JPH11118296A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH11118296A
JPH11118296A JP9296233A JP29623397A JPH11118296A JP H11118296 A JPH11118296 A JP H11118296A JP 9296233 A JP9296233 A JP 9296233A JP 29623397 A JP29623397 A JP 29623397A JP H11118296 A JPH11118296 A JP H11118296A
Authority
JP
Japan
Prior art keywords
tube
pipe
contraction
branch
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9296233A
Other languages
Japanese (ja)
Inventor
Shigeru Narai
茂 成相
Hiroshi Fukuoka
弘嗣 福岡
Hitoshi Mogi
仁 茂木
Shoichi Yokoyama
昭一 横山
Osamu Aoyanagi
治 青柳
Sadami Masahara
定巳 正原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9296233A priority Critical patent/JPH11118296A/en
Publication of JPH11118296A publication Critical patent/JPH11118296A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent occurrence of turbulence of coolant by coupling an expansion valve with a contraction tube having the other end coupled with one end of a branch tube coupled with a capillary tube and providing the branch tube with a gas-liquid mixing part thereby making smooth the refrigerant flow without decreasing the current velocity of refrigerant after it is restricted by the expansion valve. SOLUTION: A compressor 10, a four-way valve 20, an expansion valve 40, capillary tubes 41, 42 and an evaporator 50 are disposed in an outdoor unit A and a condenser 30 is disposed in an outdoor unit B and then they coupled through piping into a closed circuit thus constituting a refrigeration cycle unit. The evaporator 50 is shunted to two passages which are provided with capillary tubes 41, 42 having different restriction quantity. Both capillary tubes 41, 42 are coupled with a branch pipe 60 having a gas-liquid mixing part and the expansion valve 40 is coupled with the branch pipe 60 through a contraction tube 70 having inside diameter smaller than that of the outlet tube of the expansion valve 40. According to the arrangement, shunting to respective capillary tubes 41, 42 is carried out as specified regardless of turbulence of refrigerant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸発器を複数の経
路に分流し、それぞれの経路に対応させて補助絞り装置
としてのキャピラリチューブを設けた冷凍サイクル装置
に関し、特に冷媒としてHFC系冷媒を用いた冷凍サイ
クル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus in which an evaporator is divided into a plurality of paths, and a capillary tube as an auxiliary expansion device is provided corresponding to each path. The present invention relates to a refrigeration cycle device used.

【0002】[0002]

【従来の技術】従来の冷凍サイクル装置としては、蒸発
器を複数の経路に分流し、それぞれの経路に対応させて
補助絞り装置としてのキャピラリチューブを設けたもの
が提案されている。このような冷凍サイクル装置は、絞
り装置を膨張弁とそれぞれのキャピラリチューブで構成
しているが、膨張弁とキャピラリチューブブロックとは
他の箇所に用いる液側配管と同じ内径の配管を用いて接
続している。
2. Description of the Related Art As a conventional refrigeration cycle apparatus, there has been proposed a refrigerating cycle apparatus in which an evaporator is divided into a plurality of paths and a capillary tube as an auxiliary throttle device is provided corresponding to each path. In such a refrigeration cycle apparatus, the expansion device is configured by an expansion valve and respective capillary tubes, but the expansion valve and the capillary tube block are connected by using a pipe having the same inner diameter as a liquid side pipe used in another part. doing.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の装置で
は、膨張弁で一旦絞った冷媒はキャピラリチューブに至
るまでの配管内において、乱流状態を生じてしまう。こ
の乱流の発生は、配管内を流れる冷媒音を増加させて騒
音問題を生じる。またこの乱流の発生により各キャピラ
リチューブへの分流が所定通りの分流とならない等の問
題を生じる。特に近年では、環境破壊防止の観点からH
CFC系冷媒に代えてHFC系冷媒の採用が検討されて
いるが、このHFC系冷媒は、HCFC系冷媒に比べて
密度が大きい。従って、HCFC系冷媒を用いた冷凍サ
イクルと同等な配管径の冷凍サイクル装置でHFC系冷
媒を用いると上記の問題は更に大きな問題となってしま
う。
However, in the above-described apparatus, the refrigerant once throttled by the expansion valve causes a turbulent flow state in the pipe leading to the capillary tube. The generation of the turbulence increases the noise of the refrigerant flowing through the pipe, and causes a noise problem. In addition, the occurrence of the turbulent flow causes a problem that the branch flow to each capillary tube is not a predetermined branch flow. Particularly in recent years, from the viewpoint of environmental destruction prevention, H
The use of an HFC-based refrigerant instead of the CFC-based refrigerant is being studied, but the HFC-based refrigerant has a higher density than the HCFC-based refrigerant. Therefore, if an HFC-based refrigerant is used in a refrigeration cycle device having a pipe diameter equivalent to that of a refrigeration cycle using an HCFC-based refrigerant, the above problem becomes even more serious.

