
.About.3, and a sufficient recording density is obtained in each case.

【0077】本発明の低電位現像法では、式(4)より
判るように、比誘電率εr は大きい程トナーへの誘導電
荷が大きくなりより高い記録濃度が得られる。逆にεr
が小さくなると高い記録濃度が得られにくくその分だけ
現像バイアス電圧VD を大きくしなければならないが、
本発明では感光体の低い表面電位と低い現像バイアス電
圧を特徴としているので、εr にも下限値があると考え
られる。本発明者の確認したところによれば現存する最
も比誘電率の小さい誘電体(四フッ化エチレン:εr =
2)でも低電位現像が可能であったことから、比誘電率
εr はεr ≧2の範囲が好ましい。
In the low potential developing method of the present invention, as can be seen from equation (4), the larger the relative permittivity εr, the larger the induced charge to the toner and the higher the recording density can be obtained. Conversely, εr
If the value becomes smaller, it is difficult to obtain a high recording density, and the developing bias voltage V D must be increased accordingly.
Since the present invention is characterized by a low surface potential of the photoconductor and a low developing bias voltage, it is considered that εr also has a lower limit value. According to the inventor's confirmation, the existing dielectric material having the smallest relative dielectric constant (tetrafluoroethylene: εr =
Since low potential development was possible even in 2), the relative permittivity εr is preferably in the range of εr ≧ 2.

【0078】また、総膜厚が24μmのOPC感光体に
おいても、記録濃度が約1.2とやや低下したものの十
分な値が得られ、実用レベルであった。しかし、膜厚が
これより厚くなると本発明の低電位現像法では記録濃度
の低下や解像力の低下が見られ、電子写真特性の向上も
認められなくなった。
Also, with the OPC photosensitive member having a total film thickness of 24 μm, the recording density was slightly reduced to about 1.2, but a sufficient value was obtained, which was at a practical level. However, when the film thickness becomes thicker than this, a decrease in recording density and a decrease in resolution are observed in the low potential developing method of the present invention, and no improvement in electrophotographic characteristics is observed.

【0079】このことは式(4)からも説明できる。即
ち、総膜厚が24μmより厚くなるとトナーへの誘導電
荷QD が小さくなるために記録濃度が低下し、高画質記
録に必要とされる記録濃度O.D.を1.3以上に確保
できなくなる。更に現像電界も小さくなりトナーへ作用
する電気的引力が弱くなるため明部と暗部の境界領域に
おいて画像がぼけてしまい、高画質記録に必要な解像力
も得られ難くなる。
This can be explained from the equation (4). That is, when the total film thickness is more than 24 μm, the induced charge Q D to the toner becomes small, so that the recording density decreases, and the recording density O.I. D. Cannot be secured to 1.3 or higher. Further, the developing electric field is also reduced and the electric attraction acting on the toner is weakened, so that the image is blurred in the boundary region between the bright portion and the dark portion, and it is difficult to obtain the resolving power required for high quality recording.

【0080】一方、総膜厚が2μm以下になると、前述
の様な複数層を積層した構成の感光体の形成が困難とな
ると共に感光体層中に形成される空乏層の厚みが不足す
る。更に波長685nm以上の長波長光による露光の大
半が感光体層を透過してしまうようになり、長波長感度
が急激に低下し、パンクロ性も損なうようになる。
On the other hand, if the total film thickness is 2 μm or less, it becomes difficult to form a photoconductor having a structure in which a plurality of layers as described above are laminated, and the thickness of the depletion layer formed in the photoconductor layer becomes insufficient. Further, most of the exposure with long-wavelength light having a wavelength of 685 nm or more is transmitted through the photoconductor layer, the long-wavelength sensitivity is drastically lowered, and panchromaticity is also impaired.

【0081】レーザビームプリンタでは波長が780n
m前後の半導体レーザが多用されており、特にa−Si
感光体ではこの様な長波長光に対する感度がほぼ膜厚に
比例するため、総膜厚が2μm以下ではもはや感光体表
面に静電潜像を形成することができなくなってしまう。
In the laser beam printer, the wavelength is 780n
Semiconductor lasers of around m are often used, especially a-Si
In the photoconductor, such sensitivity to long-wavelength light is almost proportional to the film thickness, so that if the total film thickness is 2 μm or less, an electrostatic latent image can no longer be formed on the photoconductor surface.

【0082】本発明の感光体層の光導電材料としては、
a−Si系の他に、各種OPC系やa−Se系を始めと
するアモルファスカルコゲナイド系や無機結晶・樹脂分
散系の材料を用いてもよい。
As the photoconductive material of the photoreceptor layer of the present invention,
In addition to the a-Si-based material, various chalcogenide-based materials such as various OPC-based and a-Se-based materials and inorganic crystal / resin-dispersed materials may be used.

【0083】このようなOPC系材料には、色素増感型
光導電体や電荷移動増感型光導電体、機能分離型光導電
体などがある。色素増感型光導電体には、光導電材料で
あるポリビニルカルバゾール(PVCz)等に増感色素
であるペンゾピリリウム色素等を分散したものがある。
電荷移動増感型光導電体には、PVCzに酸類や酸無水
物、キノンポリシアン化合物、2,4,7-トリニトロ-9- フ
ルオレノン(TNF)等のルイス酸を加えたものがあ
る。
Such OPC materials include dye-sensitized photoconductors, charge transfer sensitized photoconductors, and function-separated photoconductors. As the dye-sensitized photoconductor, there is one in which a sensitizing dye such as penzopyrylium dye is dispersed in a photoconductive material such as polyvinylcarbazole (PVCz).
Examples of the charge transfer sensitized photoconductor include PVCz to which acids, acid anhydrides, quinone polycyan compounds, and Lewis acids such as 2,4,7-trinitro-9-fluorenone (TNF) are added.

