JPH07172152A - Cooling unit and drain case for air conditioning device - Google Patents

Cooling unit and drain case for air conditioning device

Info

Publication number
JPH07172152A
JPH07172152A JP6045601A JP4560194A JPH07172152A JP H07172152 A JPH07172152 A JP H07172152A JP 6045601 A JP6045601 A JP 6045601A JP 4560194 A JP4560194 A JP 4560194A JP H07172152 A JPH07172152 A JP H07172152A
Authority
JP
Japan
Prior art keywords
portions
tank
refrigerant
case
refrigerant evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6045601A
Other languages
Japanese (ja)
Other versions
JP3287100B2 (en
Inventor
Etsuo Hasegawa
恵津夫 長谷川
Kichiji Kajikawa
吉治 梶川
Takayuki Morita
隆之 森田
Suehiro Okazaki
末広 岡崎
Toshihiro Yamamoto
敏博 山本
Toshiya Nagasawa
聡也 長沢
Shogo Sumi
省吾 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP04560194A priority Critical patent/JP3287100B2/en
Priority to CA002123368A priority patent/CA2123368C/en
Priority to MYPI94001187A priority patent/MY110801A/en
Priority to DE69406847T priority patent/DE69406847T2/en
Priority to EP94107620A priority patent/EP0625679B1/en
Priority to US08/245,502 priority patent/US5481886A/en
Priority to CN94105730A priority patent/CN1099557C/en
Priority to AU63211/94A priority patent/AU679050B2/en
Publication of JPH07172152A publication Critical patent/JPH07172152A/en
Application granted granted Critical
Publication of JP3287100B2 publication Critical patent/JP3287100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/913Condensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

PURPOSE:To prevent any local corrosion at the lower end part of a refrigerant carrier conduit by preventing retention of condensed water at the lower end part of the refrigerant carrier conduit. CONSTITUTION:A drain case 4 is sandwiched between the bottom wall of an unit case and the lower end part of the refrigerant carrier conduit 15 of a build-up-type refrigerant evaporator. The drain case 4 which has a W shaped cross-sectional configuration is constructed with two external side slant walls 32 in contact with the side ends of two tank parts 16, 17 formed at the lower end part of the refrigerant carrier conduit 15, an angle shaped projecting wall 33 in contact with a recessed part 28 formed at the lowest end parts between adjacent two tank parts 16, 17, and an internal side slant wall 34 to form a drainage hole 36; and the like. Condensed water which flows and falls from the side ends of two tank parts 16, 17 and positions of two tank parts 16, 17 to the lower end parts thereof flows along the two external side slant walls 32 and the projecting wall 33 of the drain case 4 before arriving at the lowest ends of two tank parts 16, 17, thereby the condensed water is effectively drained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばユニットケース
内に収納される冷媒蒸発器表面に生じた凝縮水をコア部
表面から効率的に排水することに好適な排水ケースを備
えた空気調和装置のクーリングユニットに関するもの
で、とくにその空気調和装置のクーリングユニットに用
いられる排水ケースにかかわる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with a drainage case suitable for efficiently draining condensed water generated on the surface of a refrigerant evaporator housed in a unit case from the core surface. Related to the cooling unit, especially the drainage case used for the cooling unit of the air conditioner.

【0002】[0002]

【従来の技術】従来より、例えば図26および図27に
示したように、室内に空気を送風するためのダクトを形
成するユニットケース100の凹所101内に冷媒蒸発
器102を収納した空気調和装置が知られている。そし
て、凹所101の底壁部には、冷媒蒸発器102の下方
で開口し、冷媒蒸発器102の表面に付着した凝縮水を
ユニットケース100の外に排出するための排水口10
3が形成されている。
2. Description of the Related Art Conventionally, as shown in FIGS. 26 and 27, for example, an air conditioner in which a refrigerant evaporator 102 is housed in a recess 101 of a unit case 100 which forms a duct for blowing air indoors. The device is known. Then, the bottom wall of the recess 101 is opened below the refrigerant evaporator 102, and the drainage port 10 for discharging the condensed water adhering to the surface of the refrigerant evaporator 102 to the outside of the unit case 100.
3 is formed.