【0004】そこで本発明は、特に膨張弁とキャピラリ
チューブとの間の接続に着目し、それぞれの分流が所定
の分流比となるようにすることを目的とする。
Accordingly, an object of the present invention is to pay particular attention to the connection between the expansion valve and the capillary tube, and to make each of the divided flows have a predetermined dividing ratio.

【0005】[0005]

【課題を解決するための手段】請求項1記載の本発明の
冷凍サイクル装置は、圧縮機、凝縮器、減圧装置、及び
蒸発器をそれぞれ環状に接続し、前記蒸発器を複数の経
路に分流し、前記減圧装置を膨張弁と複数の並列接続さ
れたキャピラリチューブで構成した冷凍サイクル装置に
おいて、前記膨張弁と前記キャピラリチューブとを縮流
管を介して接続したことを特徴とする。請求項2記載の
本発明の冷凍サイクル装置は、圧縮機、凝縮器、減圧装
置、及び蒸発器をそれぞれ環状に接続し、前記蒸発器を
複数の経路に分流し、前記減圧装置を膨張弁と複数の並
列接続されたキャピラリチューブで構成した冷凍サイク
ル装置において、前記膨張弁を縮流管と接続し、前記縮
流管を分岐管の一端に接続し、前記分岐管の他端にそれ
ぞれの前記キャピラリチューブを接続し、前記分岐管に
は気液混合部を有することを特徴とする。請求項3記載
の本発明の冷凍サイクル装置は、請求項2に記載の冷凍
サイクル装置において、前記分岐管と前記縮流管との接
続は、前記縮流管を前記分岐管の縮流管接続口に挿入す
ることにより行うことを特徴とする。請求項4記載の本
発明の冷凍サイクル装置は、請求項3に記載の冷凍サイ
クル装置において、前記分岐管は、前記縮流管の開口部
と対向する位置に凸状の分岐部を備え、前記分岐部の側
部に前記キャピラリチューブの開口部が位置するように
前記キャピラリチューブを接続することを特徴とする。
請求項5記載の本発明の冷凍サイクル装置は、請求項1
から請求項4のいずれかに記載の冷凍サイクル装置にお
いて、前記縮流管の内径は、前記膨張弁の出口配管の内
径以下であることを特徴とする。請求項6記載の本発明
の冷凍サイクル装置は、請求項1から請求項5のいずれ
かに記載の冷凍サイクル装置において、前記キャピラリ
チューブは、それぞれ絞り量を異ならせるとともに外観
上区別可能としたことを特徴とする。請求項7記載の本
発明の冷凍サイクル装置は、請求項6に記載の冷凍サイ
クル装置において、前記キャピラリチューブは、それぞ
れの内径をほぼ同一とするとともに外径を異ならせたこ
とを特徴とする。請求項8記載の本発明の冷凍サイクル
装置は、請求項6に記載の冷凍サイクル装置において、
前記キャピラリチューブは、それぞれの内径を異ならせ
たことを特徴とする。請求項9記載の本発明の冷凍サイ
クル装置は、請求項1から請求項8のいずれかに記載の
冷凍サイクル装置において、冷媒としてHFC系冷媒を
用いたことを特徴とする。請求項10記載の本発明の分
岐管は、一端に縮流管を挿入可能な縮流管接続口を有
し、前記縮流管接続口と対向する位置に凸状の分岐部を
有し、前記分岐部の側部にキャピラリチューブを挿入可
能なキャピラリチューブ接続口を複数個有することを特
徴とする。
According to a first aspect of the present invention, there is provided a refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, and an evaporator are connected in a ring shape, and the evaporator is divided into a plurality of paths. In the refrigeration cycle apparatus, wherein the pressure reducing device is configured by an expansion valve and a plurality of capillary tubes connected in parallel, the expansion valve and the capillary tube are connected via a flow reduction pipe. The refrigeration cycle device of the present invention according to claim 2 is configured such that a compressor, a condenser, a decompression device, and an evaporator are connected in a ring shape, the evaporator is divided into a plurality of paths, and the decompression device is provided with an expansion valve. In a refrigeration cycle apparatus including a plurality of parallel-connected capillary tubes, the expansion valve is connected to a contraction tube, the contraction tube is connected to one end of a branch tube, and the other end of the branch tube is connected to the other end of the branch tube. A capillary tube is connected, and the branch pipe has a gas-liquid mixing section. A refrigeration cycle apparatus according to a third aspect of the present invention is the refrigeration cycle apparatus according to the second aspect, wherein the connection between the branch pipe and the contraction pipe is performed by connecting the contraction pipe to the contraction pipe of the branch pipe. It is characterized by being inserted into the mouth. A refrigeration cycle apparatus according to a fourth aspect of the present invention is the refrigeration cycle apparatus according to the third aspect, wherein the branch pipe includes a convex branch part at a position facing an opening of the contraction pipe, The capillary tube is connected such that the opening of the capillary tube is located on the side of the branch portion.
The refrigeration cycle apparatus according to the fifth aspect of the present invention provides the refrigeration cycle apparatus according to the first aspect.
5. The refrigeration cycle apparatus according to claim 1, wherein an inner diameter of the contraction pipe is equal to or less than an inner diameter of an outlet pipe of the expansion valve. According to a sixth aspect of the present invention, there is provided the refrigeration cycle apparatus according to any one of the first to fifth aspects, wherein the capillary tubes have different amounts of contraction and are distinguishable in appearance. It is characterized by. A refrigeration cycle apparatus according to a seventh aspect of the present invention is the refrigeration cycle apparatus according to the sixth aspect, wherein the capillary tubes have substantially the same inner diameter and different outer diameters. The refrigeration cycle apparatus of the present invention according to claim 8 is the refrigeration cycle apparatus according to claim 6,
The capillary tubes have different inner diameters. A refrigeration cycle apparatus according to a ninth aspect of the present invention is the refrigeration cycle apparatus according to any one of the first to eighth aspects, wherein an HFC-based refrigerant is used as a refrigerant. The branch pipe of the present invention according to claim 10 has a contraction pipe connection port into which a contraction pipe can be inserted at one end, and has a convex branch portion at a position facing the contraction pipe connection port, A plurality of capillary tube connection ports into which a capillary tube can be inserted is provided on a side portion of the branch portion.

