JPH0458256A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0458256A
JPH0458256A JP17175390A JP17175390A JPH0458256A JP H0458256 A JPH0458256 A JP H0458256A JP 17175390 A JP17175390 A JP 17175390A JP 17175390 A JP17175390 A JP 17175390A JP H0458256 A JPH0458256 A JP H0458256A
Authority
JP
Japan
Prior art keywords
light
layer
photoreceptor
transmitting
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17175390A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Masao Nakano
正夫 中野
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP17175390A priority Critical patent/JPH0458256A/en
Publication of JPH0458256A publication Critical patent/JPH0458256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the electrophotographic sensitive body for TESI enhanced in durability and lengthened in life by forming a light-transmitting conductive substrate or light-transmitting electrode on the surface of the substrate, and laminating a amorphous silicon type photoconductive layer on the substrate. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on the light-transmitting substrate 1 the light-transmitting electrode 2 and the amorphous silicon type photoconductive layer 3 or inserting an amorphous silicon type light-transmitting insulating layer 4 between the layers 2, 4. The light- transmitting substrate 1 is formed into a plate, a drum, a sheet, or the like, and made of an inorganic transparent material, such as glass, quartz, or sapphire, or an organic transparent material, such as fluororesin or polyester, or further, optical fiber of celfoc optical plate, and as the light-transmitting electrode layer 2, a transparent conductive material, such as ITO (indium tin oxide), or tin oxide, is used, or a metal, such as A1, Ni, or Au, may be formed into so thin a sheet as made translucent, by vapor depositing or sputtering, and the photoconductive layer 3 and the layer 4 are formed into a film by the glow discharge decomposition method, the ECR method, or the vapor deposition method, or the like, and an element for finishing a dangling bond, such as H or halogen, is contained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、静電潜像転写方式の電子写真法に係り、特に
静電潜像形成と静電潜像転写を同時に行う同時静電潜像
転写方式に好適な電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic method using an electrostatic latent image transfer method, and in particular to a simultaneous electrostatic latent image transfer method in which electrostatic latent image formation and electrostatic latent image transfer are performed at the same time. The present invention relates to an electrophotographic photoreceptor suitable for an image transfer method.

〔従来の技術〕[Conventional technology]

電子写真法として、感光体上の静電潜像を誘電体層を設
けた記録紙に一旦転写し、この静電潜像をトナーで現像
する静電潜像転写法が既に知られている。この電子写真
法はトランスファー・オブ・エレクトロスタティック・
イメージ(Transferof Electro−S
tatic Image)法、いわゆるTESI法と呼
ばれ、大別して、感光体上の静電潜像形成と記録紙への
静電潜像転写とを別々の工程で行う「順次転写法」と、
感光体と記録紙を積み重ねた状態で画像露光を行い、静
電潜像形成と転写を同時に行って記録紙に静電潜像を形
成する「同時転写法」とがある。
As an electrophotographic method, an electrostatic latent image transfer method is already known in which an electrostatic latent image on a photoreceptor is once transferred to a recording paper provided with a dielectric layer, and this electrostatic latent image is developed with toner. This electrophotographic method is known as the transfer of electrostatic
Image (Transfer of Electro-S
The method is called the TESI method, and can be roughly divided into the "sequential transfer method" in which forming an electrostatic latent image on a photoconductor and transferring the electrostatic latent image to a recording paper are performed in separate steps.
There is a "simultaneous transfer method" in which image exposure is performed with a photoconductor and recording paper stacked, and electrostatic latent image formation and transfer are performed simultaneously to form an electrostatic latent image on the recording paper.

後者の同時転写法に用いられる感光体として、透光性の
導電支持体上に光導電層を積層したものを基本構成とし
、更にコントラストを改善するために上記導電支持体と
光導電層との間に絶縁層を形成した層構成か提案されて
いる(特公昭57−55140号及び特開昭56−43
665号参照)。
The basic structure of the photoreceptor used in the latter simultaneous transfer method is one in which a photoconductive layer is laminated on a transparent conductive support. A layer structure in which an insulating layer is formed between them has been proposed (Japanese Patent Publication No. 57-55140 and Japanese Patent Application Laid-Open No. 56-43).
(See No. 665).

その他、特開昭49−52643号には上記導電支持体
と光導電層との間に該光導電層に比べて暗抵抗の高い有
機光導電層を形成した層構成が、また、特公昭57−4
6067号には透明支持体上に透明電極層、光導電性注
入阻止層及び光導電層を順次積層した層構成も提案され
ている。
In addition, JP-A-49-52643 discloses a layer structure in which an organic photoconductive layer having a higher dark resistance than the photoconductive layer is formed between the conductive support and the photoconductive layer. -4
No. 6067 also proposes a layered structure in which a transparent electrode layer, a photoconductive injection blocking layer, and a photoconductive layer are sequentially laminated on a transparent support.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

前記光導電層にはSe、 5e−Te、 5e−As、
 Te−As。
The photoconductive layer includes Se, 5e-Te, 5e-As,
Te-As.

