JPH07174438A - Refrigerant flow divider - Google Patents

Refrigerant flow divider

Info

Publication number
JPH07174438A
JPH07174438A JP5321640A JP32164093A JPH07174438A JP H07174438 A JPH07174438 A JP H07174438A JP 5321640 A JP5321640 A JP 5321640A JP 32164093 A JP32164093 A JP 32164093A JP H07174438 A JPH07174438 A JP H07174438A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
heat exchanger
flow dividing
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5321640A
Other languages
Japanese (ja)
Other versions
JP3326930B2 (en
Inventor
Teruo Fujikoso
輝夫 藤社
Shigeru Narai
茂 成相
Eiji Nakasumi
英二 中角
Sadami Masahara
定巳 正原
Yoshiaki Uchida
好昭 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32164093A priority Critical patent/JP3326930B2/en
Publication of JPH07174438A publication Critical patent/JPH07174438A/en
Application granted granted Critical
Publication of JP3326930B2 publication Critical patent/JP3326930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform a refrigerant split flow optimum to various heat- exchangers by a method wherein the inside diameter ratio between the upper and lower stage pass sides is changed within a specified diameter ratio, the tip part of a branch straight pipe forms a cylindrical nozzle part, and the cylindrical nozzle part is located in a position situated facing the opening part of the branch part of a branch pipe. CONSTITUTION:A refrigerant flow divider has a pipe inside diameter set to a value within a range of 0.66<D2/D1<0.89 when 0 deg.<=theta2<40 deg., where the pipe inside diameter on the upper pass side is D1, the pipe inside diameter on the lower stage pass side is D2, the angle, at which a branch flow pipe is inserted in a heat-exchanger, with the vertical line is theta2. Further, when the angle of a line for interconnecting the centers of the pipe inside diameters D1 and D2 on the upper and lower stage pass sides with the center line of a straight pipe is theta1, the pipe inside diameter is set to a value within a range of 60 deg.<theta1<120 deg.. A cylindrical nozzle part is arranged facing the opening part of the branch part of the branch pipe. This constitution causes a flow of a refrigerant to be branched in optimum to various heat-exchangers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調機器や冷凍機器等
の冷凍サイクルにおいて、冷媒を分流するための冷媒分
流器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant flow divider for dividing a refrigerant in a refrigerating cycle such as an air conditioner or a refrigerating machine.

【0002】[0002]

【従来の技術】近年、空調機器の冷凍システムが多様化
しており、それに伴い熱交換器も伝熱効率の向上により
複数回路化し、これら種々の熱交換器に対応するため冷
媒分流器の使用頻度も増加しており、重要度が増してい
る。
2. Description of the Related Art In recent years, refrigeration systems for air conditioners have been diversified, and along with this, heat exchangers have multiple circuits due to improved heat transfer efficiency, and the frequency of use of a refrigerant shunt is also increased in order to cope with these various heat exchangers. It is increasing and its importance is increasing.

【0003】以下、図7を参照しながら上述した従来例
について説明する。従来例図7の冷媒分流器11は分流
管直管12と分流管分流部13とからなり、前記分流管
直管は筒状ノズル形状をしており、前記分流管分流部は
このノズルからの噴流を直角方向に変更し、熱交換器に
対し上段パス側14と下段パス側15に分流させる。ま
た、分流管分流部において上段パス側の管内径と下段パ
ス側の管内径は同一形状をしており同一内径である。
The above-mentioned conventional example will be described below with reference to FIG. Prior art example The refrigerant distributor 11 of FIG. 7 is composed of a straight pipe 12 for a distribution pipe and a flow dividing part 13 for a flow dividing pipe, and the straight pipe for the flow dividing pipe has a tubular nozzle shape. The jet flow is changed to a right-angled direction and divided into an upper pass side 14 and a lower pass side 15 with respect to the heat exchanger. Further, in the branch pipe dividing portion, the pipe inner diameter on the upper pass side and the pipe inner diameter on the lower pass side have the same shape and have the same inner diameter.