【0006】[0006]

【発明の実施の形態】本発明の第1の実施の形態におけ
る冷凍サイクル装置は、膨張弁とキャピラリチューブと
を縮流管を介して接続したものである。このように、本
実施の形態は、膨張弁とキャピラリチューブとの間の配
管を縮流管とすることによって、膨張弁で絞られた後の
冷媒の流速を低下させることなく冷媒流れをスムーズに
し、冷媒の乱流発生を防止することができる。従って、
それぞれのキャピラリチューブへの分流を、冷媒の乱流
によって乱されることなく、所定通りに行うことができ
る。また、乱流によって生じる配管内を流れる冷媒音を
減少できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigeration cycle apparatus according to a first embodiment of the present invention is one in which an expansion valve and a capillary tube are connected via a contraction tube. As described above, in the present embodiment, the pipe between the expansion valve and the capillary tube is a contraction pipe, so that the flow of the refrigerant can be made smooth without reducing the flow velocity of the refrigerant after being throttled by the expansion valve. Further, generation of turbulent refrigerant flow can be prevented. Therefore,
The branch flow to each of the capillary tubes can be performed in a predetermined manner without being disturbed by the turbulent flow of the refrigerant. Further, the noise of the refrigerant flowing through the pipe caused by the turbulence can be reduced.

【0007】本発明の第2の実施の形態における冷凍サ
イクル装置は、膨張弁を縮流管と接続し、この縮流管を
分岐管の一端に接続し、分岐管の他端にそれぞれのキャ
ピラリチューブを接続したもので、さらに、分岐管には
気液混合部を有するものである。このように、本実施の
形態は、膨張弁とキャピラリチューブとを縮流管を用い
て接続することによって、膨張弁で絞られた後の冷媒の
流速を低下させることなく冷媒流れをスムーズに行うこ
とができる。また分岐管は、その一端に縮流管を接続
し、他端にそれぞれのキャピラリチューブを接続すると
ともに、気液混合部を有することによって、縮流管から
流れてきた気液冷媒を気液混合部で混合した後にキャピ
ラリチューブに導くため、分流性能を高めることができ
る。従って、それぞれのキャピラリチューブへの分流
を、冷媒の乱流によって乱されることなく、所定通りに
行うことができる。また、乱流によって生じる配管内を
流れる冷媒騒音を防止できる。
In a refrigeration cycle apparatus according to a second embodiment of the present invention, an expansion valve is connected to a contraction pipe, the contraction pipe is connected to one end of a branch pipe, and each capillary is connected to the other end of the branch pipe. The tube is connected, and the branch pipe has a gas-liquid mixing section. As described above, in the present embodiment, by connecting the expansion valve and the capillary tube using the contraction pipe, the refrigerant flow is smoothly performed without reducing the flow velocity of the refrigerant after being throttled by the expansion valve. be able to. In addition, the branch pipe has one end connected to the contraction pipe and the other end connected to each capillary tube, and has a gas-liquid mixing section, so that the gas-liquid refrigerant flowing from the contraction pipe can be mixed with the liquid-liquid. Since the mixture is guided to the capillary tube after mixing in the section, the flow dividing performance can be improved. Therefore, the divided flows to the respective capillary tubes can be performed in a predetermined manner without being disturbed by the turbulent flow of the refrigerant. In addition, it is possible to prevent the noise of the refrigerant flowing through the piping caused by the turbulent flow.

