JPH07172835A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH07172835A
JPH07172835A JP5322006A JP32200693A JPH07172835A JP H07172835 A JPH07172835 A JP H07172835A JP 5322006 A JP5322006 A JP 5322006A JP 32200693 A JP32200693 A JP 32200693A JP H07172835 A JPH07172835 A JP H07172835A
Authority
JP
Japan
Prior art keywords
superconductor
oxide superconductor
crystal
powder
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5322006A
Other languages
Japanese (ja)
Inventor
Takao Nakada
孝夫 中田
Shuichiro Shimoda
修一郎 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Research Institute for Metals
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
National Research Institute for Metals
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Research Institute for Metals, Research Development Corp of Japan filed Critical Hitachi Chemical Co Ltd
Priority to JP5322006A priority Critical patent/JPH07172835A/en
Publication of JPH07172835A publication Critical patent/JPH07172835A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide a method for producing an oxide superconductor by which crystals can be oriented in a certain direction without causing ununiformity in thickness. CONSTITUTION:When a powdery mixture of a precursor of an oxide superconductor convertible into the oxide superconductor by heating with flat platy superconductor crystals is compacted and heated to produce an oxide superconductor, force is applied to the powdery mixture from one direction to orient the flat platy superconductor crystals contained in the mixture before heating or the mixture is wet-mixed, molded into a green sheet and crystallized by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電流密度の高い酸化物
超電導体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor having a high current density.

【0002】[0002]

【従来の技術】酸化物超電導体(以下超電導体とする)
は一般に、各成分の金属酸化物を混合した後、必要に応
じ加熱処理した粉体を用いたり、炭酸塩あるいはアルコ
キシドを液に溶解後共沈して得た粉体を板状に成形加工
したり、金属板に塗布したり、金属円筒内に入れ引伸ば
した後焼成して製造される。ところがこのようにして製
造した超電導体は、希望した結晶や結晶配列が得られな
いなどのため、臨界温度及び臨界電流密度が低くなり易
かった。ただ例外的に臨界温度及び臨界電流密度を共に
高くする場合、超電導体の分解溶融温度で焼成する方法
が知られている。
2. Description of the Related Art Oxide superconductors (hereinafter referred to as superconductors)
Is generally used by mixing the metal oxides of the respective components and then using heat-treated powder if necessary, or by dissolving the carbonate or alkoxide in the liquid and then coprecipitating the powder to form a plate. Alternatively, it is manufactured by applying it to a metal plate, or putting it in a metal cylinder, stretching it, and then firing it. However, in the superconductor manufactured in this way, the desired temperature and critical current density tend to be low because the desired crystal and crystal arrangement cannot be obtained. However, in the case of raising both the critical temperature and the critical current density exceptionally, a method of firing at the decomposition melting temperature of the superconductor is known.

【0003】また、超電導体組成物を完全に溶解し、融
液を銀あるいは銅板上に落下させて急冷させた後粉砕し
て得た粉体を焼成すれば、臨界温度及び臨界電流密度が
共に高い超電導体が得られることも知られている。
Further, when the superconductor composition is completely dissolved, the melt is dropped on a silver or copper plate to be rapidly cooled, and then the powder obtained by crushing is fired, both the critical temperature and the critical current density are increased. It is also known that high superconductors can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら超電導体
の分解溶融温度で焼成する方法は、臨界温度及び臨界電
流密度が共に高くなる製造法ではあるが、超電導体成分
の一部が溶融するため、成形体としたものを焼成するこ
とはできない。そこで、ある種の基材表面に超電導体を
焼成、焼き付けるが、このような方法で超電導体を製造
した場合は、溶融による流れ現象で超電導体厚みの不均
一を生じる欠点がある。また、分解溶融温度で焼成した
超電導体の結晶配列は、超電導体層の厚さで変わり、厚
さが約50μm以下のものでは基材の表面と超電導体の
ab面が並行になり易く、臨界電流密度の高いものが得
られるが、しかし超電導体厚みが厚くなると、結晶の方
位が乱雑になり易く、そのため臨界電流密度は急激に低
下してしまう。このように大電流を流せるように、高い
臨界電流密度の超電導体層を厚く形成することができな
いため、必要な臨界電流が得られるように、高い臨界電
流密度を有し、かつ厚さの薄い超電導体を多数重ねて導
体に用いているのが現状である。
However, the method of firing at the decomposition and melting temperature of the superconductor is a manufacturing method in which both the critical temperature and the critical current density increase, but since a part of the superconductor component is melted It is not possible to bake the whole body. Therefore, a superconductor is fired and baked on the surface of a certain kind of base material. However, when the superconductor is manufactured by such a method, there is a drawback in that the flow phenomenon due to melting causes nonuniformity of the superconductor thickness. Also, the crystal arrangement of the superconductor fired at the decomposition and melting temperature changes depending on the thickness of the superconductor layer, and if the thickness is about 50 μm or less, the surface of the base material and the ab plane of the superconductor are likely to be parallel, A high current density can be obtained, but as the thickness of the superconductor increases, the crystal orientation tends to become disordered, so that the critical current density sharply decreases. Since it is not possible to form a thick superconducting layer having a high critical current density so that a large current can flow, a high critical current density and a thin thickness are required so that a necessary critical current can be obtained. At present, many superconductors are stacked and used as conductors.