【0084】また、機能分離型光導電体には単層型光導
電体と積層型光導電体があり、単層型光導電体にはCu−
PC−ヒドラゾン光導電体や共晶錯体光導電体がある。積
層型光導電体は、キャリア発生剤(CGM)とキャリア
輸送剤(CTM)の組合せからなる。CGMにはペリレ
ン系や共晶錯体、アゾ系、フタロシアニン系光導電性材
料等、或いはa−Se系やa−Si系光導電性材料等が
用いられる。CTMにはホール移動剤と電子移動剤があ
り、帯電極性や層構成に応じていずれかが用いられ、P
VCz系やピラゾリン系、ヒドラゾン系、アミン系、フ
ェニルメタン系、オキサジアゾール系光導電性材料等が
ある。
The function-separated photoconductor includes a single-layer photoconductor and a laminated photoconductor, and the single-layer photoconductor includes Cu--
There are PC-hydrazone photoconductors and eutectic complex photoconductors. The laminated photoconductor comprises a combination of a carrier generator (CGM) and a carrier transport agent (CTM). For CGM, a perylene-based or eutectic complex, an azo-based or a phthalocyanine-based photoconductive material, or an a-Se-based or a-Si-based photoconductive material is used. CTM has a hole transfer agent and an electron transfer agent, and one of them is used depending on the charging polarity and the layer structure.
There are VCz-based, pyrazoline-based, hydrazone-based, amine-based, phenylmethane-based, oxadiazole-based photoconductive materials and the like.

【0085】アモルファスカルコゲナイド系には、a−
Seやa−SeTe、a−SeAs、a−Se2 As3
等があり、無機結晶・樹脂分散系には、ZnO−樹脂系
やCdS−樹脂系等がある。また近年、ポリシラン系光
導電性材料例えばポリメチルフェニルシランやテトラ
(m-トリル)-m- ジアミノベンゼン等の光導電性材料開
発が盛んであり、これらが高いホール移動度を示すこと
からCTMとして利用されてきている。
For the amorphous chalcogenide system, a-
Se and a-SeTe, a-SeAs, a-Se 2 As 3
And the like, and the inorganic crystal / resin dispersion system includes ZnO-resin system and CdS-resin system. In recent years, photoconductive materials such as polysilane-based photoconductive materials such as polymethylphenylsilane and tetra (m-tolyl) -m-diaminobenzene have been actively developed. Since these materials show high hole mobility, they are used as CTM. It has been used.

【0086】〔例1〕図8に示すグロ−放電分解装置3
6に、導電性基体14として直径30mm、長さ260
mm、肉厚1.5mmの鏡面仕上げを施したAlドラム
をセットし、表1の条件で、図9(a)に示す様に注入
阻止層29、光導電層30、表面層31を順次積層して
正帯電P+ N型a−Si感光体Aを作製した。この感光
体Aの注入阻止層29はヘビードープされているため帯
電による空乏層はできないが、光導電層30中には帯電
によって空乏層領域47ができる。
[Example 1] Glow discharge decomposition apparatus 3 shown in FIG.
6, the conductive base 14 has a diameter of 30 mm and a length of 260
mm, thickness 1.5 mm, mirror-finished Al drum was set, and under the conditions shown in Table 1, an injection blocking layer 29, a photoconductive layer 30, and a surface layer 31 were sequentially laminated as shown in FIG. Then, a positively charged P + N type a-Si photoconductor A was produced. Since the injection blocking layer 29 of the photoconductor A is heavily doped, a depletion layer cannot be formed by charging, but a depletion layer region 47 is formed in the photoconductive layer 30 by charging.

【0087】[0087]

【表1】 [Table 1]

【0088】また感光体Aの成膜条件を表2の条件に変
え、他は同様にして図9(b)に示す様にライトドープ
のP型注入阻止層29、ライトドープのN型光導電層3
0、表面層31を順次積層して正帯電PN型a−Si感
光体Bを作製した。この感光体Bの注入阻止層29はラ
イトドープのため帯電により空乏層領域48ができ、光
導電層30中には帯電によって感光体Aと同様に空乏層
領域47ができる。
Further, the film forming conditions of the photoconductor A were changed to those shown in Table 2, and the other conditions were the same as shown in FIG. 9B, and the light-doped P-type injection blocking layer 29 and the light-doped N-type photoconductive layer were used. Layer 3
0 and the surface layer 31 were sequentially laminated to produce a positively charged PN type a-Si photoconductor B. Since the injection blocking layer 29 of the photoconductor B is lightly doped, a depletion layer region 48 is formed by charging, and a depletion layer region 47 is formed in the photoconductive layer 30 by charging similarly to the photoconductor A.

【0089】[0089]

【表2】 [Table 2]

【0090】更にまた、感光体Aの成膜条件を表3の条
件に変え、他は同様にして図9(b)に示す様にN型注
入阻止層29、P型光導電層30、表面層31を順次積
層して負帯電NP型a−Si感光体Cを作製した。この
感光体Cは感光体AおよびBとは帯電極性が逆である
が、感光体としての作用効果及び特性はそれらと同様で
ある。この感光体Cも感光体Bと同様に、注入阻止層2
9がライトドープのため帯電によって空乏層領域48が
でき、光導電層30中には帯電によって感光体Aと同様
に空乏層領域47ができる。
Furthermore, the film forming conditions of the photoconductor A were changed to those shown in Table 3, and the other conditions were similarly changed to the N type injection blocking layer 29, the P type photoconductive layer 30, the surface as shown in FIG. 9B. The layers 31 were sequentially laminated to prepare a negatively charged NP type a-Si photoconductor C. The photoconductor C has a charging polarity opposite to that of the photoconductors A and B, but has the same operation effect and characteristics as the photoconductor. Like the photoconductor B, the photoconductor C also has the injection blocking layer 2
Since 9 is lightly doped, a depletion layer region 48 is formed by charging, and a depletion layer region 47 is formed in the photoconductive layer 30 by charging, like the photoconductor A.