【0004】[0004]

【発明が解決しようとする課題】近年では高性能、低入
力化が叫ばれ、それに伴い様々な熱交換器が開発されて
おり、各々の熱交換器において最大の熱交換器能力を発
揮させるために最適の分流比で冷媒を分流させる技術が
必要になってきている。
In recent years, high performance and low power input have been demanded, and various heat exchangers have been developed accordingly, and in order to exert the maximum heat exchanger capacity in each heat exchanger. There is a need for a technology for diverting the refrigerant at an optimal diversion ratio.

【0005】この冷媒分流器11は上段パス側の管内径
と下段パス側の管内径が同一形状で同一内径である。従
って、図4に示すようなパス段数が10段の熱交換器で
あると分流管は熱交換器の右側面の前面中央部に設けら
れるため、上段パス側と下段パス側で冷媒は最適分流比
で分流される。しかし、図5に示すようなパス段数が1
2段である熱交換器の場合であると、分流管が熱交換器
の右側面の前面部に図5のように設けられているため、
冷房運転時において気液2相状態で分流管直管部分に流
入した冷媒は、分流管分流部により上段パス側と下段パ
ス側とに分流されるが、冷媒の流速による遠心力と重力
の影響により質量流量比の高い、液成分の多い冷媒が下
段パス側に多く流れ込み上段パス側と下段パス側との冷
媒分流比が最適とはならず、熱交換器能力を最大に発揮
することができないという問題が生じた。
In this refrigerant distributor 11, the inner diameter of the pipe on the upper pass side and the inner diameter of the pipe on the lower pass side have the same shape and the same inner diameter. Therefore, in the case of a heat exchanger having 10 pass stages as shown in FIG. 4, since the flow dividing pipe is provided at the center of the front surface on the right side of the heat exchanger, the refrigerant is optimally divided on the upper pass side and the lower pass side. It is divided by the ratio. However, the number of pass stages is 1 as shown in FIG.
In the case of a two-stage heat exchanger, since the flow dividing pipe is provided on the right front surface of the heat exchanger as shown in FIG. 5,
The refrigerant that has flowed into the straight pipe part of the diversion pipe in the gas-liquid two-phase state during the cooling operation is divided into the upper pass side and the lower pass side by the diversion pipe diversion part. The influence of centrifugal force and gravity due to the flow velocity of the refrigerant. Due to this, a large amount of refrigerant with a high mass flow rate and a large amount of liquid component flows into the lower path side, and the refrigerant distribution ratio between the upper path side and the lower path side is not optimal, and the heat exchanger capacity cannot be maximized. The problem arises.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は分流管分流部において上段パス側と下段
パス側の管内径D1,D2を垂線と分流管の熱交換器へ
挿入するときになす角度をθ2とした時、θ2の角度に
応じて管内径を変化させて冷媒を分流させることで、各
種熱交換器に最適の冷媒分流をさせようとするものであ
る。
In order to solve the above-mentioned problems, the present invention inserts the pipe inner diameters D1 and D2 of the upper pass side and the lower pass side into the heat exchanger of the vertical line and the flow dividing pipe in the flow dividing pipe dividing portion. When the angle to be made at the time is set to θ2, the pipe inner diameter is changed according to the angle of θ2 to divide the refrigerant so that the various heat exchangers are made to perform the optimum refrigerant distribution.

【0007】[0007]

【作用】本発明は、上記した構成により高性能の様々な
熱交換器の開発により、熱交換器のパス段数や熱交換器
長さ更には熱交換器角度が多種多様に変化しても、その
仕様に応じて分流管分流部における上段パス側と下段パ
ス側の管内径との内径比を変化させることで、各種熱交
換器において最大熱交換器能力が発揮できるように冷媒
を分流させることができる。
With the development of various high-performance heat exchangers having the above-described structure, the present invention can be used in various ways even if the number of pass stages of the heat exchanger, the length of the heat exchanger, and the heat exchanger angle are varied. By changing the inner diameter ratio of the inner diameters of the upper pass side and the lower pass side in the diversion pipe diversion section according to the specifications, the refrigerant is diverted so that the maximum heat exchanger capacity can be exerted in various heat exchangers. You can

【0008】[0008]

【実施例】以下、本発明の一実施例の冷媒分流器を搭載
した蒸発器について図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An evaporator equipped with a refrigerant distributor according to an embodiment of the present invention will be described below with reference to the drawings.