【0005】一方、融液を銀あるいは銅板上に落下させ
て急冷する方法は、結晶を一定方向に配向させることが
できないという欠点がある。本発明は上記のような欠点
のない超電導体の製造法を提供するものである。
On the other hand, the method of dropping the melt on a silver or copper plate and quenching it has the drawback that the crystals cannot be oriented in a fixed direction. The present invention provides a method for producing a superconductor which does not have the above-mentioned drawbacks.

【0006】[0006]

【課題を解決するための手段】本発明は、超電導体層の
厚さによらずに、結晶が一定方向に配向した超電導体膜
が得られ、臨界温度及び臨界電流密度が共に高くなる超
電導体の製造法について探索した結果、なされたもので
ある。即ち、加熱することにより超電導体になる超電導
体前駆体に対し、平板状超電導体結晶を添加混合し、配
向処理した後焼成することにより、添加した結晶が結晶
核として作用し、かつ結晶成長方位をも制御するため結
晶が一定方向に配向した超電導体膜が得られることを見
出した。
The present invention provides a superconductor film in which crystals are oriented in a certain direction regardless of the thickness of the superconductor layer, and the critical temperature and the critical current density are both high. It was made as a result of searching for a manufacturing method of. That is, a plate-shaped superconductor crystal is added to and mixed with a superconductor precursor which becomes a superconductor when heated, and after the orientation treatment is performed, the added crystal acts as a crystal nucleus and a crystal growth direction. It was found that a superconducting film in which crystals are oriented in a certain direction can be obtained in order to control the above.

【0007】詳しくは、加熱することにより超電導体に
なる超電導前駆体とab面がよく成長した平板状超電導
体結晶を添加混合した後、混合粉体を所定の形状に成形
し、平板状超電導体結晶を一定方向に配向させた後加熱
処理すると超電導体前駆体からC軸が一定方向に揃った
同種の結晶が結晶成長する結果、高配向性であり、かつ
異質な結晶、ガラス相等の異相の含有率が少ない超電導
体が得られることを見出し、本発明を完成するに至っ
た。
More specifically, a superconducting precursor which becomes a superconductor by heating and a plate-shaped superconductor crystal in which the ab plane is well grown are added and mixed, and then the mixed powder is molded into a predetermined shape to obtain a plate-shaped superconductor. When the crystals are oriented in a certain direction and then heat-treated, crystals of the same kind with the C-axis aligned in a certain direction grow from the superconductor precursor, resulting in highly oriented and heterogeneous crystals, heterogeneous phases such as glass phases, and the like. They have found that a superconductor having a low content can be obtained, and have completed the present invention.