【0091】[0091]

【表3】 [Table 3]

【0092】次に、図8に示すグロ−放電分解装置36
に、導電性基体21として直径30mm、長さ260m
m、肉厚2.5mmの鏡面仕上げを施したAlドラムを
セットし、表4の条件で、図4(a)に示す様に注入阻
止層25、光導電層26、表面層27を順次積層して正
帯電の従来のa−Si感光体Dを作製した。
Next, the glow discharge decomposition device 36 shown in FIG.
In addition, the conductive substrate 21 has a diameter of 30 mm and a length of 260 m.
m, and an Al drum having a wall thickness of 2.5 mm and having a mirror finish is set, and an injection blocking layer 25, a photoconductive layer 26, and a surface layer 27 are sequentially laminated under the conditions of Table 4 as shown in FIG. Then, a conventional positively charged a-Si photoconductor D was produced.

【0093】[0093]

【表4】 [Table 4]

【0094】また同様に、透光性基体33として直径3
0mm、長さ260mm、肉厚1.8mmのガラスドラ
ムの表面に活性反応蒸着法により0.1μmの厚みでI
TO透明導電層34を形成したものをセットし、表5の
条件で、図4(b)に示す様に注入阻止層25、光導電
層26、表面層27を順次積層して、正帯電の従来のコ
ロナ帯電を不要とする電子写真記録法用a−Si感光体
Eを作製した。
Similarly, the translucent substrate 33 has a diameter of 3
A glass drum having a thickness of 0 mm, a length of 260 mm, and a wall thickness of 1.8 mm was formed with a thickness of 0.1 μm by an active reaction vapor deposition method.
After setting the TO transparent conductive layer 34 formed, the injection blocking layer 25, the photoconductive layer 26, and the surface layer 27 are sequentially laminated under the conditions of Table 5 as shown in FIG. An a-Si photoconductor E for electrophotographic recording method, which does not require conventional corona charging, was produced.

【0095】[0095]

【表5】 [Table 5]

【0096】この様に作製した感光体A〜Eの感光体特
性を、以下の方法により測定した。初期帯電電位として
はドラムの表面電荷量が0.2μC/cm2 の時の暗部
表面電位を測定し、帯電率としてこの初期帯電電位を総
膜厚で割ったものを求めた。そして暗減衰は暗中にて
0.5秒後の表面電位を初期帯電電位で割ったものを%
表示して求めた。また耐電圧はV−I特性(V:帯電電
位、I:ドラム流れ込み電流)を測定し、VとIの対応
が直線関係からはずれ始める(比例しなくなる)時のV
を総膜厚で割ったものとした。次に半減感度として表面
電位が露光前の2分の1になるのに必要な露光エネルギ
ーを測定し、感度E1/2 で表わした。また露光感度とし
て表面電位が露光前の15分の1になるのに必要な露光
エネルギーを測定し、感度E1/15で表わした。そして感
度比E1/15/E1/2 を求め、E−V特性(E:露光エネ
ルギー、V:表面電位)における曲線の裾の切れの良さ
を示した。更に残留電位は感度E1/15に必要な露光エネ
ルギーの10倍の露光エネルギーを与えた時の表面電位
として測定した。また画像濃度は画像部の光学濃度で、
かぶりは背景(白地)部の光学濃度で、解像力は600
dpi(ドット/インチ)の解像力をそれぞれ評価し、
合格レベルを○で、やや劣るレベルを△で、不合格レベ
ルを×として示した。
The photoconductor characteristics of the photoconductors A to E thus produced were measured by the following methods. As the initial charging potential, the dark part surface potential when the surface charge amount of the drum was 0.2 μC / cm 2 was measured, and the charging rate was calculated by dividing this initial charging potential by the total film thickness. The dark decay is% of the surface potential after 0.5 seconds in the dark divided by the initial charging potential.
Displayed and asked. As for the withstand voltage, the V-I characteristic (V: charging potential, I: current flowing into the drum) is measured, and the V when the correspondence between V and I begins to deviate from the linear relationship (becomes no longer proportional).
Was divided by the total film thickness. Next, the exposure energy required to reduce the surface potential to one half of that before exposure was measured as half- sensitivity, and was expressed as sensitivity E 1/2 . Further, as the exposure sensitivity, the exposure energy required for the surface potential to be 1/15 of that before the exposure was measured and expressed as the sensitivity E 1/15 . Then, the sensitivity ratio E 1/15 / E 1/2 was obtained, and the goodness of the tail of the curve in the EV characteristic (E: exposure energy, V: surface potential) was shown. Further, the residual potential was measured as the surface potential when an exposure energy 10 times the exposure energy required for the sensitivity E 1/15 was applied. The image density is the optical density of the image part,
The fog is the optical density of the background (white background), and the resolution is 600.
The resolution of dpi (dot / inch) is evaluated,
The pass level is shown as ◯, the slightly inferior level is shown as Δ, and the fail level is shown as x.

【0097】上記各感光体の構成と、各特性の測定結果
を表6に示す。この表6より判る様に、かくして得られ
た本発明の感光体A、B、Cによれば、その電子写真特
性において、単位膜厚当りの帯電率、暗減衰率、耐電
圧、感度、残留電位のいずれもが、従来の感光体Dおよ
びEよりも優れた特性を示した。特に本発明の感光体
A、B、Cにおいては、光導電層が薄膜であることと、
低電位で使用する感光体であることから、一定量の電位
低下に必要な露光エネルギーが、従来の感光体に比べて
2分の1以下で済む。
Table 6 shows the constitution of each of the above photoconductors and the measurement results of each characteristic. As can be seen from Table 6, according to the photoconductors A, B and C of the present invention thus obtained, in their electrophotographic characteristics, the charging rate per unit film thickness, dark decay rate, withstand voltage, sensitivity, residual All of the potentials showed better characteristics than the conventional photoconductors D and E. Particularly, in the photoconductors A, B and C of the present invention, the photoconductive layer is a thin film,
Since the photoconductor is used at a low electric potential, the exposure energy required for lowering the electric potential by a certain amount is 1/2 or less as compared with the conventional photoconductor.