ZnO,ZnCd5. CdS、 Cd5−nCdCO
5,CdSe、 CdTe。
ZnO, ZnCd5. CdS, Cd5-nCdCO
5, CdSe, CdTe.

PbO,5b2S、などの無機材料や、ポリビニルカル
バゾール、アントラセン、アントラキノンなどの有機材
料が用いられていた。
Inorganic materials such as PbO and 5b2S, and organic materials such as polyvinylcarbazole, anthracene, and anthraquinone have been used.

しかしながら、これらの光導電材料は光感度か充分に高
くなく、そのために静電潜像形成時に大きな露光エネル
ギー(数十〜数百ルックス・秒〔I!ux−8eC〕)
を必要としていた。
However, the photosensitivity of these photoconductive materials is not high enough, and therefore a large exposure energy (several tens to hundreds of lux-seconds [I!ux-8eC]) is required when forming an electrostatic latent image.
was needed.

そこで、近年急速に発展してきたLEDアレイやELア
レイから成る光プリントヘッドを用いて小型化を成し、
消費電力を小さくする要求に対しては、感光体の感度が
不足し、満足し得なかった。
Therefore, we have achieved miniaturization by using optical print heads consisting of LED arrays and EL arrays, which have developed rapidly in recent years.
The demand for reducing power consumption could not be met because the sensitivity of the photoreceptor was insufficient.

また、TESI法は感光体か現像器やクリーナーに接し
ていないために通常のカールソン法に比へて感光体表面
の摩耗や傷発生がなくなり、その感光体を長寿命化させ
ることができるが、その反面、従来の光導電材料では、
その表面硬度か高くなく、そのために静電記録紙や転写
ローラとの接触に起因して感光体表面が摩耗したり、そ
の表面に傷が生じるという問題点がある。
In addition, in the TESI method, since the photoreceptor is not in contact with a developer or cleaner, there is no wear or scratches on the photoreceptor surface compared to the normal Carlson method, and the life of the photoreceptor can be extended. On the other hand, with conventional photoconductive materials,
The surface hardness of the photoreceptor is not high, which causes problems such as abrasion of the surface of the photoreceptor and scratches on the surface due to contact with electrostatic recording paper or a transfer roller.

従って本発明は上記事情に鑑みて案出されたものであり
、その目的は可視光領域の光に対して高い感度が得られ
、しかも、長寿命化を達成した同時静電潜像転写方式に
好適な電子写真感光体を提供することにある。
Therefore, the present invention was devised in view of the above circumstances, and its purpose is to provide a simultaneous electrostatic latent image transfer method that achieves high sensitivity to light in the visible light range and long life. An object of the present invention is to provide a suitable electrophotographic photoreceptor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は透光性支持体を有する感光体表面を誘電体の一
方主面と接触させるとともに上記透光性支持体側からの
画像露光と同時に上記誘電体の他方主面と感光体との間
に電圧を印加する同時静電潜像転写方式に用いられる電
子写真感光体に係り、上記透光性支持体自体か導電性を
有するか、もしくは支持体表面に透光性電極を備えると
ともに、その支持体上にアモルファスシリコン系光導電
層を積層したことを特徴とする。
In the present invention, the surface of a photoreceptor having a light-transmitting support is brought into contact with one main surface of a dielectric material, and at the same time as the image is exposed from the light-transmitting support side, a gap is formed between the other main surface of the dielectric material and the photoreceptor. Regarding an electrophotographic photoreceptor used in a simultaneous electrostatic latent image transfer method in which a voltage is applied, the transparent support itself has conductivity, or a transparent electrode is provided on the surface of the support, and the support thereof It is characterized by having an amorphous silicon-based photoconductive layer laminated on the body.

また本発明は前記透光性支持体とアモルファスシリコン
系光導電層の間にアモルファスシリコン系透光性絶縁層
を形成したことも特徴である(以下アモルファスシリコ
ンをa−3iと略す)。
The present invention is also characterized in that an amorphous silicon-based light-transmitting insulating layer is formed between the light-transmitting support and the amorphous silicon-based photoconductive layer (hereinafter amorphous silicon will be abbreviated as a-3i).

次に本発明を詳述する。Next, the present invention will be explained in detail.