【0003】また、従来より、冷媒蒸発器102は、図
28に示したように、冷媒流路管104、およびこの冷
媒流路管104の端部側に2個のタンク部105が一体
形成された一対の成形プレート106を複数積層してな
る。また、冷媒蒸発器102のコア部107は、隣設す
る冷媒流路管104間にそれぞれフィン108を介在し
て構成されている。
Further, conventionally, in the refrigerant evaporator 102, as shown in FIG. 28, a refrigerant passage pipe 104 and two tank portions 105 are integrally formed on the end side of the refrigerant passage pipe 104. A plurality of paired molding plates 106 are laminated. Further, the core portion 107 of the refrigerant evaporator 102 is configured such that fins 108 are interposed between the adjacent refrigerant flow path pipes 104.

【0004】なお、冷媒蒸発器102の空気側伝熱面
(凝縮水の付着面)は、フィン108の表面と冷媒流路
管104の表面からなっており、図29に示したよう
に、フィン108の表面に付着した凝縮水はフィン10
8に沿って冷媒流路管104側へと流れる。また、図3
0に示したように、冷媒流路管104の表面には冷媒側
の熱伝達率向上のための傾斜リブ109が内側に凸の状
態(空気側伝熱面では凹部形状)で形成されており、こ
の傾斜リブ109に沿って凝縮水はコア部107の下端
側へと流れていく。以上のような排水原理により、フィ
ン108の表面や冷媒流路管104の表面に付着した凝
縮水はコア部107の下端側へと排水されている。な
お、113はフィン108の座屈防止用のかえり部であ
る。
The air-side heat transfer surface (condensed water adhering surface) of the refrigerant evaporator 102 is composed of the surface of the fin 108 and the surface of the refrigerant flow pipe 104. As shown in FIG. The condensed water adhering to the surface of 108 is the fin 10
8 to the side of the refrigerant flow pipe 104. Also, FIG.
As shown in FIG. 0, an inclined rib 109 for improving the heat transfer coefficient on the refrigerant side is formed on the surface of the refrigerant flow pipe 104 in a convex state (a concave shape on the air side heat transfer surface). The condensed water flows toward the lower end side of the core portion 107 along the inclined ribs 109. According to the drainage principle as described above, the condensed water adhering to the surfaces of the fins 108 and the surface of the refrigerant flow pipe 104 is drained to the lower end side of the core portion 107. Reference numeral 113 is a burr portion for preventing the fin 108 from buckling.

【0005】ここで、一対の成形プレート106よりな
る冷媒流路管104やフィン108の表面処理には、親
水性処理と撥水性処理の2種類があり、従来より親水性
処理が一般的になされている。その理由としては、未だ
撥水性処理の処理液が冷媒蒸発器102の使用環境に耐
えられるものがない。また、冷媒流路管104やフィン
108の表面に撥水性処理を施した場合にフィン108
や冷媒流路管104表面で水滴が生じてしまい、図31
に示したように、ルーバ110が形成されたフィン10
8では水滴がルーバ110間ではじかれあって停滞して
しまったり、フィン108表面から下方へ落ちないで、
ユニットケース100の風下側へ水飛びが発生するから
である。
There are two types of surface treatments for the refrigerant flow pipe 104 and the fins 108, which are composed of the pair of molding plates 106: hydrophilic treatment and water-repellent treatment, and hydrophilic treatment is generally performed in the past. ing. The reason for this is that there is still no treatment liquid for water repellent treatment that can withstand the environment in which the refrigerant evaporator 102 is used. Further, when the surface of the refrigerant flow pipe 104 or the fins 108 is subjected to a water repellent treatment, the fins 108
31 and water droplets are generated on the surface of the refrigerant flow path pipe 104.
As shown in FIG.
In 8, the water droplets are repelled between the louvers 110 and stagnant, and do not fall downward from the surface of the fin 108,
This is because water splashes on the leeward side of the unit case 100.