【0098】また表6には、各感光体について画像評価
を行なった際の条件として、現像剤種別と露光方向およ
び現像電位も併せて示した。これらはいずれもほぼ同様
の画像濃度や解像力を有し、良好な画像が得られたが、
本発明の感光体A、B、Cでは低電位現像法との組合せ
により、従来の感光体Dよりもはるかに低い現像電位
で、また感光体Eの現像法よりも簡便なプロセスで良好
な画像が得られており、薄膜化した感光体層で優れた画
像品質を有する画像形成装置が提供できた。
Table 6 also shows the types of developers, the exposure directions, and the development potentials as the conditions when the image evaluation was performed on each photosensitive member. All of these had almost the same image density and resolution, and good images were obtained.
In combination with the low-potential developing method, the photoreceptors A, B, and C of the present invention have a much lower developing potential than the conventional photoreceptor D, and a simpler process than the developing method of the photoreceptor E to obtain a good image. Thus, an image forming apparatus having excellent image quality with a thinned photoreceptor layer can be provided.

【0099】[0099]

【表6】 [Table 6]

【0100】また図10に示すグラフに、感光体Aと感
光体Dの波長感度特性の比較を示す。このグラフは、横
軸は露光波長を、縦軸は感度E1/15の逆数(1/
1/15)を表わす。1/E1/15は値が大きいほど光感度
が高いことを示す。同図より、本発明の感光体の光感度
特性が露光波長に対してより平坦であることが解る。こ
の様に露光波長に対する感度が従来の感光体より均一で
あることから、感光体Aを使用してカラー画像の形成を
行なったところ、色再現性に優れたカラー画像の記録特
性が得られた。
The graph shown in FIG. 10 shows a comparison of the wavelength sensitivity characteristics of the photoconductor A and the photoconductor D. In this graph, the horizontal axis is the exposure wavelength and the vertical axis is the reciprocal of the sensitivity E 1/15 (1 /
E 1/15 ). 1 / E 1/15 indicates that the higher the value, the higher the photosensitivity. From the figure, it can be seen that the photosensitivity characteristic of the photoconductor of the present invention is flatter with respect to the exposure wavelength. As described above, since the sensitivity to the exposure wavelength is more uniform than that of the conventional photoconductor, when a color image was formed using the photoconductor A, a color image recording property excellent in color reproducibility was obtained. .

【0101】本発明の感光体において、感光体Aの注入
阻止層29はヘビ−ドープのP+ 型半導体で構成され、
光導電性をほとんど有していない。このようなヘビ−ド
ープのP+ 型半導体で形成された膜厚1〜5μm程度の
層には帯電時にも空乏層はほとんど出来ず、全層が半導
体層であって絶縁層の性質は有さない。これに対し、光
導電層30は例えばライトドープのN型あるいはI型半
導体で構成され、この層30は帯電時に逆バイアス状態
となり、注入阻止層29との接合部に生じるキャリアの
出払い領域である空乏層領域47と残りの半導体層領域
に分けて考えられ、膜厚1〜20μmの光導電層30に
は1〜5μmの空乏層領域47ができる。この空乏層領
域47はキャリアの出払い領域となるため、高抵抗とな
って絶縁体に近い性質を示す。そして、光導電層30中
で絶縁体に近い性質を示す膜厚の占める割合が大きいた
め、空乏層領域47の存在による耐電圧及び帯電への寄
与は極めて大きくなる。
In the photoreceptor of the present invention, the injection blocking layer 29 of the photoreceptor A is composed of a heavy-doped P + type semiconductor,
It has almost no photoconductivity. A depletion layer is hardly formed during charging in a layer formed of such a snake-doped P + type semiconductor and having a film thickness of about 1 to 5 μm, and all layers are semiconductor layers and have an insulating layer property. Absent. On the other hand, the photoconductive layer 30 is made of, for example, a light-doped N-type or I-type semiconductor, and this layer 30 is in a reverse bias state at the time of charging, and is a carrier payout region generated at the junction with the injection blocking layer 29. Considering the depletion layer region 47 and the remaining semiconductor layer region separately, the depletion layer region 47 of 1 to 5 μm is formed in the photoconductive layer 30 of 1 to 20 μm in thickness. Since the depletion layer region 47 serves as a carrier payout region, the depletion layer region 47 has a high resistance and a property close to that of an insulator. Since the proportion of the film thickness exhibiting a property close to that of an insulator in the photoconductive layer 30 is large, the existence of the depletion layer region 47 contributes significantly to the withstand voltage and charging.

【0102】他方、感光体Aと逆のN+ P型感光体の場
合は、負帯電で使用されて逆バイアス状態となり、注入
阻止層29との接合部のP型あるいはI型半導体の光導
電層30に、キャリアの出払い領域である空乏層領域4
7を生じる。
On the other hand, in the case of the N + P type photoconductor opposite to the photoconductor A, it is used by negative charging and is in the reverse bias state, and the photoconductivity of the P type or I type semiconductor at the junction with the injection blocking layer 29 is obtained. In the layer 30, a depletion layer region 4 which is a carrier payout region
Yields 7.

【0103】これらの空乏層領域47の厚みは、帯電電
位により変化するが、露光により電位が低下した領域に
おいては厚みが薄くなって光導電層30の膜抵抗が小さ
くなり、感度特性を良好にする作用を有する。
The thickness of these depletion layer regions 47 varies depending on the charging potential, but in the region where the potential is lowered by exposure, the thickness becomes thin and the film resistance of the photoconductive layer 30 becomes small, so that the sensitivity characteristics are improved. Has the effect of

【0104】またこれらの空乏層領域47の厚みは、光
導電層30への価電子制御用不純物のドーピング濃度に
よっても変化する。a−Siの場合ノンドープでは5μ
m程度であり、200 ppm以上のドーピングでほぼ0μ
mになる。更にこの厚みは、他の副構成元素例えばC、
N、O等の添加によっても変化し、通常はこれらの添加
により価電子制御用不純物ドーピングの効果が弱くなる
が、その際には不純物ドーピング量を増加すれば同じ結
果が得られるようになる。
The thickness of these depletion layer regions 47 also changes depending on the doping concentration of the valence electron controlling impurities into the photoconductive layer 30. In the case of a-Si, it is 5μ when non-doped
m, which is almost 0μ with doping of 200 ppm or more.
It becomes m. Further, this thickness is determined by other sub constituent elements such as C,
It also changes with the addition of N, O and the like, and the addition of these usually weakens the effect of impurity doping for valence electron control. In that case, the same result can be obtained by increasing the impurity doping amount.