第1図及び第2図は本発明電子写真感光体の典型的層構
成を表す図である。
FIGS. 1 and 2 are diagrams showing typical layer structures of the electrophotographic photoreceptor of the present invention.

これらの図においては、■は透光性支持体であり、この
支持体1の上に透光性電極層2及びa−3i系先光導電
3を順次積層するか、もしくはその間にa−3i系透光
性絶縁層4を介して積層する。
In these figures, ■ is a transparent support, and a transparent electrode layer 2 and an a-3i-based photoconductive layer 3 are sequentially laminated on this support 1, or a-3i They are laminated with a translucent insulating layer 4 interposed therebetween.

上記透光性支持体1は板状、ドラム状、シート状、ベル
ト状などの形状をなし、その材料にはガラス、石英、サ
ファイア等の透明な無機材料、また、弗素樹脂、ポリエ
ステル、ポリカーボネート、ポリエチレン、ポリエチレ
ンテレフタレート、ビニロン、エポキシ、マイラー等の
透明な有機樹脂、更にまた、オプチカルファイバー、セ
ルフォック光学プレート等がある。
The transparent support 1 has a shape such as a plate, a drum, a sheet, or a belt, and its materials include transparent inorganic materials such as glass, quartz, and sapphire, as well as fluororesin, polyester, polycarbonate, There are transparent organic resins such as polyethylene, polyethylene terephthalate, vinylon, epoxy, and mylar, as well as optical fibers, selfoc optical plates, and the like.

上記透光性電極層2にはITO(インジウム・スズ・酸
化物)、酸化錫、酸化鉛、酸化インジウム、ヨウ化鋼等
の透明導電性材料を用いたり、或いは蒸着やスパッタリ
ングにより、A1. Ni、 Au等の金属を半透明に
なる程度に薄く形成してもよい。
For the transparent electrode layer 2, a transparent conductive material such as ITO (indium tin oxide), tin oxide, lead oxide, indium oxide, or iodized steel may be used, or A1. A metal such as Ni or Au may be formed thin enough to be semitransparent.

上記a−Si系光導電光導電層−Si系透光性絶縁層4
はグロー放電分解法、スパッタリング法、ECR法、蒸
着法などにより成膜形成し、その形成に当たってダング
リングボンド終端用の元素、例えば水素(H)やハロゲ
ンを含有させる。
Said a-Si-based photoconductive photoconductive layer-Si-based transparent insulating layer 4
The film is formed by a glow discharge decomposition method, a sputtering method, an ECR method, a vapor deposition method, or the like, and an element for terminating a dangling bond, such as hydrogen (H) or a halogen, is contained during the formation.

a−3i余光導電層3にはそのシリコン元素の一部をカ
ーボン、酸素、窒素、ゲルマニウム、スズ、イオウなど
の元素と置換して導電率やバンドギャップ、表面硬度な
どの物性を適宜変えてもよい。
In the a-3i photoconductive layer 3, some of the silicon elements are replaced with elements such as carbon, oxygen, nitrogen, germanium, tin, and sulfur to change the physical properties such as conductivity, band gap, and surface hardness as appropriate. Good too.

光源としてLEDヘッドを用いた場合にはa−S i系
の層により有効に受光されるが、ELヘッドを用いた場
合、その発光波長は短波長側ヘシフトしており、そのた
めa−3i層にカーボン、酸素、窒素などの元素を含有
させてバンドギャップを広げるとよい。また、半導体レ
ーザを用いた場合、その発光波長は長波長側ヘシフトし
ており、そのためa−3ill::ゲルマニウム、スズ
などの元素を含有させてバンドギャップを狭くすればよ
い。
When an LED head is used as a light source, the light is effectively received by the a-Si layer, but when an EL head is used, the emission wavelength is shifted to the shorter wavelength side, so the a-3i layer receives light effectively. It is preferable to widen the band gap by incorporating elements such as carbon, oxygen, and nitrogen. Furthermore, when a semiconductor laser is used, its emission wavelength is shifted to the longer wavelength side, so that the bandgap may be narrowed by incorporating elements such as a-3ill::germanium and tin.

更にまたa−3i系先光導電3に周期律表第1[a族元
素や第Va族元素を添加して電気特性を調整することも
できる。
Furthermore, it is also possible to adjust the electrical properties by adding an element of group 1 [A or group Va of the periodic table] to the a-3i-based photoconductive material 3.

上記a−3i系光導電層3の厚みは0.1〜100μm
好適には1〜50μmの範囲内がよく、これにより、静
電潜像の形成に必要な絶縁耐圧が確保し易く、また露光
を吸収して光キャリアを有効に生成でき、しかも、残留
電位の上昇を抑制することができる。
The thickness of the a-3i photoconductive layer 3 is 0.1 to 100 μm
The preferred range is 1 to 50 μm, which makes it easy to ensure the dielectric strength necessary for forming an electrostatic latent image, absorbs exposure light and effectively generates photocarriers, and reduces the residual potential. increase can be suppressed.