【0009】図1から図6で本発明の一実施例の冷媒分
流器の形状及び構成を説明する。まず図6で、冷媒分流
器を連結した冷暖房兼用の空気調和機の構成を示す。7
1は圧縮機で、四方弁72、室外熱交換器73、減圧器
74、室内熱交換器75を冷凍サイクルとして環状に連
結し、減圧器74と室内熱交換器75の間に冷媒分流器
76を接続して冷暖房兼用の空気調和機を構成する。
1 to 6, the shape and configuration of a refrigerant flow divider according to an embodiment of the present invention will be described. First, FIG. 6 shows the configuration of an air conditioner that is also used as a cooling and heating system and is connected with a refrigerant flow divider. 7
Reference numeral 1 denotes a compressor, in which a four-way valve 72, an outdoor heat exchanger 73, a pressure reducer 74, and an indoor heat exchanger 75 are annularly connected as a refrigeration cycle, and a refrigerant shunt 76 is provided between the pressure reducer 74 and the indoor heat exchanger 75. The air conditioner for both air conditioning and heating is constructed by connecting.

【0010】次に、図1および図2において冷媒分流器
の構成を説明する。図1は、下段パス側の管内径を絞り
込んで縮管にし、質量流量比の高い液成分の多い冷媒を
下段パス側に流れにくくした冷媒分流器を表わしてお
り、上段パス側の管内径をD1、下段パス側の管内径を
D2とした時、図5に示すように垂線と分流管の熱交換
器へ挿入するときになす角度をθ2とすると、0゜≦θ
2<40゜の場合、0.66<D2/D1<0.89の
範囲内で管内径を設計すると、冷媒の流速による遠心力
と重力の影響を受けて、下段パス側に液成分の多い冷媒
が流れ込むということが防止でき、上段パス側と下段パ
ス側とに冷媒を最適に分流させることができる。
Next, the structure of the refrigerant flow divider will be described with reference to FIGS. 1 and 2. FIG. 1 shows a refrigerant shunt in which the inner diameter of the lower-pass side is narrowed to make it a compressed tube so that a refrigerant having a large mass flow ratio and having a large amount of liquid components does not easily flow to the lower-pass side. Assuming that D1 is the inner diameter of the pipe on the lower pass side and D2 is the angle between the vertical line and the diversion pipe inserted into the heat exchanger as shown in FIG. 5, θ2 is 0 ° ≦ θ
In the case of 2 <40 °, if the inner diameter of the pipe is designed within the range of 0.66 <D2 / D1 <0.89, there are many liquid components on the lower pass side under the influence of centrifugal force and gravity due to the flow velocity of the refrigerant. It is possible to prevent the refrigerant from flowing in, and it is possible to optimally divide the refrigerant into the upper path side and the lower path side.

【0011】また、40゜≦θ2の時0.66<D2/
D1<0.89の範囲内で管内径を設計しても、まだ下
段パス側に液成分の多い冷媒が流れ込む場合は、図1に
示すように上、下段パス側の管内径の中心を結ぶ線と直
管の中心線とのなす角度をθ1とする時、60<θ1<
120゜の範囲内でθ1を設計すると、上段パス側と下
段パス側とに冷媒を最適に分流させることができる。一
例として、θ2=50゜の時、D2/D1=0.735
で設計しても上段パス側冷媒流量:下段パス側冷媒流量
=45:55で下段パス側に冷媒が多く流れ込むために
θ1=100゜に設計し、冷媒の流速による遠心力で上
段パス側へ冷媒を多く流し込み最適冷媒分流にさせてい
る。
When 40 ° ≦ θ2, 0.66 <D2 /
Even if the inner diameter of the pipe is designed within the range of D1 <0.89, if the refrigerant with a large amount of liquid component still flows into the lower pass side, the center of the inner diameter of the upper and lower pass sides is connected as shown in FIG. If the angle between the line and the center line of the straight pipe is θ1, then 60 <θ1 <
When θ1 is designed within the range of 120 °, the refrigerant can be optimally divided into the upper pass side and the lower pass side. As an example, when θ2 = 50 °, D2 / D1 = 0.735
Even if it is designed with, the upper-pass-side refrigerant flow rate: the lower-pass-side refrigerant flow rate = 45:55, so a large amount of refrigerant flows into the lower-pass side, so it was designed to θ1 = 100 °, and due to the centrifugal force due to the flow velocity of the refrigerant, the upper-pass side would A large amount of refrigerant is poured in to achieve the optimum refrigerant splitting.