【0006】それに対して、冷媒流路管104の表面や
フィン108の表面に親水性処理を施した場合には、冷
媒流路管104の表面やフィン108の表面に水膜が形
成され、上述の排水原理を補助する役割を果たすことに
なる。これにより、コア部107の上端側では親水性処
理の影響により0.1mm厚程度の水膜が形成されるが、
極端な滞留は発生しなかった。また、図26に示したよ
うな2個のタンク部105を冷媒流路管104の上端側
に形成した冷媒蒸発器102は、冷媒流路管104の下
端部に凝縮水が滞留しても犠牲腐食フィン108の効果
により、冷媒流路管の下端側の腐食はさほど問題はなか
った。
On the other hand, when the surface of the refrigerant flow pipe 104 or the surface of the fin 108 is subjected to hydrophilic treatment, a water film is formed on the surface of the refrigerant flow pipe 104 or the surface of the fin 108, and It will play a role in assisting the drainage principle of. As a result, a water film having a thickness of about 0.1 mm is formed on the upper end side of the core portion 107 due to the influence of the hydrophilic treatment.
No extreme retention occurred. Further, the refrigerant evaporator 102 in which the two tank portions 105 as shown in FIG. 26 are formed on the upper end side of the refrigerant flow pipe 104 is sacrificed even if condensed water stays at the lower end of the refrigerant flow pipe 104. Due to the effect of the corrosion fins 108, the corrosion of the lower end side of the refrigerant flow pipe did not cause much problem.

【0007】[0007]

【発明が解決しようとする課題】ところが、図27に示
したような2個のタンク部105を冷媒流路管104の
下端側に形成した冷媒蒸発器102は、凝縮水が滞留す
る冷媒流路管104の下端側にフィン108が設けられ
ていないので、犠牲腐食フィン108の効果が期待でき
ない。このため、凝縮水の滞留による冷媒流路管104
の下端側の腐食の問題がクローズアップされている。
However, the refrigerant evaporator 102 in which the two tank portions 105 as shown in FIG. 27 are formed on the lower end side of the refrigerant passage pipe 104 is a refrigerant passage in which condensed water stays. Since the fin 108 is not provided on the lower end side of the pipe 104, the effect of the sacrificial corrosion fin 108 cannot be expected. Therefore, the refrigerant flow pipe 104 due to the retention of condensed water
The problem of corrosion on the bottom side of is being highlighted.

【0008】すなわち、図32および図33に示したよ
うに、従来の冷媒蒸発器102のコア部107の下端側
やタンク部105の下端部においては、冷媒流路管10
4の表面やフィン108の表面に付着した凝縮水の排水
性が悪く、凝縮水が滞留するという不具合があった。さ
らに、このような冷媒蒸発器102がユニットケース1
00に挿入された場合には、例えばユニットケース10
0と冷媒蒸発器102の下端部との間に介在するインシ
ュレータ111の水含み等により冷媒蒸発器102の排
水性がさらに悪化することになる。
That is, as shown in FIGS. 32 and 33, at the lower end side of the core portion 107 and the lower end portion of the tank portion 105 of the conventional refrigerant evaporator 102, the refrigerant flow pipe 10 is provided.
The drainage of condensed water adhering to the surface of No. 4 and the surface of the fin 108 was poor, and there was a problem that the condensed water stayed. Further, such a refrigerant evaporator 102 is used in the unit case 1
When inserted in 00, for example, the unit case 10
0 and the lower end of the refrigerant evaporator 102 include water in the insulator 111, which further deteriorates the drainage performance of the refrigerant evaporator 102.

【0009】この理由は、図34にも示したように、2
個のタンク部105の下端部の風下側端部Aより流れて
きた凝縮水はユニットケース100に沿って排水口10
3へ流れ易いが、2個のタンク部105の下端部の風上
側端部Bより流れてきた凝縮水はタンク部105の下端
部とインシュレータ111との間で水滴がブリッジして
滞留してしまう(滞留部112)ためである。
The reason for this is that, as shown in FIG.
Condensed water that has flowed from the leeward side end A of the lower end of each of the tank portions 105 is discharged along the unit case 100 along with the drain port 10.
3 easily flows, but the condensed water flowing from the windward end B of the lower ends of the two tanks 105 stays as a bridge of water droplets between the lower end of the tank 105 and the insulator 111. This is because (the retention unit 112).