前記a−3i系透光性絶縁層4は、その層内体で光導電
層での光キヤリア生成に有効な光を吸収しないように光
導電層3に比べてバンドギヤ・ツブを大きくする必要が
あり、それには光学的エネルギーギャップEg opt
を1.9eV以上に設定するとよい。
The a-3i light-transmitting insulating layer 4 needs to have a band gear knob larger than that of the photoconductive layer 3 so that its inner layer does not absorb light that is effective for generating optical carriers in the photoconductive layer. There is an optical energy gap Eg opt
is preferably set to 1.9 eV or higher.

また、電極層2から光導電層3へのキャリア注入を有効
に阻止するために1013Ωcm以上の抵抗率に設定す
るのが望ましい。
Further, in order to effectively prevent carrier injection from the electrode layer 2 to the photoconductive layer 3, it is desirable to set the resistivity to 1013 Ωcm or more.

また上記絶縁層4の厚みは0.1〜10μm1好適には
0.3〜5μmの範囲内がよく、これにより、静電潜像
の形成に必要な絶縁耐圧が確保し易く、また露光を吸収
して光キャリアを有効に生成できしかも、残留電位の上
昇を抑制することができる。
The thickness of the insulating layer 4 is preferably within the range of 0.1 to 10 μm, preferably 0.3 to 5 μm, so that it is easy to ensure the dielectric strength necessary for forming an electrostatic latent image, and it also absorbs exposure light. In this way, photocarriers can be effectively generated, and an increase in residual potential can be suppressed.

かくして上記構成の電子写真感光体を同時静電潜像転写
方式に用いた場合、高い光感度をもつために静電潜像形
成時の露光エネルギが小さくなり、これにより、従来の
感光体では用いられなかったLEDヘッドやELヘッド
などの小型かつ低消費電力の露光光源を用いることがで
きる。
Thus, when an electrophotographic photoreceptor with the above configuration is used in a simultaneous electrostatic latent image transfer method, the exposure energy required to form an electrostatic latent image is reduced due to its high photosensitivity, which is compared to conventional photoreceptors. It is now possible to use a compact and low power consumption exposure light source, such as an LED head or an EL head, which was previously unavailable.

また従来の感光体に比べて高い表面硬度かあり、これに
よって長寿命な電子写真感光体を提供することができた
。因にアモルファスAs2Se3層のビッカース硬度は
150kg/mm”であり、有機系光導電層はそれ以下
の硬度であるか、これに対してa−3i層のビッカース
硬度は1500〜2000Kg/mm ”であり、それ
にカーボン、酸素、窒素を添加すると一層高硬度となる
It also has a higher surface hardness than conventional photoreceptors, making it possible to provide an electrophotographic photoreceptor with a long life. Incidentally, the Vickers hardness of the amorphous As2Se3 layer is 150 kg/mm'', and the hardness of the organic photoconductive layer is less than that, whereas the Vickers hardness of the a-3i layer is 1500 to 2000 Kg/mm''. , and when carbon, oxygen, and nitrogen are added to it, the hardness becomes even higher.

更に第2図のようにa−3i系透光性絶縁層4を形成し
た場合、感光体の絶縁耐圧を高め、バックグラウンド電
荷の転写を抑制でき、その結果、コントラストが高く、
バックのかぶりのない良好な画像が得られる。
Furthermore, when an a-3i transparent insulating layer 4 is formed as shown in FIG. 2, the dielectric strength of the photoreceptor can be increased and transfer of background charges can be suppressed, resulting in high contrast and
Good images with no background fog can be obtained.

尚、上記の電子写真感光体においては透光性支持体1の
上に透光性電極層2を積層しているか、その地道光性支
持体1を導電性材料を用いて形成し、それに電極機能を
もたせ、上記電極層2を不要としてもよい。
In the above-mentioned electrophotographic photoreceptor, the transparent electrode layer 2 is laminated on the transparent support 1, or the transparent support 1 is formed using a conductive material, and the electrode is formed on it. The electrode layer 2 may be made unnecessary by providing a function.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(電子写真複写機の構成) 第3図は本例に用いられる電子写真複写機の構成である
(Configuration of electrophotographic copying machine) FIG. 3 shows the configuration of the electrophotographic copying machine used in this example.