【0008】本発明の第3の実施の形態は、第2の実施
の形態において、分岐管と縮流管との接続を、縮流管を
分岐管の縮流管接続口に挿入することにより行うもので
ある。このように、本実施の形態は、縮流管を分岐管の
内部に挿入するため、膨張弁で絞られた後の冷媒の流れ
を、分岐管内部に至るまで流速を低下させることなくス
ムーズに行うことができる。従って、分岐管内の気液混
合部の直前まで流速を低下させず、乱流の発生を最大限
に防止することができる。
According to a third embodiment of the present invention, in the second embodiment, the connection between the branch pipe and the contraction pipe is established by inserting the contraction pipe into the contraction pipe connection port of the branch pipe. Is what you do. As described above, in the present embodiment, since the contraction pipe is inserted into the inside of the branch pipe, the flow of the refrigerant after being throttled by the expansion valve is smoothly reduced without decreasing the flow velocity until reaching the inside of the branch pipe. It can be carried out. Therefore, the generation of turbulence can be prevented to a maximum without lowering the flow velocity until immediately before the gas-liquid mixing section in the branch pipe.

【0009】本発明の第4の実施の形態は、第3の実施
の形態において、分岐管は、縮流管の開口部と対向する
位置に凸状の分岐部を備え、この分岐部の側部にキャピ
ラリチューブの開口部が位置するようにキャピラリチュ
ーブを接続するものである。このように本実施の形態
は、このような分岐部を設けることによって、縮流管か
ら導入された冷媒の分流性能を高めることができ、それ
ぞれのキャピラリチューブにスムーズに分流することが
できる。
According to a fourth embodiment of the present invention, in the third embodiment, the branch pipe has a convex branch at a position facing the opening of the contraction pipe. The capillary tube is connected so that the opening of the capillary tube is located at the portion. As described above, in the present embodiment, by providing such a branch portion, the flow dividing performance of the refrigerant introduced from the contraction tube can be improved, and the refrigerant can be smoothly divided into the respective capillary tubes.

【0010】本発明の第5の実施の形態は、第1から第
4の実施の形態において、縮流管の内径を膨張弁の出口
配管の内径以下としたものである。このように縮流管を
膨張弁の出口配管の内径以下とすることによって、膨張
弁で絞られた後の冷媒の流速を低下させることなくスム
ーズに行うことができる。
A fifth embodiment of the present invention differs from the first to fourth embodiments in that the inner diameter of the contraction pipe is smaller than the inner diameter of the outlet pipe of the expansion valve. By setting the diameter of the contraction pipe to be equal to or less than the inner diameter of the outlet pipe of the expansion valve, the flow can be smoothly performed without lowering the flow velocity of the refrigerant throttled by the expansion valve.

【0011】本発明の第6の実施の形態は、第1から第
5の実施の形態において、キャピラリチューブは、それ
ぞれ絞り量を異ならせるとともに外観上区別可能とした
ものである。このようにそれぞれの絞り量を異ならせる
ことによって蒸発器のそれぞれの分流配管における蒸発
性能を最適に設定することができるとともに、外観上区
別可能とすることにより、配管接続時の接続間違いを防
止することができる。
According to a sixth embodiment of the present invention, in the first to fifth embodiments, the capillary tubes have different amounts of restriction and are distinguishable in appearance. In this way, by making the respective throttle amounts different, it is possible to optimally set the evaporation performance in each of the branch pipes of the evaporator, and to make it possible to distinguish the external appearance, thereby preventing a connection error when connecting the pipes. be able to.

【0012】本発明の第7の実施の形態は、第6の実施
の形態において、キャピラリチューブのそれぞれの内径
をほぼ同一とするとともに外径を異ならせたものであ
る。このように外径を異ならせることによって、外観上
の区別を可能とすることができる。
A seventh embodiment of the present invention is different from the sixth embodiment in that the inner diameters of the capillary tubes are made substantially the same and the outer diameters are made different. By differentiating the outer diameter in this way, it is possible to distinguish the appearance.

【0013】本発明の第8の実施の形態は、第6の実施
の形態において、キャピラリチューブのそれぞれの内径
を異ならせたものである。このように内径を異ならせる
ことによって、それぞれの絞り量を異ならせることがで
きる。
An eighth embodiment of the present invention differs from the sixth embodiment in that the inside diameters of the capillary tubes are different. By making the inner diameters different in this way, the respective aperture amounts can be made different.