【0010】また、2個のタンク部105間の下端部中
央Cより流れてきた凝縮水は、2個のタンク部105の
下端部の風上側端部B側に流れればブリッジした水滴と
合体して保持され(滞留部112)、逆に2個のタンク
部105の下端部の風下側端部A側に流れると、凝縮水
が流れ落ちるガイドが存在せず、凝縮水が滞留してしま
う(滞留部114)。
The condensed water flowing from the center C of the lower end portion between the two tank portions 105 merges with the bridged water drops if it flows to the windward end portion B side of the lower end portions of the two tank portions 105. If it is retained (accumulation part 112) and flows to the leeward side end part A side of the lower end parts of the two tank parts 105 on the contrary, there is no guide for the condensed water to flow down, and the condensed water accumulates ( Retention section 114).

【0011】そして、滞留部112、114に滞留して
いる水滴は、 (表面処理による水保持力)+(構造的な水滴の落ち難
さ)>(水滴にかかる重力) となり、水滴として滞留部112、114に保持され、
水滴の成長につれて下方へ落下する。
The water droplets retained in the retaining portions 112 and 114 are (water retention by surface treatment) + (structural water droplet difficulty)> (gravity applied to water droplets), and the water droplets are retained in the retaining portions. Held at 112, 114,
As the water drops grow, they fall downward.

【0012】以上のように、2個のタンク部105が冷
媒流路管104の下端側に形成された冷媒蒸発器102
においては、凝縮水が滞留し易く、大気中の腐食要因成
分(塩素やNOx等)が濃縮され易い冷媒流路管104
の下端側に、局所的な腐食が発生する頻度が非常に高い
傾向にあるという問題点があった。
As described above, the refrigerant evaporator 102 in which the two tank portions 105 are formed on the lower end side of the refrigerant flow pipe 104.
In the refrigerant flow pipe 104, the condensed water easily accumulates and the corrosion factor components (chlorine, NOx, etc.) in the atmosphere are easily concentrated.
There was a problem that the frequency of localized corrosion tends to be extremely high on the lower end side of the.

【0013】本発明は、主に2個のタンク部が冷媒流路
管の下端側に形成された冷媒蒸発器において、冷媒流路
管の下端側における凝縮水の滞留を防止することにより
冷媒流路管の下端側の局所的な腐食を防止することが可
能な空気調和装置のクーリングユニットおよび排水ケー
スの提供を目的とする。
The present invention mainly relates to a refrigerant evaporator in which two tank portions are formed on the lower end side of the refrigerant flow pipe, and the refrigerant flow is prevented by preventing the condensed water from staying on the lower end side of the refrigerant flow pipe. An object of the present invention is to provide a cooling unit and a drainage case of an air conditioner capable of preventing local corrosion on the lower end side of a passage pipe.

【0014】[0014]

【課題を解決するための手段】請求項1に記載の発明
は、冷媒流路管の下端側に2個のタンク部が形成された
冷媒流路管を複数積層し、隣設する冷媒流路間にフィン
を介在してなる冷媒蒸発器と、この冷媒蒸発器の下方に
配され、前記2個のタンク部の風上側端部に当接する風
上側側方傾斜部、前記タンク部の風下側端部に当接する
風下側側方傾斜部、前記2個のタンク部間の部位下端部
に当接する突状部、および前記冷媒蒸発器にて発生した
凝縮水を排水するための排出孔を有する排水ケースとを
備えた技術手段を採用した。
According to a first aspect of the present invention, a plurality of refrigerant flow passage tubes, each having two tank portions formed on the lower end side of the refrigerant flow passage tube, are stacked and adjacent to each other. A refrigerant evaporator having fins interposed therebetween, a windward sideward inclined portion arranged below the refrigerant evaporator and abutting against windward end portions of the two tank portions, and a leeward side of the tank portion. It has a leeward sideward slanting portion that comes into contact with the end portion, a projecting portion that comes into contact with the lower end portion of the site between the two tank portions, and a discharge hole for draining condensed water generated in the refrigerant evaporator. Adopted technical means with drainage case.