同図において、ドラム状透光性支持体1の上に透光性電
極層2及び光導電層3を順次積層して成る感光体ドラム
5の内側にLEDヘッド6及びイレースランプ7を配置
する。透光性電極層2に対して電圧を直流電源8により
印加することかできる。9は導電ローラ、10は現像器
、11は定着器であり、感光体5と導電ローラ9の間に
静電転写紙12が搬送される。
In the figure, an LED head 6 and an erase lamp 7 are arranged inside a photosensitive drum 5, which is formed by sequentially laminating a transparent electrode layer 2 and a photoconductive layer 3 on a drum-shaped transparent support 1. A voltage can be applied to the transparent electrode layer 2 by a DC power source 8. 9 is a conductive roller, 10 is a developing device, and 11 is a fixing device, and an electrostatic transfer paper 12 is conveyed between the photoreceptor 5 and the conductive roller 9.

このような構成において、先ず感光体ドラム5の透光性
電極層2と導電ローラ9の間に静電転写紙12を介して
電圧を印加するとともに、LEDヘッド6により画像露
光を行うと、光導電層3における光キヤリア発生と光キ
ヤリア搬送により感光体表面に画像露光に応じた電荷潜
像が形成され、次いで感光体ドラム5の回転に伴って、
静電転写紙12が感光体ドラム5と剥離する際、両者間
の空隙における気中放電により静電転写紙12上に電荷
潜像の転写が行われる。この静電潜像は引き続いて現像
器IOによりトナー像として現像され、定着器11によ
り定着される。一方、感光体ドラム5は、その後、イレ
ースランプ7の光照射により残留電荷か消去され、次の
潜像形成に用いられる。
In such a configuration, first, a voltage is applied between the transparent electrode layer 2 of the photoreceptor drum 5 and the conductive roller 9 via the electrostatic transfer paper 12, and image exposure is performed using the LED head 6. A latent charge image is formed on the surface of the photoreceptor according to the image exposure by the generation of light carriers in the conductive layer 3 and the transport of the light carriers, and then, as the photoreceptor drum 5 rotates,
When the electrostatic transfer paper 12 is separated from the photoreceptor drum 5, a charged latent image is transferred onto the electrostatic transfer paper 12 due to air discharge in the gap between the two. This electrostatic latent image is subsequently developed as a toner image by a developing device IO, and fixed by a fixing device 11. On the other hand, the photoreceptor drum 5 is then irradiated with light from the erase lamp 7 to erase residual charges, and is used for forming the next latent image.

(例1) 透明な円筒状ガラス基板の周面に透光性電極層2として
ITO層を電子ビーム蒸着法によりl000人の厚みで
形成し、次いで、その上に容量結合型グロー放電分解装
置を用いて第1表の成膜条件によりa−3i光導電層を
積層した。
(Example 1) An ITO layer was formed as a transparent electrode layer 2 on the circumferential surface of a transparent cylindrical glass substrate to a thickness of 1,000 mm by electron beam evaporation, and then a capacitively coupled glow discharge decomposition device was placed on top of the ITO layer. An a-3i photoconductive layer was laminated using the film forming conditions shown in Table 1.

〔以下余白〕[Margin below]

第1 表 零〇288ガスは20ppmの濃度でH2希釈されてい
る。
Table 1 The gas is diluted with H2 at a concentration of 20 ppm.

かくして得られた感光体を第3図の電子写真複写機に装
着し、その感光体内部にLEDヘッドを配し、波長66
0nm 、露光量1.OuJ/cm2の条件て画像露光
を行いながら、導電ローラを介して感光体と静電転写紙
との間に+500■の電圧を印加した。
The photoreceptor thus obtained was installed in the electrophotographic copying machine shown in FIG.
0 nm, exposure amount 1. While performing image exposure under conditions of OuJ/cm2, a voltage of +500 .mu. was applied between the photoreceptor and the electrostatic transfer paper via a conductive roller.

そして、静電転写紙上に静電潜像を形成し、続いて、こ
の静電潜像を負帯電トナーの2成分方式の現像機を用い
て現像し、得られたトナー像を熱定着して露光部に対応
した画像を得た。この画像を評価したところ、0.D、
が1.0の画像濃度を有し、バックのかぶりもなく、解
像力も良好な画像であった。
Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then this electrostatic latent image is developed using a two-component developing machine using negatively charged toner, and the resulting toner image is thermally fixed. An image corresponding to the exposed area was obtained. When this image was evaluated, it was 0. D.
The image had an image density of 1.0, had no background fog, and had good resolution.