【0105】また感光体Aの感光体層は3層構成であ
り、感光体層全体の膜厚と比誘電率の比は感光体層、表
面層、光導電層、キャリア注入阻止層それぞれの膜厚を
T 、da 、db 、dc 、比誘電率をεT 、εa
εb 、εc とすると、表面層の比誘電率は他の層と若干
異なるが、膜厚が比較的薄いことと光導電層と注入阻止
層の比誘電率がほぼ同じであることから、全体の比誘電
率を光導電層の比誘電率で代表させ、膜厚を各層の膜厚
の合計で代表してもよい。即ちεT =εb =12、dT
=9.0(μm)と近似してよく、dT /εT =0.8
となる。
The photoconductor layer of the photoconductor A has a three-layer structure, and the film thickness of the entire photoconductor layer and the relative dielectric constant are the same as those of the photoconductor layer, the surface layer, the photoconductive layer, and the carrier injection blocking layer. The thickness is d T , d a , d b , d c , and the relative permittivity is ε T , ε a ,
If ε b and ε c , the relative permittivity of the surface layer is slightly different from the other layers, but since the film thickness is relatively thin and the relative permittivity of the photoconductive layer and the injection blocking layer are almost the same, The relative dielectric constant of the whole may be represented by the relative dielectric constant of the photoconductive layer, and the film thickness may be represented by the total of the film thicknesses of the layers. That is, ε T = ε b = 12, d T
= 9.0 (μm), d T / ε T = 0.8
Becomes

【0106】このdT /εT =0.8である感光体Aに
よれば、帯電率、暗減衰率、耐電圧、感度、残留電位の
いずれも従来の感光体Dより優れた特性を示した。この
ように高感度となるのは、感光体層が薄膜であることと
低電位で使用できることから、一定量の電位低下に必要
な露光エネルギーが従来の感光体の2分の1以下で済む
ことによると考えられる。
According to the photoconductor A having d T / ε T = 0.8, all of the charging rate, the dark decay rate, the withstand voltage, the sensitivity, and the residual potential are superior to those of the conventional photoconductor D. It was Such high sensitivity is because the photoconductor layer is a thin film and can be used at a low potential, so that the exposure energy required for lowering the potential by a certain amount is half or less than that of the conventional photoconductor. It is believed that

【0107】感光体Bでは、注入阻止層29はライトド
ープのP型半導体で構成されているので、この層29に
も図9(b)に示すように空乏層領域48を形成するこ
とができる。この空乏層領域48は注入阻止層29の中
で絶縁層としての性質を示す。同じく、ライトドープの
N型半導体で構成された膜厚1〜20μmの光導電層3
0には、1〜5μmの空乏層領域47が出来る。従って
この感光体Bでは、感光体Aより空乏層領域が増えた
分、帯電率や暗減衰率や耐電圧が改善された。
In the photoconductor B, since the injection blocking layer 29 is composed of a light-doped P-type semiconductor, the depletion layer region 48 can be formed in this layer 29 as shown in FIG. 9B. . The depletion layer region 48 has a property as an insulating layer in the injection blocking layer 29. Similarly, a photoconductive layer 3 made of a light-doped N-type semiconductor and having a film thickness of 1 to 20 μm.
At 0, a depletion layer region 47 of 1 to 5 μm is formed. Therefore, in the photoconductor B, the charge ratio, the dark decay rate, and the withstand voltage were improved by the amount of the depletion layer region increased compared to the photoconductor A.

【0108】感光体の導電性基体を基準電位例えば接地
電位とした時に感光体表面を正極性に帯電させた場合、
現像バイアス電圧も同じ正極性がよく、転写極性は逆の
負極性とすることで効率よくトナーが記録紙に転写され
る。逆に感光体表面を負極性に帯電させた場合は、現像
バイアス電圧も同じく負極性がよく、転写極性は逆の負
極性とすることで効率よくトナーが記録紙に転写され
る。
When the surface of the photoconductor is positively charged when the conductive substrate of the photoconductor is set to the reference potential, for example, the ground potential,
The developing bias voltage also has the same positive polarity and the transfer polarity is the opposite negative polarity, so that the toner is efficiently transferred to the recording paper. Conversely, when the surface of the photoconductor is negatively charged, the developing bias voltage also has a good negative polarity, and by setting the transfer polarity to the negative polarity, the toner is efficiently transferred to the recording paper.

【0109】このため感光体には、帯電時には少ない漏
れ電流と高い帯電能が要求され、一方、転写時には大き
い流れ込み電流と帯電しない特性が必要となる。特に転
写時には紙質の変化(厚み、紙幅、抵抗、環境変化等)
により感光体への電圧や電流といった負荷が変動しやす
いため、感光体のインピーダンスが十分に低いことが望
ましく、そうでなければ転写プロセスで感光体の絶縁破
壊が起こり、帯電に支障を来す膜欠陥が生じてしまう。
Therefore, the photosensitive member is required to have a small leakage current and a high charging ability at the time of charging, and on the other hand, a large inflow current and a property of not being charged at the time of transfer. Especially during transfer, changes in paper quality (thickness, paper width, resistance, environmental changes, etc.)
Since the load such as voltage and current to the photoconductor tends to fluctuate, it is desirable that the impedance of the photoconductor is sufficiently low. Otherwise, the dielectric breakdown of the photoconductor will occur during the transfer process, and the film will interfere with charging. Defects will occur.