【0015】なお、前記2個のタンク部の風上側の側方
端および風下側の側方端に当接する2つの側壁部と、こ
れらの側壁部より下方に傾斜し、前記風上側側方傾斜部
および前記風下側側方傾斜部を形成する2つの外側傾斜
壁と、前記2個のタンク部間の部位下端部に当接し、前
記突状部を形成するへの字形状の突状壁と、前記2つの
外側傾斜壁と前記突状壁とを連結する2つの内側傾斜壁
とから前記排水ケースを構成しても良い。また、前記排
出孔を、前記内側傾斜壁に穿設しても良い。
It should be noted that the two side wall portions which come into contact with the side edges on the windward side and the side edges on the leeward side of the two tank portions, and the side wall portions which are inclined downward from the side wall portions, and which are inclined toward the windward side side. Section and two outer inclined walls that form the leeward sideward inclined section, and a V-shaped protruding wall that abuts the lower end portion of the site between the two tank portions and forms the protruding portion. The drain case may be composed of two inner inclined walls connecting the two outer inclined walls and the projecting wall. Further, the discharge hole may be formed in the inner inclined wall.

【0016】そして、前記2個のタンク部の風上側の側
方端および風下側の側方端に当接する2つの側壁部と、
これらの側壁部より下方に傾斜し、前記風上側側方傾斜
部および前記風下側側方傾斜部を形成する2つの傾斜壁
と、これらの傾斜壁の連結部分より上方に延ばされ、前
記2個のタンク部間の部位下端部に当接し、前記突状部
を形成する柱状壁とから構成しても良い。
Two side wall portions that abut on the windward side edge and the leeward side edge of the two tank portions, respectively.
Two inclined walls that incline downward from the side wall portions and form the windward sideward inclined portion and the leeward side lateral inclined portion, and extend above a connecting portion of these inclined walls, It may be constituted by a columnar wall which abuts on the lower end of the portion between the individual tank parts and forms the projecting part.

【0017】前記2個のタンク部の風上側の側方端およ
び風下側の側方端に当接する2つの側壁部と、これらの
側壁部より下方に傾斜し、前記風上側側方傾斜部および
前記風下側側方傾斜部を形成する2つの傾斜壁と、これ
らの傾斜壁の最下端同士を連結し、前記2個のタンク部
の下端部から所定の距離だけ離れた底壁部と、この底壁
部の中央から上方に延ばされ、前記2個のタンク部間の
部位下端部に当接し、前記突状部を形成する柱状壁とか
ら構成しても良い。また、前記排出孔を、前記底壁部に
穿設しても良い。
Two side wall portions abutting the side edges on the windward side and the side edges on the leeward side of the two tank portions, and the side wall portions inclined downward from these side wall portions, Two inclined walls forming the leeward side lateral inclined portion, a bottom wall portion that connects the lowermost ends of these inclined walls and is separated from the lower end portions of the two tank portions by a predetermined distance, and It may be configured by a columnar wall that extends upward from the center of the bottom wall portion, contacts the lower end portion of the portion between the two tank portions, and forms the protruding portion. Further, the discharge hole may be formed in the bottom wall portion.

【0018】そして、前記冷媒蒸発器の前記成形プレー
トおよび前記フィンに、親水性処理を施しても良い。ま
た、隣設する成形プレート間に介在しているフィンの介
在範囲の最下端が、前記排水ケースの上端よりも下方に
設けられていても良い。さらに、前記排水ケースを、前
記冷媒蒸発器の下端とユニットケースの底壁との間に挟
み込み、前記ユニットケースに、前記排水ケースの位置
決めを行う係合部を設けても良い。
The molded plate and the fins of the refrigerant evaporator may be subjected to hydrophilic treatment. Further, the lowest end of the interposition range of the fins interposed between the adjacent molding plates may be provided below the upper end of the drain case. Further, the drain case may be sandwiched between the lower end of the refrigerant evaporator and the bottom wall of the unit case, and the unit case may be provided with an engaging portion for positioning the drain case.