【0008】本発明は加熱することにより超電導体にな
る超電導体前駆体と平板状超電導体結晶との混合粉体を
成形、加熱処理して超電導体を製造する方法において、
該混合粉体の一方向から力を加え混合粉体に含まれる平
板状超電導体結晶を配向させた後加熱処理するか又は該
混合粉体を湿式混合し生シートを成形後、加熱処理し
て、結晶化させる超電導体の製造法に関する。
The present invention relates to a method for producing a superconductor by molding a mixed powder of a superconductor precursor and a flat plate-shaped superconductor crystal which become a superconductor by heating and heat-treating the mixture.
A force is applied from one direction of the mixed powder to orient the flat superconducting crystals contained in the mixed powder and then heat treatment is performed, or the mixed powder is wet mixed to form a green sheet, and then heat treated. , A method for producing a superconductor to be crystallized.

【0009】本発明において、超電導前駆体は、超電導
体組成になるように各酸化物、例えばBi系超電導体に
なる成分の酸化物を均一に混合した後、溶融し、急冷、
粉砕した粉体を用いることが望ましい。溶融物の冷却は
金属板上に流し出して急速冷却する方法に限らず。溶融
後、炉外に取り出し空冷するかあるいは水中に落下させ
て冷却しても良い。本発明における超電導体としては、
Bi系超電導体の他に、Y系超電導体、Tl系超電導体
等がある。
In the present invention, the superconducting precursor is homogeneously mixed with each oxide so as to have a superconductor composition, for example, an oxide of a component to be a Bi-based superconductor, and then melted and quenched,
It is desirable to use a crushed powder. The cooling of the melt is not limited to the method of pouring on the metal plate and rapidly cooling. After melting, it may be taken out of the furnace and cooled by air, or may be dropped into water to be cooled. As the superconductor in the present invention,
In addition to Bi-based superconductors, there are Y-based superconductors, Tl-based superconductors, and the like.

【0010】なお、各酸化物を均一に混合した粉体を用
いる場合、それらを溶融温度より低い温度で熱処理した
後粉砕した粉体を用いる場合、あるいは更に長時間又は
強いせんだん力を与えて非晶質化した粉体を用いても本
発明の効果が得られる。
When powders obtained by uniformly mixing the respective oxides are used, when powders obtained by heat treating them at a temperature lower than the melting temperature and then pulverizing are used, or for a longer time or by applying a strong shearing force. The effect of the present invention can be obtained by using an amorphous powder.

【0011】また銀を含有させた超電導体前駆体を用い
ると加熱処理温度を下げることができるため、加熱処理
の際、結晶核として働く平板状超電導体結晶が安定して
存在できることから、配向効果が得られ易いので好まし
い。銀は超電導体前駆体内に5μm以下の微細で、均一
に分布している部分が該前駆体に対して0.5重量%以
上入っていれば添加効果が得られるので好ましい。
When a superconductor precursor containing silver is used, the temperature of the heat treatment can be lowered, so that a flat plate-shaped superconductor crystal which acts as a crystal nucleus can stably exist during the heat treatment, so that the orientation effect can be obtained. Is preferred, which is preferable. It is preferable that silver has a fineness of 5 μm or less in the superconductor precursor and 0.5% by weight or more of the portion uniformly distributed in the precursor because the addition effect can be obtained.

【0012】添加する平板状超電導体結晶は、分解溶融
方法によって得られるような、超電導体に特有なab両
方向が成長した結晶であり、その寸法は平均粒径で2μ
m以上であれば結晶成長方位を制御する効果が得られ易
いので好ましい。添加量は特に制限はないが得られる超
電導体に対し1重量%以上添加することが好ましい。
The tabular superconductor crystal to be added is a crystal which is obtained by the decomposition and melting method and which grows in both directions ab, which is peculiar to superconductors, and the size thereof is 2 μm in average grain size.
When it is m or more, the effect of controlling the crystal growth orientation is easily obtained, which is preferable. The addition amount is not particularly limited, but it is preferable to add 1% by weight or more to the obtained superconductor.

【0013】混合方法は特に制限する必要はないが、添
加した平板状超電導体結晶が取扱中に非晶質化あるいは
他の結晶に相転移しないような方法が好ましい。平板状
超電導体結晶の配向化処理は、成形時に粉体に一軸加圧
等、一方向から力を加えたりして成形体を引き伸ばすよ
うな方法あるいは湿式混合した泥将をシート状に乾燥し
たり、更には必要に応じ乾燥したシートを加圧、引き伸
ばす方法が適用できる。
The mixing method is not particularly limited, but a method in which the added tabular superconductor crystal does not become amorphous or undergo phase transition to another crystal during handling is preferable. The orientation treatment of the flat superconductor crystal is performed by a method such as applying uniaxial pressure to the powder at the time of molding to apply a force from one direction to elongate the molded body, or dry a wet mixed mud commander into a sheet. Further, a method of applying pressure and stretching a dried sheet can be applied if necessary.