【0110】このような要件を満たす層構成として、帯
電が正極性の場合には前記(イ)〜(ハ)の構成が、ま
た負極性の場合には前記(ニ)〜(ヘ)の構成がよい。
ここで(ハ)あるいは(ヘ)のようにI型半導体層を挿
入することにより、膜厚に比例して、帯電プロセスでの
より少ない漏れ電流とより高い帯電能が得られる。
As the layer constitution satisfying the above requirements, the constitutions (a) to (c) described above are used when the charge has a positive polarity, and the constitutions (d) to (f) described above when the charge has a negative polarity. Is good.
Here, by inserting the I-type semiconductor layer as in (c) or (f), a smaller leakage current and a higher charging ability in the charging process can be obtained in proportion to the film thickness.

【0111】〔例2〕図8に示すグロ−放電分解装置3
6に、導電性基体14として直径30mm、長さ260
mm、肉厚1.5mmおよび4.0mmの鏡面仕上げを
施したAlドラムをセットし、表1の条件に準じて各層
の成膜時間を変えて膜厚を変え、図9(a)に示す様に
注入阻止層29、光導電層30、表面層31を順次積層
して正帯電P+ N型a−Si感光体F、GおよびHを作
製した。感光体F、GおよびHの膜厚は、d/εr がそ
れぞれ0.05、0.75および9.2となるように膜
厚を設定し、その値はAlの肉厚と共に表7に示した。
また、同表には表6と同じく感光体特性の評価結果も示
した。
Example 2 A glow discharge decomposition apparatus 3 shown in FIG.
6, the conductive base 14 has a diameter of 30 mm and a length of 260
9mm, thickness 1.5mm and 4.0mm mirror-finished Al drum was set, the film formation time of each layer was changed according to the conditions of Table 1, and the film thickness was changed. In this manner, the injection blocking layer 29, the photoconductive layer 30, and the surface layer 31 were sequentially laminated to produce positively charged P + N type a-Si photoconductors F, G and H. The thicknesses of the photoconductors F, G and H are set so that d / εr is 0.05, 0.75 and 9.2, respectively, and the values are shown in Table 7 together with the thickness of Al. It was
Further, in the same table, as in Table 6, the evaluation results of the characteristics of the photoconductor are also shown.

【0112】[0112]

【表7】 [Table 7]

【0113】表7より判る様に、d/εr が0.05の
感光体Fでは必要な初期帯電電位が得られず、かぶりが
ひどくて記録画像が得られなかった。また、d/εr が
0.75の感光体Gでは感光体Aと同様に良好な記録画
像が得られた。また、d/εr が9.2の感光体Hでは
初期帯電電位に余裕があるものの、低電位現像条件では
画像の解像力が悪かった。
As can be seen from Table 7, with the photoconductor F having d / εr of 0.05, the required initial charging potential was not obtained, and the fog was so bad that a recorded image could not be obtained. Further, with the photoconductor G having d / εr of 0.75, a good recorded image was obtained as with the photoconductor A. Further, in the photosensitive member H having d / εr of 9.2, although the initial charging potential has a margin, the resolution of the image was poor under the low potential developing conditions.

【0114】〔例3〕感光体Gを用いて画像評価条件で
ある感光体の表面電位を+10Vとしたところ、表8に
示す様に、現像バイアス電圧を+90Vとした時に、感
光体暗部の表面電荷量が少ないために暗部におけるシー
ルド作用が不十分となってトナーが感光体に吸引されて
しまい、画像にひどいかぶりが現れて解像力の評価がで
きなくなった。
Example 3 When the surface potential of the photosensitive member, which is an image evaluation condition, was set to +10 V using the photosensitive member G, as shown in Table 8, when the developing bias voltage was set to +90 V, the surface of the dark portion of the photosensitive member was measured. Since the amount of electric charge is small, the shielding effect in the dark part becomes insufficient, and the toner is attracted to the photoconductor, so that the image is badly fogged and the resolution cannot be evaluated.

【0115】また同様に感光体Gを用いて感光体の表面
電位を+270Vとしたところ、光感度不足で表面電位
が下がりきらず、表8に示す様に、現像バイアス電圧を
+90Vとした時に、感光体明部の表面電荷が残ってい
るために明部におけるシールド作用が残存してトナーが
感光体に十分に吸引されず、画像濃度が不十分となって
解像力の評価ができなくなった。また耐圧も不十分で、
連続使用時に感光体層の絶縁破壊が生じ、画像中に黒点
の増加が見られた。
Similarly, when the surface potential of the photosensitive member was set to +270 V using the photosensitive member G, the surface potential was not lowered due to insufficient photosensitivity. As shown in Table 8, when the developing bias voltage was set to +90 V, the photosensitive Since the surface charge of the light portion of the body remains, the shielding action in the light portion remains and the toner is not sufficiently attracted to the photoconductor, and the image density becomes insufficient, and the resolution cannot be evaluated. In addition, the pressure resistance is insufficient,
Dielectric breakdown of the photoreceptor layer occurred during continuous use, and an increase in black dots was observed in the image.

【0116】[0116]

【表8】 [Table 8]

【0117】以上の結果より、本発明における感光体表
面の露光領域と非露光領域の電位差は、10〜240V
の範囲が好適であることが確認できた。
From the above results, the potential difference between the exposed area and the non-exposed area on the surface of the photoreceptor in the present invention is 10 to 240 V.
It was confirmed that the above range was suitable.