【0019】請求項10に記載の発明は、表面に親水性
処理が施された冷媒流路管の下端側に、他部より外方に
膨らんだタンク部を形成した冷媒蒸発器と、この冷媒蒸
発器より下方に凝縮水を排水する排水口を有するユニッ
トケースとを備え、前記冷媒蒸発器あるいは前記ユニッ
トケースのうちいずれか一方は、前記タンク部の最下端
または前記タンク部の側方端から前記排水口へ凝縮水を
誘導する誘導手段を有する技術手段を採用した。
According to a tenth aspect of the present invention, there is provided a refrigerant evaporator in which a tank portion bulging outward from the other portion is formed on the lower end side of the refrigerant passage tube whose surface is hydrophilically treated, and the refrigerant. And a unit case having a drainage port for discharging condensed water below the evaporator, wherein either one of the refrigerant evaporator and the unit case is from the bottom end of the tank part or the side end of the tank part. A technical means having a guiding means for guiding condensed water to the drainage port was adopted.

【0020】請求項11に記載の発明は、前記冷媒流路
管の下端側に2個のタンク部を形成した一対の成形プレ
ートを複数積層してなる冷媒蒸発器の下方に配され、前
記冷媒蒸発器にて発生した凝縮水を排出するための排出
ケースであって、前記2個のタンク部の風上側端部に当
接する風上側側方傾斜部と、前記2個のタンク部の風下
側端部に当接する風下側側方傾斜部と、前記2個のタン
ク部間の部位下端部に当接する突状部と、前記冷媒蒸発
器にて発生した凝縮水を排水するための排出孔とを有す
る技術手段を採用した。
The invention according to claim 11 is arranged below a refrigerant evaporator formed by stacking a plurality of paired molding plates each having two tanks formed on the lower end side of the refrigerant flow pipe, A discharge case for discharging condensed water generated in an evaporator, which comprises a windward sideward slant portion that comes into contact with windward end portions of the two tank portions, and a leeward side of the two tank portions. An leeward sideward inclined portion that abuts an end portion, a projecting portion that abuts a lower end portion of a portion between the two tank portions, and a discharge hole for draining condensed water generated in the refrigerant evaporator. The technical means having is adopted.

【0021】[0021]

【作用】請求項1に記載の発明および請求項11に記載
の発明によれば、冷媒流路管の下端側に2個のタンク部
を形成した冷媒蒸発器の表面に発生した凝縮水が、重力
により下降していき、2個のタンク部の風上側端部、2
個のタンク部の風下側端部および2個のタンク部間の部
位下端部に到達する。そして、2個のタンク部の風上側
端部に到達した凝縮水は、風上側側方傾斜部に沿って排
水ケース内に流れ込んだ後に排出孔より排水される。ま
た、2個のタンク部の風下側端部に到達した凝縮水は、
風下側側方傾斜部に沿って排水ケース内に流れ込んだ後
に排出孔より排水される。さらに、2個のタンク部間の
部位下端部に到達した凝縮水は、突状部に沿って排水ケ
ース内に流れ込んだ後に排出孔より排水される。これに
より、2個のタンク部の最下端に凝縮水が滞留しなくな
るので、冷媒流路管の下端側の局所的な腐食が防げる。
According to the invention described in claim 1 and the invention described in claim 11, the condensed water generated on the surface of the refrigerant evaporator in which two tank portions are formed on the lower end side of the refrigerant flow pipe is Gravity descends and the two windward ends of the two tanks
The leeward end of each tank portion and the lower end of the portion between the two tank portions are reached. Then, the condensed water that has reached the windward end portions of the two tank portions flows into the drainage case along the windward sideward inclined portions and is then drained from the discharge holes. Also, the condensed water that has reached the leeward side end of the two tank parts,
After flowing into the drainage case along the leeward sideward slope, it is drained from the discharge hole. Further, the condensed water that has reached the lower end portion of the portion between the two tank portions flows into the drainage case along the protrusion and is then drained from the drain hole. As a result, condensed water does not stay at the lowermost ends of the two tank portions, and thus local corrosion on the lower end sides of the refrigerant flow pipes can be prevented.