【0014】超電導体前駆体から超電導体結晶を析出さ
せる加熱処理は、結晶が成長するような温度、雰囲気条
件であれば良く、例えば、添加した平板状超電導体結晶
が分解溶融する温度より数度低い温度で熱処理すると希
望した結晶組織が得られ易い。加熱処理中あるいは加熱
処理後に、処理雰囲気中の酸素分圧を調整するのは結晶
を析出し易くしたり、超電導体特性を向上させる効果が
あり、本発明の効果を失わせるものではない。
The heat treatment for precipitating the superconductor crystal from the superconductor precursor may be carried out at a temperature and an atmospheric condition such that the crystal grows. For example, a temperature of several degrees from the temperature at which the added flat superconductor crystal decomposes and melts. Heat treatment at a low temperature makes it easy to obtain a desired crystal structure. Adjusting the oxygen partial pressure in the treatment atmosphere during or after the heat treatment has the effect of facilitating the precipitation of crystals and improving the superconductor characteristics, and does not impair the effects of the present invention.

【0015】超電導体前駆体および添加する平板状超電
導体結晶は同一組成である必要はなく、析出させる結晶
組成とほぼ同じであれば良い。なお、析出させる超電導
体は、Bi系の2212相あるいは2223相が好まし
く、このうち2212相であれば本発明において特に優
れた効果を示すので好ましい。
The superconductor precursor and the tabular superconductor crystal to be added do not have to have the same composition, as long as they have substantially the same composition as the crystal to be deposited. Note that the superconductor to be deposited is preferably a Bi-based 2212 phase or 2223 phase, and among these, the 2212 phase is preferable because it exhibits a particularly excellent effect in the present invention.

【0016】[0016]

【実施例】以下本発明の実施例を説明する。なお本発明
は以下の実施例の範囲に限定されるものでない。 実施例1 ビスマス、ストロンチウム、カルシウム及び銅の比率が
原子比で2:2:1:2となるように純度99.9%以
上の酸化ビスマス(高純度化学研究所製)913.29
g、炭酸ストロンチウム(レアメタリック製)578.
71g、炭酸カルシウム(高純度化学研究所製)19
6.17g及び酸化第二銅(高純度化学研究所製)31
1.82gを秤量し、出発原料粉とした。
EXAMPLES Examples of the present invention will be described below. The present invention is not limited to the scope of the examples below. Example 1 Bismuth oxide having a purity of 99.9% or more (manufactured by Kojundo Chemical Laboratory Co., Ltd.) 913.29 so that the atomic ratio of bismuth, strontium, calcium and copper is 2: 2: 1: 2.
g, strontium carbonate (made by rare metallic) 578.
71 g, calcium carbonate (manufactured by Kojundo Chemical Laboratory) 19
6.17 g and cupric oxide (manufactured by Kojundo Chemical Laboratory) 31
1.82 g was weighed and used as the starting raw material powder.