【0118】[0118]

【発明の効果】以上詳述した様に、本発明により、良好
な電子写真特性と画像特性を有する薄膜化した感光体層
を備えた感光体を用いて、画像形成を可能とした画像形
成装置が提供できた。本発明の感光体によれば、従来の
感光体に比べて感光体層の膜厚を薄くし、基体として使
用されるAlの変形量を減少させることにより、感光体
層と基体の材料および加工のコストを共に削減できたの
で、低コストの感光体となり、コストパフォーマンスに
優れた画像形成装置が提供できた。
As described in detail above, according to the present invention, an image forming apparatus capable of forming an image using a photoconductor provided with a thin photoconductor layer having good electrophotographic and image properties. Was able to provide. According to the photoconductor of the present invention, the film thickness of the photoconductor layer is made smaller than that of the conventional photoconductor, and the amount of deformation of Al used as the substrate is reduced, whereby the material and processing of the photoconductor layer and the substrate are performed. Since both costs can be reduced, an image forming apparatus having a low cost photoconductor and excellent cost performance can be provided.

【0119】また本発明の画像形成装置によれば、感光
体の膜厚を厚くすることによる暗減衰特性や光感度特性
や解像力の悪化をなくし、優れた帯電特性と光感度特性
と解像度を有する感光体が提供でき、それによってカラ
ー画像記録にも適した感光体および画像形成装置が提供
できた。
Further, according to the image forming apparatus of the present invention, the dark attenuation characteristic, the photosensitivity characteristic and the deterioration of the resolution due to the increase in the film thickness of the photoconductor are eliminated, and the excellent charging characteristic, the photosensitivity characteristic and the resolution are obtained. A photoconductor can be provided, and thereby a photoconductor and an image forming apparatus suitable for color image recording can be provided.

【0120】そして本発明の画像形成装置によれば、感
光体層の優れた光感度特性を十分に活かすことができた
ので、露光光源の選択の幅を広げることができた。これ
により例えば、Si単結晶基板にGaAsP系のIII −
V族化合物をエピタキシャル成長して製作したLEDヘ
ッドや、ELヘッドなどが使用できるようになり、露光
光源の低コスト化が可能になった。
Further, according to the image forming apparatus of the present invention, the excellent photosensitivity characteristic of the photoconductor layer can be fully utilized, so that the range of selection of the exposure light source can be widened. Thereby, for example, a GaAsP-based III-
It has become possible to use LED heads and EL heads manufactured by epitaxially growing a group V compound, and it has become possible to reduce the cost of the exposure light source.

【0121】さらにまた、感光体層にa−Si系材料を
用いることにより、耐久性に優れて長寿命で、かつ人体
に無害で無公害の感光体が低コストで提供でき、大量の
産業廃棄物を発生しない、環境問題にも優れた画像形成
装置が提供できた。
Furthermore, by using an a-Si-based material for the photoreceptor layer, it is possible to provide a photoreceptor having excellent durability, long life, harmless to the human body and pollution-free at a low cost, and a large amount of industrial waste. An image forming apparatus that does not generate matter and is excellent in environmental problems can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子写真方式による画像形成装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an electrophotographic image forming apparatus of the present invention.

【図2】本発明の画像形成装置の現像部の要部拡大図で
ある。
FIG. 2 is an enlarged view of a main part of a developing unit of the image forming apparatus of the present invention.

【図3】(a)および(b)は従来の感光体と現像法に
よる現像部の模式図およびその等価回路である。
3 (a) and 3 (b) are a schematic view of a conventional photosensitive member and a developing portion by a developing method, and an equivalent circuit thereof.

【図4】(a)および(b)は従来のa−Si感光体の
層構成を表わす断面図である。
4A and 4B are cross-sectional views showing a layer structure of a conventional a-Si photoconductor.

【図5】(a)および(b)は本発明の感光体と現像法
による現像部の模式図およびその等価回路である。
5 (a) and 5 (b) are a schematic view of a photosensitive member of the present invention and a developing portion by a developing method, and an equivalent circuit thereof.

【図6】(a)〜(c)は本発明の感光体の層構成とそ
の画像形成プロセスにおける電荷分布を示す断面図であ
る。
6A to 6C are cross-sectional views showing the layer structure of the photoconductor of the present invention and the charge distribution in the image forming process thereof.

【図7】本発明の感光体の感光体層の等価回路である。FIG. 7 is an equivalent circuit of a photoconductor layer of the photoconductor of the present invention.

【図8】グロー放電分解装置の概略構成図である。FIG. 8 is a schematic configuration diagram of a glow discharge decomposition apparatus.

【図9】(a)および(b)は本発明の感光体の実施例
における層構成を示す断面図である。
9A and 9B are cross-sectional views showing a layer structure in an example of the photoconductor of the present invention.

【図10】感光体の波長感度特性を示すグラフである。FIG. 10 is a graph showing wavelength sensitivity characteristics of a photoconductor.

【符号の説明】[Explanation of symbols]