【0014】本発明の第9の実施の形態は、第1から第
8の実施の形態において、冷媒としてHFC系冷媒を用
いたものである。このように冷媒としてHFC系冷媒を
用いた場合には、HCFC系冷媒に比較して密度が大き
いため、上記の効果はより顕著となる。
In a ninth embodiment of the present invention, an HFC-based refrigerant is used as the refrigerant in the first to eighth embodiments. As described above, when the HFC-based refrigerant is used as the refrigerant, the above effect is more remarkable because the density is higher than that of the HCFC-based refrigerant.

【0015】本発明の第10の実施の形態における分岐
管は、まず、一端に縮流管を挿入可能な縮流管接続口を
有している。このように縮流管側を挿入して接続可能と
することにより、分流管の内部に至るまで、冷媒の流れ
を流速の低下を生じることなくスムーズに行うことがで
きる。また、本実施の形態は、縮流管接続口と対向する
位置に凸状の分岐部を有することにより、縮流管から導
入された冷媒の分流性能を高めることができる。更に本
実施の形態は、分岐部の側部にキャピラリチューブを挿
入可能なキャピラリチューブ接続口を有することによっ
て、それぞれのキャピラリチューブにスムーズに分流す
ることができる。
The branch pipe according to the tenth embodiment of the present invention has, at one end, a contraction pipe connection port into which a contraction pipe can be inserted. In this way, by inserting the side of the contraction pipe so as to be connectable, it is possible to smoothly flow the refrigerant to the inside of the distribution pipe without lowering the flow velocity. Further, in the present embodiment, by having the convex branch portion at a position facing the contraction pipe connection port, the flow dividing performance of the refrigerant introduced from the contraction pipe can be improved. Further, in the present embodiment, by having a capillary tube connection port into which a capillary tube can be inserted at a side portion of the branch portion, the flow can be smoothly divided into the respective capillary tubes.

【0016】[0016]

【実施例】以下、本発明の一実施例による冷凍サイクル
装置を図面に基づいて説明する。図1は、同実施例を説
明するための空気調和装置の冷凍サイクル図である。同
図に示すように、圧縮機10、四方弁20、凝縮器3
0、絞り装置を構成する膨張弁40及びキャピラリチュ
ーブ41、42、及び蒸発器50をそれぞれ配管を介し
て環状に接続している。ここで、圧縮機10、四方弁2
0、膨張弁40及びキャピラリチューブ41、42、及
び蒸発器50は室外機Aに設けられ、凝縮器30は室内
機Bに設けられている。ここで蒸発器50は、2つの経
路に分流されている。そしてそれぞれの経路に接続され
る配管には、キャピラリチューブ41とキャピラリチュ
ーブ42とがそれぞれ設けられている。キャピラリチュ
ーブ41とキャピラリチューブ42とは、分岐管60に
接続されており、膨張弁40と分岐管60とは、縮流管
70によって接続されている。ここで縮流管70は、そ
の内径が膨張弁40の出口配管の内径以下の配管を用い
る。またキャピラリチューブ41とキャピラリチューブ
42とは、それぞれの絞り量が異なる。この絞り量は、
内径を異ならせて行うこともできるが、長さを異ならせ
ることによっても可能である。また、それぞれのキャピ
ラリチューブ41、42は、外観上区別できるように例
えば外径寸法を異ならせることが好ましい。本実施例に
用いる冷媒としては、HCFC系冷媒も用いることがで
きるが、HFC系冷媒を用いる場合にはさらに効果が高
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigeration cycle apparatus according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigeration cycle diagram of an air conditioner for explaining the embodiment. As shown in the figure, the compressor 10, the four-way valve 20, the condenser 3
0, the expansion valve 40, the capillary tubes 41 and 42, and the evaporator 50, which constitute the expansion device, are connected in a ring shape through respective pipes. Here, the compressor 10, the four-way valve 2
The expansion valve 40, the capillary tubes 41 and 42, and the evaporator 50 are provided in the outdoor unit A, and the condenser 30 is provided in the indoor unit B. Here, the evaporator 50 is divided into two paths. A capillary tube 41 and a capillary tube 42 are provided in the pipes connected to the respective paths. The capillary tube 41 and the capillary tube 42 are connected to a branch pipe 60, and the expansion valve 40 and the branch pipe 60 are connected by a contraction pipe 70. Here, a pipe whose inner diameter is equal to or smaller than the inner diameter of the outlet pipe of the expansion valve 40 is used as the contraction pipe 70. Also, the capillary tubes 41 and 42 have different amounts of throttle. This aperture is
It can be performed with different inner diameters, but it is also possible with different lengths. Further, it is preferable that the respective capillary tubes 41 and 42 have, for example, different outer diameters so as to be distinguishable in appearance. As the refrigerant used in the present embodiment, an HCFC-based refrigerant can be used. However, when an HFC-based refrigerant is used, the effect is even higher.