【0017】次に上記の出発原料粉を合成樹脂製ボール
ミル内に合成樹脂で被覆した鋼球ボール及びメタノール
2000gと共に充てんし、毎分50回転の条件で72
時間湿式混合した。乾燥後銀製の容器に入れて電気炉で
1000℃で30分間、大気中で加熱溶融した。その後
直ちに取り出し、空冷して、乳鉢で200メッシュ以下
に乾式粉砕した。得られた粉体100重量部に対しポリ
ビニールアルコール(クラレ製)1%水溶液を15重量
部添加してペースト化し、このものを銀板に塗布乾燥し
た後、大気中で875℃で10時間加熱処理して、Bi
系2212相超電導体の多結晶体を得た。銀板から剥離
後、乳鉢で軽く粉砕して、レーザーによる粒度分布測定
法の平均粒径が11μm、電子顕微鏡観察では15μm
程度の薄片が多く含まれた、添加用の平板状超電導体結
晶粉末を得た。
Next, the above starting raw material powder was filled in a synthetic resin ball mill together with a steel ball covered with a synthetic resin and 2000 g of methanol, and the condition was 50 rpm for 72 minutes.
Wet mixed for hours. After drying, it was placed in a silver container and heated and melted in the atmosphere at 1000 ° C. for 30 minutes in an electric furnace. Then, it was immediately taken out, air-cooled, and dry-ground in a mortar to 200 mesh or less. To 100 parts by weight of the obtained powder, 15 parts by weight of a 1% aqueous solution of polyvinyl alcohol (manufactured by Kuraray) was added to form a paste, which was applied to a silver plate and dried, and then heated at 875 ° C for 10 hours in the atmosphere. Process, Bi
A polycrystalline body of 2212-phase superconductor was obtained. After peeling from the silver plate, lightly crushed in a mortar, the average particle size measured by a laser particle size distribution is 11 μm, and observed by an electron microscope to be 15 μm.
A flat plate-shaped superconductor crystal powder for addition, which contained a large amount of thin flakes, was obtained.

【0018】次に、前記のボールミルで湿式混合後、乾
式粉砕して得た粉体98重量%に銀粉(平均粒径5μ
m、田中マッセイ製)を2重量%添加して混合し、該混
合物を前記と同様に銀製の容器に入れて電気炉で100
0℃で30分間溶融した。その後直ちに取り出し、空冷
して、乳鉢で200メッシュ以下に乾式粉砕して、Bi
系2212相超電導体前駆体粉体を得た。得られたBi
系2212相超電導体前駆体粉体には少量の2212相
及び異相が含まれていた。
Next, 98% by weight of powder obtained by wet-mixing with the above ball mill and dry pulverization was added to silver powder (average particle size 5 μm).
m, made by Tanaka Massey) and mixed, and the mixture was put in a silver container in the same manner as above and placed in an electric furnace at 100%.
Melted at 0 ° C. for 30 minutes. Immediately after that, take out, air cool, dry pulverize to 200 mesh or less in a mortar, and
A 2212-phase superconductor precursor powder was obtained. Bi obtained
The 2212-phase superconductor precursor powder contained a small amount of 2212 phase and a different phase.

【0019】次いで上記で得られたBi系2212相超
電導体前駆体粉体に上記で得られた平板状超電導体結晶
粉末を表1に示す量で添加し、均一に混合した。その後
この混合粉末を1軸加圧成形(面圧49×106Pa)
し、厚さが1.5mmの成形体を得た。更に該成形体を銀
板上に置き、大気中で865℃で10時間加熱処理して
結晶化させ、厚さが0.8mmの銀板に焼き付いた試料を
得た。各試料の配向状態、2212相含有率及び配向率
を試料の表面(焼成表面)、銀板との剥離面(銀板面)
及び折り曲げた断面(中間部)について偏光顕微鏡及び
粉末X線回折法で調べた。その結果を表1に示す。
Then, the tabular superconductor crystal powder obtained above was added to the Bi-based 2212 phase superconductor precursor powder obtained above in an amount shown in Table 1 and mixed uniformly. Then, this mixed powder is uniaxially pressed (surface pressure 49 × 10 6 Pa).
Then, a molded body having a thickness of 1.5 mm was obtained. Further, the molded body was placed on a silver plate and heat-treated in the air at 865 ° C. for 10 hours to be crystallized to obtain a sample baked on a silver plate having a thickness of 0.8 mm. Orientation state of each sample, 2212 phase content rate and orientation rate of the sample surface (fired surface), the peeled surface from the silver plate (silver plate surface)
The bent cross section (intermediate part) was examined by a polarization microscope and a powder X-ray diffraction method. The results are shown in Table 1.