1・・・・・・画像形成装置 2・・・・・・感光体 3・・・・・・帯電手段 4・・・・・・露光手段 5・・・・・・現像手段 6・・・・・・バイアス電源 14、21・・導電性基体 15、22・・感光体層 16・・・・・磁極ローラ 17・・・・・導電性スリーブ 19・・・・・磁気ブラシ 27、31・・表面層 1 ... Image forming device 2 Photoreceptor 3 Charging means 4 Exposure device 5 Developing device 6 ... Bias power supply 14, 21 ... Conductive substrate 15, 22 ... Photoconductor layer 16 ... Magnetic pole roller 17 ... Conductive sleeve 19 ... Magnetic brush 27, 31 ...・ Surface layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性基体上にアモルファスシリコン系
感光体層を形成した電子写真用感光体に、帯電手段、露
光手段及び現像手段並びに該導電性基体と該現像手段と
の間に現像バイアス電圧印加手段を配設すると共に、前
記感光体層を膜厚が2乃至24μmの範囲内になるよう
に下記(イ)乃至(ヘ)から選ばれる積層上に絶縁体も
しくは半絶縁体の表面層を被覆した積層構成とし、且つ
前記現像手段に導電性磁性キャリアと絶縁性トナーとの
組合せもしくは1成分導電性磁性トナーから成る現像剤
により導電性磁気ブラシを形成して、該磁気ブラシと接
触する前記感光体表面の露光領域と非露光領域の電位差
を10乃至240Vの範囲内に設定せしめたことを特徴
とする画像形成装置。 (イ)P型半導体層上にI型半導体層を積層する。 (ロ)P型半導体層上にN型半導体層を積層する。 (ハ)P型半導体層上にI型半導体層とN型半導体層を
順次積層する。 (ニ)N型半導体層上にI型半導体層を積層する。 (ホ)N型半導体層上にP型半導体層を積層する。 (ヘ)N型半導体層上にI型半導体層とP型半導体層を
順次積層する。
1. A charging means, an exposing means and a developing means, and a developing bias voltage between the conductive base and the developing means, on an electrophotographic photoreceptor having an amorphous silicon type photoreceptor layer formed on a conductive substrate. An applying means is provided, and a surface layer of an insulator or a semi-insulator is formed on the laminate selected from the following (a) to (f) so that the photosensitive layer has a film thickness in the range of 2 to 24 μm. In a laminated structure of coating, a conductive magnetic brush is formed on the developing means by a combination of a conductive magnetic carrier and an insulating toner or a developer composed of a one-component conductive magnetic toner, and the conductive magnetic brush is brought into contact with the magnetic brush. An image forming apparatus characterized in that a potential difference between an exposed area and a non-exposed area on a surface of a photoconductor is set within a range of 10 to 240V. (A) An I-type semiconductor layer is laminated on the P-type semiconductor layer. (B) An N-type semiconductor layer is laminated on the P-type semiconductor layer. (C) An I-type semiconductor layer and an N-type semiconductor layer are sequentially stacked on the P-type semiconductor layer. (D) An I-type semiconductor layer is laminated on the N-type semiconductor layer. (E) A P-type semiconductor layer is laminated on the N-type semiconductor layer. (F) An I-type semiconductor layer and a P-type semiconductor layer are sequentially stacked on the N-type semiconductor layer.
【請求項2】 導電性基体上に感光体層を形成した電子
写真用感光体に、帯電手段、露光手段及び現像手段並び
に該導電性基体と該現像手段との間に現像バイアス電圧
印加手段を配設すると共に、前記感光体層の膜厚dと比
誘電率εr との関係を下記式のように設定し、且つ前記
現像手段に導電性磁性キャリアと絶縁性トナーとの組合
せもしくは1成分導電性磁性トナーから成る現像剤によ
り導電性磁気ブラシを形成して、該磁気ブラシと接触す
る前記感光体表面の露光領域と非露光領域の電位差を1
0乃至240Vの範囲内に設定せしめたことを特徴とす
る画像形成装置。 d ≦ 24μm εr ≧ 2 d/εr ≦ 9
2. An electrophotographic photoconductor having a photoconductor layer formed on a conductive substrate, a charging unit, an exposing unit, a developing unit, and a developing bias voltage applying unit between the conductive substrate and the developing unit. Along with the arrangement, the relationship between the film thickness d of the photoconductor layer and the relative permittivity εr is set according to the following equation, and the developing means is a combination of a conductive magnetic carrier and an insulating toner or a one-component conductive material. A conductive magnetic brush is formed from a developer composed of a magnetic toner, and the potential difference between the exposed region and the non-exposed region of the surface of the photoconductor contacting the magnetic brush is set to 1
An image forming apparatus characterized by being set within a range of 0 to 240V. d ≤ 24 μm εr ≥ 2 d / εr ≤ 9
JP17184293A 1993-07-12 1993-07-12 Image forming device Pending JPH0728332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17184293A JPH0728332A (en) 1993-07-12 1993-07-12 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17184293A JPH0728332A (en) 1993-07-12 1993-07-12 Image forming device

Publications (1)

Publication Number Publication Date
JPH0728332A true JPH0728332A (en) 1995-01-31

Family

ID=15930780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17184293A Pending JPH0728332A (en) 1993-07-12 1993-07-12 Image forming device

Country Status (1)

Country Link
JP (1) JPH0728332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824445A (en) * 1994-06-30 1998-10-20 Kyocera Corporation Process for producing image and two-component developer
US6306690B1 (en) 1997-10-30 2001-10-23 Texas Instruments Incorporated Process flow to integrate high and low voltage peripheral transistors with a floating gate array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824445A (en) * 1994-06-30 1998-10-20 Kyocera Corporation Process for producing image and two-component developer
US6306690B1 (en) 1997-10-30 2001-10-23 Texas Instruments Incorporated Process flow to integrate high and low voltage peripheral transistors with a floating gate array

Similar Documents

Publication Publication Date Title
US5809379A (en) Electrophotography having photosensitive member with charge blocking overlayer
JP3149075B2 (en) Electrophotographic equipment
US5729800A (en) Electrophotographic apparatus having an a-Si photosensitive drum assembled therein
US6240269B1 (en) Image forming apparatus having a photosensitive member of amorphous silicon base and system for exposing and charging the photosensitive member
JPH0728332A (en) Image forming device
JP3046087B2 (en) Image forming device
JP2003122098A (en) Image forming method
JP2004219855A (en) Image forming apparatus
JP3987443B2 (en) Photoconductor, image forming method and image forming apparatus using the photoconductor
JP2004347870A (en) Image forming apparatus
JP2003280334A (en) Image forming apparatus
JP2920663B2 (en) Electrophotographic photoreceptor
JP3659458B2 (en) Electrophotographic photoreceptor
JP3140116B2 (en) Image forming method
JP3878752B2 (en) Image forming apparatus
JP2913066B2 (en) Electrophotographic photoreceptor
JP2920668B2 (en) Electrophotographic photoreceptor
JP3140115B2 (en) Image forming method
JPH04324464A (en) Image forming method
JP4249751B2 (en) Image forming apparatus
JP3004114B2 (en) Image forming method
JPH0651538A (en) Image forming device
JP2002311693A (en) Electrophotographic device
JPH0580541A (en) Image forming device
JPH0683147A (en) Image forming device