【0012】また、図2は冷媒分流器において縮管部分
の構造を表わしたものであるが、31は分流部の分流管
において施したストッパーであり、このストッパーによ
り分流管の熱交換器への挿入代を規制し、分流管の熱交
換器への挿入時のバラツキを防止している。32は分流
管の縮管側の内径に設けたオリフィスで、このオリフィ
スにより下段パス側の管内径を縮管にしていると同時
に、冷媒音の防止と分流管の通常運転時に於ける振動を
防止している。
Further, FIG. 2 shows the structure of the contraction pipe portion in the refrigerant flow divider, and 31 is a stopper provided in the flow dividing pipe of the flow dividing portion, and this stopper prevents the flow dividing pipe from being connected to the heat exchanger. The insertion allowance is regulated to prevent variations when the diversion pipe is inserted into the heat exchanger. Reference numeral 32 is an orifice provided in the inner diameter of the diversion pipe on the side of the contraction pipe, which reduces the inner diameter of the pipe on the side of the lower path and at the same time prevents the refrigerant noise and the vibration of the diversion pipe during normal operation. is doing.

【0013】[0013]

【発明の効果】以上のように本発明は、各種多様な熱交
換器において冷媒分流器の分流管の管内径比、分流管分
流部と直管のなす角度を熱交換器に応じて変化させるこ
とで、様々な仕様の熱交換器に対し最適に冷媒を分流さ
せられるという効果がある。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, in various heat exchangers, the pipe inner diameter ratio of the diversion pipe of the refrigerant diversion device and the angle formed by the diversion pipe diversion portion and the straight pipe are changed according to the heat exchanger. Thus, there is an effect that the refrigerant can be optimally diverted to the heat exchangers of various specifications.

【0014】また、冷媒分流器の熱交換器への挿入時の
制限を施していることから製作上でのバラツキを防止す
る効果がある。
Further, since there is a restriction when inserting the refrigerant distributor into the heat exchanger, there is an effect of preventing variations in manufacturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷媒分流器の正面断
面図
FIG. 1 is a front sectional view of a refrigerant flow divider according to an embodiment of the present invention.

【図2】同側面断面図FIG. 2 is a side sectional view of the same.

【図3】(a)は同冷媒分流器を接続した熱交換器の側
面図 (b)は同熱交換器の斜視図
FIG. 3 (a) is a side view of a heat exchanger to which the refrigerant flow divider is connected, and FIG. 3 (b) is a perspective view of the heat exchanger.

【図4】(a)は同冷媒分流器を接続した熱交換器の側
面図 (b)は同熱交換器の斜視図
FIG. 4A is a side view of a heat exchanger to which the refrigerant flow divider is connected, and FIG. 4B is a perspective view of the heat exchanger.

【図5】同冷媒分流器を接続した熱交換器の側面図FIG. 5 is a side view of a heat exchanger to which the refrigerant flow divider is connected.

【図6】同冷媒分流器を接続した空気調和機の冷凍サイ
クル図
FIG. 6 is a refrigeration cycle diagram of an air conditioner to which the refrigerant flow divider is connected.

【図7】(a)は従来からある冷媒分流器の斜視図 (b)は同正面断面図FIG. 7A is a perspective view of a conventional refrigerant flow divider, and FIG. 7B is a front sectional view of the same.