【0020】なおX線回折による2212相含有率は試
料の表面あるいは銀板から剥した面をそのままX線回折
し、Cuを対陰極としてX線回折して得られた2θが3
〜60の間にある2212相の回折ピークのうち、00
Lに属する回折ピークの回折強度の合計値が最大の試料
を100として、各試料の回折強度の相対値で示した。
配向率は同様にして、00Lに属する回折ピークの回折
強度の合計値を、2212相の全回折ピークの回折強度
の合計値で除した値をパーセント表示で示した。また配
向の表示は、偏光顕微鏡で観察した観察面全体を平板状
結晶が覆っている状態について、乱雑に成長、ほぼ全体
が結晶化配向、全体が結晶化配向、全体が結晶化強く配
向の4段階で示した。
The 2212 phase content by X-ray diffraction was 2θ of 3 obtained by X-ray diffracting the surface of the sample or the surface peeled from the silver plate as it was, and X-ray diffracting with Cu as an anticathode.
Of the 2212 phase diffraction peaks between -60 and 00
The sample having the maximum total of the diffraction intensities of the diffraction peaks belonging to L was set as 100, and the relative value of the diffraction intensity of each sample was shown.
Similarly, for the orientation rate, a value obtained by dividing the total value of the diffraction intensities of the diffraction peaks belonging to 00L by the total value of the diffraction intensities of all the diffraction peaks of the 2212 phase was shown in percentage. In addition, the orientation is displayed in a state where the plate-like crystals cover the entire observation surface observed with a polarization microscope, and the crystals grow randomly, almost the entire crystallization orientation, the entire crystallization orientation, and the entire crystallization strong orientation. Shown in stages.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 実施例1で用いた2重量%の銀粉を含んだBi系221
2相超電導体前駆体粉末に実施例1で用いた平板状超電
導体結晶粉末を表2に示す量で添加したもの100重量
部に対しポリビニールアルコール(クラレ製)10%水
溶液を17重量部、蒸留水3重量部及びジオクチルフタ
レート(小宗化学製、試薬)2重量部を添加してペース
ト化し、ステンレスの薄板にシート成形、乾燥、剥離し
て厚さが0.8mmの生シートを得た。次いで生シートを
0.1mmの銀板に10MPaの圧力で圧着し、大気中で
865℃で10時間加熱処理して、結晶化させた。得ら
れた試料について、実施例1と同様の方法で配向状態、
2212相含有率及び配向率を調べた。その結果を表2
に示す。
Example 2 Bi system 221 containing 2% by weight of silver powder used in Example 1
17 parts by weight of a 10% aqueous solution of polyvinyl alcohol (manufactured by Kuraray) was added to 100 parts by weight of the two-phase superconductor precursor powder to which the plate-shaped superconductor crystal powder used in Example 1 was added in the amount shown in Table 2. 3 parts by weight of distilled water and 2 parts by weight of dioctyl phthalate (manufactured by Komune Chemical Co., Ltd.) were added to form a paste, which was formed into a thin stainless steel sheet, dried and peeled to obtain a 0.8 mm-thick raw sheet. . Next, the green sheet was pressure-bonded to a 0.1 mm silver plate at a pressure of 10 MPa, and heat-treated in the air at 865 ° C. for 10 hours to be crystallized. For the obtained sample, the orientation state was measured in the same manner as in Example 1,
The 2212 phase content and orientation were investigated. The results are shown in Table 2.
Shown in.

【0023】[0023]

【表2】 [Table 2]

【0024】表1及び表2により、本発明の製造法で得
られた超電導体は、ほぼ全体又は全体が結晶化し、22
12相の含有率が64%以上で配向率も71%以上と高
いことが示される。
According to Tables 1 and 2, the superconductor obtained by the manufacturing method of the present invention is almost entirely or entirely crystallized.
It is shown that the content of 12 phases is 64% or more and the orientation rate is 71% or more.

【0025】[0025]

【発明の効果】本発明の製造法によって得られる超電導
体は、異相の含有率が少なく、結晶が一定方向に配向さ
れる。また本発明の製造法によれば、従来必要であった
焼成後に加圧して結晶を配向させる処理や超電導体の厚
さの制限が必要なくなる、結晶成長する温度範囲という
比較的広い温度範囲が焼成温度になるため厳格な焼成温
度の制御が不要であるなどの効果を奏する。
The superconductor obtained by the manufacturing method of the present invention has a low content of different phases and the crystals are oriented in a certain direction. Further, according to the production method of the present invention, there is no need for a treatment for orienting crystals by pressing after firing and a limitation on the thickness of the superconductor, which are conventionally required. Since the temperature is reached, strict control of the firing temperature is not required, which is an effect.