【0022】請求項10に記載の発明によれば、表面に
親水性処理が施された冷媒流路管の下端側にタンク部を
形成した冷媒蒸発器の表面に発生した凝縮水が、重力に
より下降していく。そして、タンク部の最下端または側
方端より誘導手段へ流れ込み、ユニットケースの排水口
へ排水される。これにより、タンク部の最下端に凝縮水
が滞留しなくなるので、冷媒流路管の下端側の局所的な
腐食が防げる。
According to the tenth aspect of the present invention, the condensed water generated on the surface of the refrigerant evaporator in which the tank portion is formed at the lower end side of the refrigerant flow tube whose surface has been subjected to the hydrophilic treatment is generated by gravity. Going down. Then, it flows into the guiding means from the lowermost end or the side end of the tank portion and is drained to the drain port of the unit case. As a result, condensed water does not stay at the lowermost end of the tank portion, and thus local corrosion on the lower end side of the refrigerant flow pipe can be prevented.

【0023】[0023]

【実施例】次に、本発明の空気調和装置のクーリングユ
ニットを図1ないし図26に示す複数の実施例に基づい
て説明する。
EXAMPLE A cooling unit for an air conditioner according to the present invention will be described below with reference to a plurality of examples shown in FIGS.

【0024】〔第1実施例の構成〕図1ないし図4は本
発明の第1実施例の構造を示したもので、図1は自動車
用空気調和装置のクーリングユニットを示した図であ
る。この自動車用空気調和装置のクーリングユニット1
は、車室内に空気を送るための送風ダクトを構成するユ
ニットケース2、このユニットケース2内を流れる空気
を冷却する積層型冷媒蒸発器3、およびユニットケース
2と積層型冷媒蒸発器3との間に挿入された排水ケース
4を備えている。
[Structure of First Embodiment] FIGS. 1 to 4 show a structure of a first embodiment of the present invention, and FIG. 1 is a view showing a cooling unit of an automobile air conditioner. Cooling unit 1 of this automobile air conditioner
Is a unit case 2 that constitutes a ventilation duct for sending air into the vehicle compartment, a laminated refrigerant evaporator 3 that cools the air flowing in the unit case 2, and the unit case 2 and the laminated refrigerant evaporator 3. It has a drainage case 4 inserted between them.

【0025】ユニットケース2は、例えばPP(ポリプ
ロピレン)樹脂製の筒状体であって、上部に上方に凹ん
だ天井壁5、およびこの天井壁5に対向する下部に下方
に凹んだ底壁6を有している。また、底壁6は水平方向
に対して下方に傾斜しており、最も下方に位置する部位
に凝縮水をユニットケース2の内部より外部へ排水する
ための排水口7を形成している。
The unit case 2 is, for example, a tubular body made of PP (polypropylene) resin, and has a ceiling wall 5 which is recessed upward in the upper part and a bottom wall 6 which is recessed downward in the lower part facing the ceiling wall 5. have. Further, the bottom wall 6 is inclined downward with respect to the horizontal direction, and a drain port 7 for draining the condensed water from the inside of the unit case 2 to the outside is formed at the lowest position.

【0026】図2は積層型冷媒蒸発器3を示した図で、
図3は積層型冷媒蒸発器3と排水ケース4を示した図で
ある。この積層型冷媒蒸発器3は、膨張弁(図示せず)
の下流側との接続および冷媒圧縮機(図示せず)の吸入
側との接続を行うジョイントブロック8と、冷媒間で熱
交換を行う冷媒冷媒熱交換部9と、冷媒と空気とを熱交
換させる冷媒空気熱交換部10と、冷媒冷媒熱交換部9
と冷媒空気熱交換部10との間に設けられた減圧部(図
示せず)とからなる。
FIG. 2 is a view showing the laminated refrigerant evaporator 3,
FIG. 3 is a diagram showing the laminated refrigerant evaporator 3 and the drainage case 4. This laminated refrigerant evaporator 3 has an expansion valve (not shown).
, A refrigerant block heat exchange section 9 for exchanging heat between the refrigerant, a joint block 8 for connection with the downstream side of the refrigerant and a suction side of a refrigerant compressor (not shown), and heat exchange between the refrigerant and air. Refrigerant air heat exchange section 10 and refrigerant refrigerant heat exchange section 9
And a refrigerant decompression unit (not shown) provided between the refrigerant and air heat exchange unit 10.