【0017】図2は、同実施例における分岐管60の概
略構成を説明するための断面図である。同図に示すよう
に、分岐管60は、その一端に縮流管70を接続するた
めの縮流管接続口61を有し、他端にキャピラリチュー
ブ41、42をそれぞれを接続するためのキャピラリチ
ューブ接続口62、63を有している。また、縮流管接
続口61に対向する位置には、凸状の分岐部64が設け
られている。また分岐部64の周囲には、気液混合部6
5が形成されている。縮流管70及びキャピラリチュー
ブ41、42は、それぞれ縮流管接続口61、又はキャ
ピラリチューブ接続口62、63に挿入することによっ
て接続される。
FIG. 2 is a sectional view for explaining a schematic configuration of the branch pipe 60 in the embodiment. As shown in the figure, the branch pipe 60 has a contraction pipe connection port 61 for connecting a contraction pipe 70 at one end thereof, and a capillary tube for connecting the capillary tubes 41 and 42 to the other end. Tube connection ports 62 and 63 are provided. Further, a protruding branch portion 64 is provided at a position facing the contraction pipe connection port 61. Further, around the branch portion 64, the gas-liquid mixing portion 6 is provided.
5 are formed. The contraction tube 70 and the capillary tubes 41 and 42 are connected by inserting them into the contraction tube connection port 61 or the capillary tube connection ports 62 and 63, respectively.

【0018】以下、上記実施例における冷媒の流れとそ
の状態を簡単に説明する。まず、圧縮機10によって圧
縮された高圧ガス冷媒は、四方弁20を経由して凝縮器
30に導かれる。高圧ガス冷媒は、この凝縮器30を通
過する間に凝縮され、高圧液冷媒となる。そして、この
高圧液冷媒は、膨張弁40によって低圧の気液2相の冷
媒となり、縮流管70に流れる。このとき、縮流管70
は、その内径が膨張弁40の出口配管の内径以下の配管
を用いているので、気液2相の冷媒は、縮流管70を流
れるときにその流速が減少することはなく、従って乱流
を生じることはない。従って、気液2相の冷媒は、この
ようにして縮流管70内をスムーズに流れ、分岐管60
の内部にまで至る。そして分岐管60内に導かれた冷媒
は、気液混合部65によって気液が混合されると同時
に、分岐部64によって分流され、それぞれのキャピラ
リチューブ41、42に流れ込む。このように、膨張弁
40を通過した後の冷媒は、配管の拡大による乱流発生
を生じにくい状態でそれぞれのキャピラリチューブ4
1、42に導かれるために、所定の分流比でそれぞれの
キャピラリチューブ41、42に冷媒を流すことができ
る。
Hereinafter, the flow and state of the refrigerant in the above embodiment will be briefly described. First, the high-pressure gas refrigerant compressed by the compressor 10 is guided to the condenser 30 via the four-way valve 20. The high-pressure gas refrigerant is condensed while passing through the condenser 30, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is turned into a low-pressure gas-liquid two-phase refrigerant by the expansion valve 40 and flows to the contraction pipe 70. At this time, the contraction pipe 70
Uses a pipe whose inner diameter is smaller than the inner diameter of the outlet pipe of the expansion valve 40, so that the flow rate of the gas-liquid two-phase refrigerant does not decrease when flowing through the contraction pipe 70. Does not occur. Therefore, the gas-liquid two-phase refrigerant smoothly flows in the contraction pipe 70 in this way, and the branch pipe 60
All the way to the inside. The refrigerant introduced into the branch pipe 60 is mixed with the gas and liquid by the gas-liquid mixing section 65, and at the same time, is split by the branch section 64 and flows into the respective capillary tubes 41 and 42. As described above, the refrigerant after passing through the expansion valve 40 is supplied to each of the capillary tubes 4 in a state in which turbulence is hardly generated due to expansion of the pipe.
Since the refrigerant is guided to 1, 42, the refrigerant can flow through the respective capillary tubes 41, 42 at a predetermined split ratio.

【0019】[0019]

【発明の効果】以上のように本発明の冷凍サイクル装置
は、膨張弁で絞られた後の冷媒の流速を低下させること
なく冷媒流れをスムーズにし、冷媒の乱流発生を防止す
ることができる。従って、それぞれのキャピラリチュー
ブへの分流を、冷媒の乱流によって乱されることなく、
所定通りに行うことができる。また、乱流によって生じ
る配管内を流れる冷媒騒音を防止できる。
As described above, the refrigeration cycle apparatus of the present invention can make the flow of the refrigerant smooth without reducing the flow velocity of the refrigerant after being throttled by the expansion valve, and can prevent the generation of turbulent flow of the refrigerant. . Therefore, the divided flows to the respective capillary tubes are not disturbed by the turbulent flow of the refrigerant,
It can be performed as prescribed. In addition, it is possible to prevent the noise of the refrigerant flowing through the piping caused by the turbulent flow.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての冷凍サイクル装置FIG. 1 is a refrigeration cycle apparatus as one embodiment of the present invention.