【符号の説明】[Explanation of symbols]

11 従来例の冷媒分流器 12 分流管直管部分 13 分流管分流部分 14 上段パス側管内径 15 下段パス側管内径 D1 上段パス側管内径 D2 下段パス側管内径 θ1 上、下段パス側管内径の中心を結ぶ線と直管の中
心線とのなす角度 31 ストッパー 32 オリフィス θ2 垂線と分流管の熱交換器へ挿入するときになす角
度 71 圧縮機 72 四方弁 73 室外熱交換器 74 減圧器 75 室内熱交換器 76 冷媒分流器
11 Refrigerant flow diverter of the conventional example 12 Straight pipe part of the diversion pipe 13 Dividing pipe part of the diversion pipe 14 Inner diameter of the upper pass side pipe 15 Inner diameter of the lower pass side D1 Upper inner diameter of the pass side D2 Lower inner diameter of the pass side θ1 Upper and lower inner diameter of the pass side pipe Angle formed by the line connecting the centers of the straight pipe and the center line of the straight pipe 31 Stopper 32 Orifice θ2 The angle formed between the perpendicular line and the diversion pipe when it is inserted into the heat exchanger 71 Compressor 72 Four-way valve 73 Outdoor heat exchanger 74 Pressure reducer 75 Indoor heat exchanger 76 Refrigerant flow divider

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正原 定巳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 内田 好昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Sadami Masahara 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshiaki Uchida 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. In the company

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】分流管直管と分流管分流部とからなる分流
部分と、その分流管は蒸発器(熱交換器)の冷媒入口部
分に設けられ、前記分流管分流部は熱交換器の形状に応
じて最適冷媒分流となるように、上段パス側と下段パス
側の内径比の割合を一定の径比内で変化させるという特
徴を有し、また分流管直管は先端部が筒状ノズル部を形
成し、前記筒状ノズル部は分流管分流部の開口部に対向
する位置にある冷媒分流器。
1. A flow dividing portion comprising a straight pipe and a flow dividing pipe dividing portion, and the flow dividing pipe is provided at a refrigerant inlet portion of an evaporator (heat exchanger), and the flow dividing pipe dividing portion is provided in a heat exchanger. It has the feature that the ratio of the inner diameter ratio of the upper pass side and the lower pass side is changed within a certain diameter ratio so that the optimal refrigerant distribution is achieved according to the shape. Part, and the cylindrical nozzle part is located at a position facing the opening of the flow dividing pipe diversion part.
【請求項2】分流管分流部において、上段パス側の内径
をD1,下段パス側の内径をD2とすると、0.66<
D2/D1<0.89となる請求項1記載の冷媒分流
器。
2. In the branch pipe branching portion, if the inner diameter on the upper pass side is D1 and the inner diameter on the lower pass side is D2, then 0.66 <
The refrigerant shunt according to claim 1, wherein D2 / D1 <0.89.
【請求項3】分流管分流部において、上段、下段パス側
の内径の中心を結んだ線と分流管直管の中心線とのなす
角度をθ1とすると60゜<θ1<120゜となる請求
項1記載の冷媒分流器。
3. In the flow dividing portion of the flow dividing pipe, when the angle formed by the line connecting the centers of the inner diameters of the upper and lower paths and the center line of the straight pipe of the flow dividing pipe is θ1, 60 ° <θ1 <120 °. Item 2. The refrigerant flow divider according to item 1.
【請求項4】分流管分流部において、上段、下段パス側
の熱交換器への挿入部分にストッパーを設け、分流管の
熱交換器への挿入代を規制した請求項1記載の冷媒分流
器。
4. The refrigerant shunt according to claim 1, wherein a stopper is provided at an insertion portion of the diverter pipe in the heat exchanger on the upper and lower path sides to restrict an insertion allowance of the diverter pipe to the heat exchanger. .
【請求項5】分流管分流部において、上段、下段パス側
の縮管側において縮管内部にオリフィスを挿入すること
で、冷媒音の防止と通常運転時における分流管の振動を
防止するという特徴を有した請求項1記載の冷媒分流
器。
5. A feature of preventing the noise of the refrigerant and the vibration of the diverter pipe during normal operation by inserting an orifice into the inside of the diverter pipe in the diverter part of the diverter pipe at the upper and lower pass sides. The refrigerant flow divider according to claim 1, further comprising:
【請求項6】圧縮機、四方弁、室内熱交換器、減圧器、
室外熱交換器を冷凍サイクルとして環状に連結し、減圧
器と前記熱交換器で蒸発器の働きをする室内熱交換器と
の間に請求項1記載の冷媒分流器を接続して構成する冷
暖房兼用の空気調和機。
6. A compressor, a four-way valve, an indoor heat exchanger, a pressure reducer,
An air conditioner configured by connecting an outdoor heat exchanger in a ring as a refrigeration cycle, and connecting the refrigerant flow divider according to claim 1 between a pressure reducer and an indoor heat exchanger that functions as an evaporator in the heat exchanger. Combined air conditioner.
JP32164093A 1993-12-21 1993-12-21 Refrigerant shunt Expired - Lifetime JP3326930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32164093A JP3326930B2 (en) 1993-12-21 1993-12-21 Refrigerant shunt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32164093A JP3326930B2 (en) 1993-12-21 1993-12-21 Refrigerant shunt