(例2) (例1)の電子写真感光体を作製するに当たって、a−
Si系光導電層に代えて光導電性微粉末CdSn Cd
CO5(0,8≦n≦1.0)を金属活性剤とともニア
クリル樹脂に分散させて熱硬化した厚み30μmの光導
電層を形成し、その他は(例1)と同一構成とした。
(Example 2) In producing the electrophotographic photoreceptor of (Example 1), a-
Photoconductive fine powder CdSn Cd instead of Si-based photoconductive layer
A photoconductive layer having a thickness of 30 μm was formed by dispersing CO5 (0.8≦n≦1.0) together with a metal activator in a near-acrylic resin and thermosetting it, and the other configuration was the same as in Example 1.

かくして得られた感光体を(例1)と同様に電子写真複
写機に装着し、感光体内部にLEDヘッドを配して、波
長6601m 、露光量1.0 μJ/cm2の条件で
画像露光を行いながら、導電ローラを介して感光体と静
電転写紙との間に一800■の電圧を印加した。そして
、静電転写紙上に静電潜像を形成し、続いて、この静電
潜像を正帯電トナーの2成分方式の現像機を用いて現像
し、得られたトナー像を熱定着して露光部に対応した画
像を得た。この画像を評価したところ、光導電層の光感
度が不足のために十分な静電潜像が形成されず、濃度か
ほとんど得られない画像であった。
The thus obtained photoreceptor was mounted on an electrophotographic copying machine in the same manner as in Example 1, and an LED head was arranged inside the photoreceptor, and image exposure was carried out under the conditions of a wavelength of 6601 m and an exposure amount of 1.0 μJ/cm2. During this process, a voltage of 1,800 μm was applied between the photoreceptor and the electrostatic transfer paper via a conductive roller. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then this electrostatic latent image is developed using a two-component developing machine using positively charged toner, and the resulting toner image is thermally fixed. An image corresponding to the exposed area was obtained. When this image was evaluated, it was found that due to insufficient photosensitivity of the photoconductive layer, a sufficient electrostatic latent image was not formed, and the image had almost no density.

(例3) 透明な円筒状ガラス基板の局面にITO層を電子ビーム
蒸着法により1000人の厚みで形成し、次いで容量結
合型グロー放電分解装置を用いて第2表の成膜条件によ
りアモルファスシリコンカーバイド(以下a−3iCと
略す)からなる光導電層を積層した。
(Example 3) An ITO layer is formed on the surface of a transparent cylindrical glass substrate to a thickness of 1000 nm by electron beam evaporation, and then an amorphous silicon layer is formed using a capacitively coupled glow discharge decomposition apparatus under the film forming conditions shown in Table 2. A photoconductive layer made of carbide (hereinafter abbreviated as a-3iC) was laminated.

〔以下余白〕[Margin below]

第 表 かくして得られた感光体を電子写真複写機に装着し、感
光体内部にLEDヘッドを配して波長6600m、露光
量1.0μJ/cm2の条件で画像露光を行いながら、
導電ローラを介して感光体と静電転写紙との間に一50
0■の電圧を印加した。そして、静電転写紙上に静電潜
像を形成し、続いてこの静電潜像を正帯電トナーの2成
分方式の現像機を用いて現像し、得られたトナー像を熱
定着して露光部に対応した画像を得た。この画像を評価
したところ、(例1)と同様に、0.D、が1.Oの画
像濃度を有しバックのかぶりもなく、解像力も良好な画
像であった。
Table 1: The thus obtained photoreceptor was installed in an electrophotographic copying machine, and an LED head was arranged inside the photoreceptor, and image exposure was performed under the conditions of a wavelength of 6600 m and an exposure amount of 1.0 μJ/cm2, while
150 mm between the photoreceptor and the electrostatic transfer paper via a conductive roller.
A voltage of 0 ■ was applied. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then this electrostatic latent image is developed using a two-component developing machine using positively charged toner, and the resulting toner image is thermally fixed and exposed. An image corresponding to the area was obtained. When this image was evaluated, it was found to be 0.0, similar to (Example 1). D, is 1. The image had an image density of O, no background fog, and good resolution.

また、この画像評価試験において、露光光源のLEDヘ
ッドを波長585nmのELヘッドに変え、露光量0.
9μJ/cm”の条件で画像露光を行いながら、同様に
画像を得たところ、同じく良好な画像が得られ、a−3
i光導電層よりも、波長の短い光により高感度な特性を
示すことが確かめられた。
In this image evaluation test, the LED head of the exposure light source was changed to an EL head with a wavelength of 585 nm, and the exposure amount was 0.
When an image was obtained in the same manner while performing image exposure under the condition of 9μJ/cm'', a similarly good image was obtained, and a-3
It was confirmed that the i-photoconductive layer exhibited higher sensitivity to light with a shorter wavelength than the i-photoconductive layer.