【図2】同実施例の分岐管の概略構成を示す断面図FIG. 2 is a sectional view showing a schematic configuration of a branch pipe of the embodiment.

【符号の説明】[Explanation of symbols]

10 圧縮機 20 四方弁 30 凝縮器 40 膨張弁 41 キャピラリチューブ 42 キャピラリチューブ 50 蒸発器 60 分岐管 61 縮流管接続口 62 キャピラリチューブ接続口 63 キャピラリチューブ接続口 64 分岐部 65 気液混合部 70 縮流管 DESCRIPTION OF SYMBOLS 10 Compressor 20 Four-way valve 30 Condenser 40 Expansion valve 41 Capillary tube 42 Capillary tube 50 Evaporator 60 Branch pipe 61 Contraction pipe connection port 62 Capillary tube connection port 63 Capillary tube connection port 64 Branch section 65 Gas-liquid mixing section 70 Contraction Flow tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 昭一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 青柳 治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 正原 定巳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Shoichi Yokoyama 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 72) Inventor Masami Masahara 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、及び蒸発器
をそれぞれ環状に接続し、前記蒸発器を複数の経路に分
流し、前記減圧装置を膨張弁と複数の並列接続されたキ
ャピラリチューブで構成した冷凍サイクル装置におい
て、前記膨張弁と前記キャピラリチューブとを縮流管を
介して接続したことを特徴とする冷凍サイクル装置。
1. A capillary tube in which a compressor, a condenser, a decompression device, and an evaporator are respectively connected in a ring shape, the evaporator is divided into a plurality of paths, and the decompression device is connected to an expansion valve and a plurality of parallel-connected capillary tubes. Wherein the expansion valve and the capillary tube are connected via a contraction tube.
【請求項2】 圧縮機、凝縮器、減圧装置、及び蒸発器
をそれぞれ環状に接続し、前記蒸発器を複数の経路に分
流し、前記減圧装置を膨張弁と複数の並列接続されたキ
ャピラリチューブで構成した冷凍サイクル装置におい
て、前記膨張弁を縮流管と接続し、前記縮流管を分岐管
の一端に接続し、前記分岐管の他端にそれぞれの前記キ
ャピラリチューブを接続し、前記分岐管には気液混合部
を有することを特徴とする冷凍サイクル装置。
2. A capillary tube in which a compressor, a condenser, a decompression device, and an evaporator are respectively connected in a ring shape, the evaporator is divided into a plurality of paths, and the decompression device is connected to an expansion valve and a plurality of parallel-connected capillary tubes. Wherein the expansion valve is connected to a contraction tube, the contraction tube is connected to one end of a branch tube, and each of the capillary tubes is connected to the other end of the branch tube. A refrigeration cycle apparatus having a gas-liquid mixing section in a pipe.
【請求項3】 前記分岐管と前記縮流管との接続は、前
記縮流管を前記分岐管の縮流管接続口に挿入することに
より行うことを特徴とする請求項2に記載の冷凍サイク
ル装置。
3. The refrigeration according to claim 2, wherein the connection between the branch pipe and the contraction pipe is performed by inserting the contraction pipe into a contraction pipe connection port of the branch pipe. Cycle equipment.
【請求項4】 前記分岐管は、前記縮流管の開口部と対
向する位置に凸状の分岐部を備え、前記分岐部の側部に
前記キャピラリチューブの開口部が位置するように前記
キャピラリチューブを接続することを特徴とする請求項
3に記載の冷凍サイクル装置。
4. The branch pipe includes a convex branch at a position facing the opening of the contraction pipe, and the capillary is positioned such that an opening of the capillary tube is positioned on a side of the branch. The refrigeration cycle apparatus according to claim 3, wherein a tube is connected.
【請求項5】 前記縮流管の内径は、前記膨張弁の出口
配管の内径以下であることを特徴とする請求項1から請
求項4のいずれかに記載の冷凍サイクル装置。
5. The refrigeration cycle apparatus according to claim 1, wherein an inner diameter of the contraction pipe is smaller than an inner diameter of an outlet pipe of the expansion valve.
【請求項6】 前記キャピラリチューブは、それぞれ絞
り量を異ならせるとともに外観上区別可能としたことを
特徴とする請求項1から請求項5のいずれかに記載の冷
凍サイクル装置。
6. The refrigeration cycle apparatus according to claim 1, wherein each of the capillary tubes has a different throttle amount and is distinguishable in appearance.
【請求項7】 前記キャピラリチューブは、それぞれの
内径をほぼ同一とするとともに外径を異ならせたことを
特徴とする請求項6に記載の冷凍サイクル装置。
7. The refrigeration cycle apparatus according to claim 6, wherein the capillary tubes have substantially the same inner diameter and different outer diameters.
【請求項8】 前記キャピラリチューブは、それぞれの
内径を異ならせたことを特徴とする請求項6に記載の冷
凍サイクル装置。
8. The refrigeration cycle apparatus according to claim 6, wherein the capillary tubes have different inner diameters.
【請求項9】 冷媒としてHFC系冷媒を用いたことを
特徴とする請求項1から請求項8のいずれかに記載の冷
凍サイクル装置。
9. The refrigeration cycle apparatus according to claim 1, wherein an HFC-based refrigerant is used as the refrigerant.
【請求項10】一端に縮流管を挿入可能な縮流管接続口
を有し、前記縮流管接続口と対向する位置に凸状の分岐
部を有し、前記分岐部の側部にキャピラリチューブを挿
入可能なキャピラリチューブ接続口を複数個有すること
を特徴とする分岐管。
10. A contraction pipe connection port into which a contraction pipe can be inserted at one end, and a convex branch portion at a position facing the contraction tube connection port, and a side portion of the branch portion. A branch pipe having a plurality of capillary tube connection ports into which a capillary tube can be inserted.
JP9296233A 1997-10-14 1997-10-14 Refrigeration cycle Withdrawn JPH11118296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9296233A JPH11118296A (en) 1997-10-14 1997-10-14 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9296233A JPH11118296A (en) 1997-10-14 1997-10-14 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH11118296A true JPH11118296A (en) 1999-04-30