Publications (2)

Publication Number Publication Date
JPH07174438A true JPH07174438A (en) 1995-07-14
JP3326930B2 JP3326930B2 (en) 2002-09-24

Family

ID=18134759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32164093A Expired - Lifetime JP3326930B2 (en) 1993-12-21 1993-12-21 Refrigerant shunt

Country Status (1)

Country Link
JP (1) JP3326930B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148419A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd Refrigerant branching pipe, and air conditioning device having refrigerant branching pipe attached thereto
JP2005134009A (en) * 2003-10-29 2005-05-26 Mitsubishi Electric Corp Refrigerant distributor
KR101416939B1 (en) * 2012-08-14 2014-07-08 엘지전자 주식회사 Outdoor heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148419A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd Refrigerant branching pipe, and air conditioning device having refrigerant branching pipe attached thereto
JP2005134009A (en) * 2003-10-29 2005-05-26 Mitsubishi Electric Corp Refrigerant distributor
KR101416939B1 (en) * 2012-08-14 2014-07-08 엘지전자 주식회사 Outdoor heat exchanger

Also Published As

Publication number Publication date
JP3326930B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP3376534B2 (en) Refrigerant distributor
US20080105420A1 (en) Parallel Flow Heat Exchanger With Crimped Channel Entrance
EP3064819B1 (en) Pipe joint, heat exchanger, and air conditioner
US20170328652A1 (en) Laminated header, heat exchanger, and air-conditioning apparatus
EP3690358B1 (en) Refrigerant distributor and air-conditioning device
US5417279A (en) Heat exchanger having in fins flow passageways constituted by heat exchange pipes and U-bend portions
JP2001174047A (en) Indoor unit of air conditioner
EP3951301B1 (en) Heat exchanger and refrigeration cycle device
JP4560939B2 (en) Refrigerant shunt and air conditioner using the same
JP3326930B2 (en) Refrigerant shunt
JPH08159615A (en) Refrigerant distribution structure of refrigeration cycle
JPH11325656A (en) Header flow divider
JPH07208831A (en) Distributor for refrigerator
JPH06194003A (en) Air conditioner
JPH0218449Y2 (en)
JPH0539969A (en) Condenser for refrigerant
JP3533709B2 (en) Refrigerant evaporator
CN220506932U (en) Indoor unit of air conditioner
KR20050064191A (en) Distributor for dividing refrigerant in air conditioner
JPH10170103A (en) Flow distributing pipe for air conditioner
JP2001208451A (en) Refrigerant distributor
JPH11118296A (en) Refrigeration cycle
JPH031592B2 (en)
JP2839330B2 (en) Refrigerant merger
JP2880560B2 (en) Refrigerant flow divider

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140712

Year of fee payment: 12

EXPY Cancellation because of completion of term