(例4) 透明な円筒状ガラス基板の周面にITO層を電子ビーム
蒸着法により1000人の厚みで形成し、次いで容量結
合型グロー放電分解装置を用いて第3表の成膜条件でa
−SiC絶縁層及びa−3i光導電層を積層した。
(Example 4) An ITO layer was formed on the circumferential surface of a transparent cylindrical glass substrate to a thickness of 1000 nm by electron beam evaporation, and then a
- A SiC insulating layer and an a-3i photoconductive layer were laminated.

〔以下余白〕[Margin below]

かくして得られた感光体を電子写真複写機に装着し、そ
の感光体内部にLEDヘッドを配して波長6601m 
、露光量1.0 μJ/cm2の条件て画像露光を行い
ながら、導電ローラを介して感光体と静電転写紙との間
に+700■の電圧を印加して、静電転写紙上に静電潜
像を形成した。そして、続いてこの静電潜像を負帯電ト
ナーの2成分方式の現像機を用いて現像し、得られたト
ナー像を熱定着して露光部に対応した画像を得た。この
画像を評価したところ、0.D、が1.3の画像濃度を
有し、バックのかぶりもなく、解像力も良好な画像であ
った。
The thus obtained photoreceptor was installed in an electrophotographic copying machine, and an LED head was arranged inside the photoreceptor to generate a wavelength of 6601 m.
, while performing image exposure at an exposure amount of 1.0 μJ/cm2, a voltage of +700 μ is applied between the photoreceptor and the electrostatic transfer paper via a conductive roller to generate electrostatic charge on the electrostatic transfer paper. A latent image was formed. Subsequently, this electrostatic latent image was developed using a two-component developing machine using negatively charged toner, and the resulting toner image was thermally fixed to obtain an image corresponding to the exposed area. When this image was evaluated, it was 0. D, had an image density of 1.3, had no background fog, and had good resolution.

(例5) 透明な円筒状ガラス基板の周面に170層を電子ビーム
蒸着法により1000人の厚みで形成し、次いで容量結
合型グロー放電分解装置を用いて第4表の成膜条件てa
−3i絶絶縁及びa−3iCi導電層を順次積層した。
(Example 5) 170 layers were formed on the circumferential surface of a transparent cylindrical glass substrate to a thickness of 1000 layers by electron beam evaporation, and then a capacitively coupled glow discharge decomposition device was used to form the film under the film forming conditions shown in Table 4.
-3i insulation and a-3iCi conductive layers were sequentially laminated.

〔以下余白〕[Margin below]

かくして得られた感光体を電子写真複写機に装着し、感
光体内部にLEDヘッドを配して波長6600m、露光
量1.0μJ/cm”の条件で画像露光を行いながら、
導電ローラを介して感光体と静電転写紙との間に一70
0■の電圧を印加した。そして、静電転写紙上に静電潜
像を形成し、続いてこの静電潜像を正帯電トナーの2成
分方式の現像機を用いて現像し、得られたトナー像を熱
定着して露光部に対応した画像を得た。この画像を評価
したところ、0.D、か1.3の画像濃度を有し、バッ
クのかぶりもなく、解像力も良好な画像であった。
The thus obtained photoreceptor was installed in an electrophotographic copying machine, and an LED head was placed inside the photoreceptor to perform image exposure under the conditions of a wavelength of 6600 m and an exposure amount of 1.0 μJ/cm.
170 mm between the photoreceptor and the electrostatic transfer paper via a conductive roller.
A voltage of 0 ■ was applied. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then this electrostatic latent image is developed using a two-component developing machine using positively charged toner, and the resulting toner image is thermally fixed and exposed. An image corresponding to the area was obtained. When this image was evaluated, it was 0. The image had an image density of D, or 1.3, had no background fog, and had good resolution.

また、この画像評価試験において、露光光源のLEDヘ
ッドを波長585nmのELヘッドに変え、露光量0.
9μJ/cm”の条件で画像露光を行いながら、同様に
画像を得たところ、同じく良好な画像が得られa−3i
i導電層よりも波長の短い光により高感度な特性を示す
ことが確かめられた。
In this image evaluation test, the LED head of the exposure light source was changed to an EL head with a wavelength of 585 nm, and the exposure amount was 0.
When an image was obtained in the same manner while performing image exposure under the condition of 9 μJ/cm, a similarly good image was obtained.
It was confirmed that the i-conducting layer exhibits characteristics of high sensitivity to light with a shorter wavelength than the i-conductive layer.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、高い光
感度のa−3i系先光導電を用いているので静電潜像形
成時の露光エネルギか小さくなり、これにより、LED
ヘッドやELヘッドなどの小型かつ低消費電力の露光光
源を用いることができた。
As described above, according to the electrophotographic photoreceptor of the present invention, since the a-3i-based photoconductor with high photosensitivity is used, the exposure energy when forming an electrostatic latent image is reduced, and as a result, the LED
It was possible to use a compact and low power consumption exposure light source such as a head or an EL head.