Family

ID=17830910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9296233A Withdrawn JPH11118296A (en) 1997-10-14 1997-10-14 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH11118296A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064489A (en) * 2005-08-29 2007-03-15 Sanyo Electric Co Ltd Air conditioner
JP2008008591A (en) * 2006-06-30 2008-01-17 Denso Corp Vapor compression type refrigerating cycle
CN100455944C (en) * 2003-06-24 2009-01-28 乐金电子(天津)电器有限公司 Silencer arrangement for expanding apparatus
CN100455945C (en) * 2003-06-24 2009-01-28 乐金电子(天津)电器有限公司 Silencer arrangement for expanding apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455944C (en) * 2003-06-24 2009-01-28 乐金电子(天津)电器有限公司 Silencer arrangement for expanding apparatus
CN100455945C (en) * 2003-06-24 2009-01-28 乐金电子(天津)电器有限公司 Silencer arrangement for expanding apparatus
JP2007064489A (en) * 2005-08-29 2007-03-15 Sanyo Electric Co Ltd Air conditioner
JP2008008591A (en) * 2006-06-30 2008-01-17 Denso Corp Vapor compression type refrigerating cycle
JP4529954B2 (en) * 2006-06-30 2010-08-25 株式会社デンソー Vapor compression refrigeration cycle

Similar Documents

Publication Publication Date Title
US20090282861A1 (en) Air conditioning apparatus
CN106917913A (en) Motor-driven valve
US6026654A (en) Multi-unit air conditioner having a by-pass section for adjusting a flow rate of refrigerant
JP5696069B2 (en) Refrigeration cycle equipment
JP4248770B2 (en) Gas-liquid separator and air conditioner using the same
JPH11118296A (en) Refrigeration cycle
CN209512174U (en) A kind of refrigeration air-conditioner throttling set
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JP2003214727A (en) Fluid distributor and air conditioner with the same
JPH08159615A (en) Refrigerant distribution structure of refrigeration cycle
CN205138011U (en) Off -premises station refrigerant piping system, outer machine of air -conditioner and air conditioner
JP2020201011A (en) air conditioner
JP5193630B2 (en) Heat exchanger
JPH094941A (en) Refrigerating device
KR100589655B1 (en) Air conditioner
CN105066528B (en) air conditioning system, air conditioner and air conditioner control method
JPS60114662A (en) Air conditioner
JPH07174438A (en) Refrigerant flow divider
JPH08128760A (en) Air conditioner
CN106352576A (en) Cooling system
JPH10252908A (en) Refrigerant stream lining unit and air conditioner
WO2015025414A1 (en) Refrigeration cycle device, and air conditioner and water heater using same refrigeration cycle device
JPH09318198A (en) Air conditioner
JP2005221096A (en) Air conditioner and refrigerant flow noise reducing member
CN102734985B (en) Evaporimeter, condenser and air-conditioning system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104