フロントページの続き (72)発明者 下田 修一郎 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内Front Page Continuation (72) Inventor Shuichiro Shimoda 4-13-1, Higashimachi, Hitachi City, Ibaraki Prefecture Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱することにより酸化物超電導体にな
る酸化物超電導体前駆体と平板状超電導体結晶との混合
粉体を成形、加熱処理して酸化物超電導体を製造する方
法において、該混合粉体の一方向から力を加え混合粉体
に含まれる平板状超電導体結晶を配向させた後加熱処理
するか又は該混合粉体を湿式混合し生シートを成形後、
加熱処理して、結晶化させることを特徴とする酸化物超
電導体の製造法。
1. A method for producing an oxide superconductor by molding a mixed powder of an oxide superconductor precursor and a flat plate superconductor crystal, which are heated to form an oxide superconductor, and heat treating the mixed powder. After applying a force from one direction of the mixed powder to orient the flat superconducting crystals contained in the mixed powder and then performing heat treatment, or wet mixing the mixed powder to form a green sheet,
A method for producing an oxide superconductor, which comprises subjecting to heat treatment to crystallize.
【請求項2】 酸化物超電導体前駆体が、Bi系酸化物
超電導体になる成分の酸化物混合粉を溶融後急冷凝固、
粉砕した粉体であり、平板状超電導体結晶がBi系22
12相の平板状結晶である請求項1記載の酸化物超電導
体の製造法。
2. The oxide superconductor precursor is rapidly solidified after melting an oxide mixed powder of a component which becomes a Bi-based oxide superconductor,
It is a pulverized powder, and the plate-shaped superconductor crystal is Bi type 22.
The method for producing an oxide superconductor according to claim 1, which is a 12-phase flat plate crystal.
JP5322006A 1993-12-21 1993-12-21 Production of oxide superconductor Pending JPH07172835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5322006A JPH07172835A (en) 1993-12-21 1993-12-21 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5322006A JPH07172835A (en) 1993-12-21 1993-12-21 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH07172835A true JPH07172835A (en) 1995-07-11

Family

ID=18138874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5322006A Pending JPH07172835A (en) 1993-12-21 1993-12-21 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH07172835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146941A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Precursor powder of metal-coated superconductive wire, manufacturing method for precursor powder of metal-coated superconductive wire, and metal-coated superconductive wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146941A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Precursor powder of metal-coated superconductive wire, manufacturing method for precursor powder of metal-coated superconductive wire, and metal-coated superconductive wire

Similar Documents

Publication Publication Date Title
EP0495677B1 (en) Oxide superconducting material and process for producing the same
JPH0672713A (en) Production of rare-earth superconducting composition
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH07172835A (en) Production of oxide superconductor
Aruchamy et al. Glass microstructure and initial crystallization of Pb0. 32Bi1. 68Sr1. 75Ca2Cu3Ox
JP3330962B2 (en) Manufacturing method of oxide superconductor
Nakanishi et al. Effect of growth temperature on properties of bulk GdBa2Cu3Oy superconductors grown by IG process
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH10245223A (en) Oxide superconductor and its production
US5200387A (en) Superconducting materials of high density and crystalline structure produced from a mixture of YBa2 Cu3 O7-x and CuO
JP3157183B2 (en) Manufacturing method of oxide superconductor
JP2555734B2 (en) Production method of superconducting material
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JPH01278449A (en) Production of oxide superconductor
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH10510799A (en) Improved superconductor
JPH04119922A (en) Production of bi-containing oxide superconductor
JPH02157151A (en) Production of thallium superconductor and raw material powder for sintering
JPS63315572A (en) Production of superconductor
JPH06321621A (en) Production of oxide superconductor
JPH0859342A (en) Production of high temperature superconductor
Zhou et al. Synthesis of bulk YBa2Cu3O7-x by melt-spun texture growth (MSTG)
JPH01126262A (en) Superconducting material and its production
JPH06211519A (en) Superconductor and its production

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624