また本発明によれば、表面硬度に優れているために高耐
久性かつ長寿命化を達成したTES I用の電子写真感
光体を提供することができた。
Further, according to the present invention, it was possible to provide an electrophotographic photoreceptor for TESI that achieved high durability and a long service life due to its excellent surface hardness.

更にまた本発明の電子写真感光体によれば、コントラス
トか高く、かぶりのない良好な画像か得られた。
Furthermore, according to the electrophotographic photoreceptor of the present invention, good images with high contrast and no fogging were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明電子写真感光体の層構成を表
す断面図であり、第3図はTESI法の説明図である。 l・・・透光性支持体 2・・・透光性電極層 3・・・アモルファスシリコン系光導電層4・・・アモ
ルファスシリコン系 透光性絶縁層
1 and 2 are cross-sectional views showing the layer structure of the electrophotographic photoreceptor of the present invention, and FIG. 3 is an explanatory view of the TESI method. l...Transparent support 2...Transparent electrode layer 3...Amorphous silicon-based photoconductive layer 4...Amorphous silicon-based light-transparent insulating layer

Claims (2)

【特許請求の範囲】[Claims] (1)透光性支持体を有する感光体表面を誘電体の一方
主面と接触させるとともに上記透光性支持体側からの画
像露光と同時に上記誘電体の他方主面と感光体との間に
電圧を印加する同時静電潜像転写方式に用いられる電子
写真感光体であって、上記透光性支持体自体が導電性を
有するか、もしくは支持体表面に透光性電極を備えると
ともに、該支持体上にアモルファスシリコン系光導電層
を積層したことを特徴とする電子写真感光体。
(1) The surface of the photoreceptor having a transparent support is brought into contact with one main surface of the dielectric, and at the same time as the image is exposed from the side of the transparent support, the other main surface of the dielectric is placed between the photoreceptor and the other main surface of the dielectric. An electrophotographic photoreceptor used in a simultaneous electrostatic latent image transfer method in which a voltage is applied, wherein the transparent support itself has conductivity or a transparent electrode is provided on the surface of the support, and the transparent support has conductivity. An electrophotographic photoreceptor characterized in that an amorphous silicon-based photoconductive layer is laminated on a support.
(2)前記透光性支持体とアモルファスシリコン系光導
電層の間にアモルファスシリコン系透光性絶縁層を形成
したことを特徴とする請求項(1)記載の電子写真感光
体。
(2) The electrophotographic photoreceptor according to claim 1, wherein an amorphous silicon-based light-transmitting insulating layer is formed between the light-transmitting support and the amorphous silicon-based photoconductive layer.
JP17175390A 1990-06-28 1990-06-28 Electrophotographic sensitive body Pending JPH0458256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17175390A JPH0458256A (en) 1990-06-28 1990-06-28 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17175390A JPH0458256A (en) 1990-06-28 1990-06-28 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0458256A true JPH0458256A (en) 1992-02-25

Family

ID=15929053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17175390A Pending JPH0458256A (en) 1990-06-28 1990-06-28 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0458256A (en)

Similar Documents

Publication Publication Date Title
US4572881A (en) Printing member for electrostatic photocopying
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
US4889782A (en) Electrostatic photocopying machine
JP3046087B2 (en) Image forming device
JPH0458256A (en) Electrophotographic sensitive body
JP2913066B2 (en) Electrophotographic photoreceptor
JP2920663B2 (en) Electrophotographic photoreceptor
JP2920668B2 (en) Electrophotographic photoreceptor
JP2008145737A (en) Electrophotographic photoreceptor, method for manufacturing the same, and electrophotographic apparatus using the same
JPS5984254A (en) Photosensitive body
JP2948937B2 (en) Image forming device
JP2985984B2 (en) Image forming device
JPH052296A (en) Image forming device
US4971872A (en) Electrostatic photocopying machine
JP2971166B2 (en) Image forming device
JPH0527563A (en) Image forming device
JP3000311B2 (en) Image forming device
JPH06337531A (en) Image forming device
JPH04296881A (en) Image forming device
JP3878752B2 (en) Image forming apparatus
JPH11305471A (en) Electrophotographic photoreceptor
JP4249751B2 (en) Image forming apparatus
JPH04324464A (en) Image forming method
JPH052297A (en) Image forming device
JP3004114B2 (en) Image forming method