【0027】ジョイントブロック8は、膨張弁より流出
した気液二相冷媒を内部に流入させる流入口11、およ
び熱交換後の冷媒を冷媒圧縮機側へ流出させる流出口1
2を設けている。
The joint block 8 has an inlet 11 through which the gas-liquid two-phase refrigerant flowing out of the expansion valve flows in, and an outlet 1 through which the refrigerant after heat exchange flows out to the refrigerant compressor side.
2 is provided.

【0028】冷媒冷媒熱交換部9は、一対の薄い板状の
成形プレートをろう付け等の手段により形成された冷媒
流路管13を複数積層してなる。なお、一対の成形プレ
ートの表面には、プレコート材(C513)、親水性高
分子または親水性多孔材等を被着させて親水性処理が施
されている。
The refrigerant / refrigerant heat exchange section 9 is formed by laminating a plurality of refrigerant flow path tubes 13 formed by a pair of thin plate-shaped forming plates by means such as brazing. The surfaces of the pair of molding plates are hydrophilically treated by depositing a precoat material (C513), a hydrophilic polymer, a hydrophilic porous material, or the like.

【0029】冷媒冷媒熱交換部9の内部には、流入口1
1より冷媒空気熱交換部10へ冷媒を送る入口側冷媒流
路(図示せず)と冷媒空気熱交換部10より流出口12
へ冷媒を送る出口側冷媒流路(図示せず)とが蛇行する
ように形成されている。なお、入口側冷媒流路と出口側
冷媒流路とは、入口側冷媒流路内を流れる冷媒と出口側
冷媒流路内を流れる冷媒との間で熱交換が行えるように
所定距離に渡って近接して配されている。
Refrigerant Refrigerant heat exchanger 9 has an inlet 1 inside.
1, an inlet-side refrigerant flow path (not shown) for sending the refrigerant from the refrigerant-air heat exchanger 10 to the refrigerant-air heat exchanger 10, and an outlet 12 from the refrigerant-air heat exchanger 10.
An outlet side refrigerant flow path (not shown) for sending the refrigerant to is formed so as to meander. The inlet-side refrigerant flow path and the outlet-side refrigerant flow path are arranged over a predetermined distance so that heat can be exchanged between the refrigerant flowing in the inlet-side refrigerant flow path and the refrigerant flowing in the outlet-side refrigerant flow path. It is placed in close proximity.

【0030】冷媒空気熱交換部10は、空気との熱交換
効率を向上させるためのコルゲートフィン14と一対の
薄い板状の成形プレートをろう付け等の手段により形成
された冷媒流路管15を複数積層してなる。なお、コル
ゲートフィン14と一対の成形プレートの表面には、プ
レコート材(C513)、親水性高分子または親水性多
孔材等を被着させて親水性処理が施されている。
The refrigerant air heat exchange section 10 includes a corrugated fin 14 for improving heat exchange efficiency with the air and a refrigerant flow pipe 15 formed by a pair of thin plate-shaped forming plates by means such as brazing. It is formed by stacking a plurality of layers. The surfaces of the corrugated fins 14 and the pair of molding plates are hydrophilically treated by depositing a precoat material (C513), a hydrophilic polymer, a hydrophilic porous material, or the like.

【0031】冷媒流路管15を構成する成形プレート
は、図4に一部示したように、薄い板状のアルミニウム
合金をプレス加工することによって形成されている。冷
媒流路管15の下端側の風上側にはタンク部16が形成
され、冷媒流路管15の下端側の風下側にはタンク部1
7が形成されている。このように冷媒流路管15の下端
側に形成された2個のタンク部16、17は、これらよ
りも上方に形成された略U字状の冷媒蒸発流路18を介
して連通しており、隣設する冷媒流路管15の下端側に
ろう付け等の手段により接合されるように略碗状に積層
方向に膨出している。また、2個のタンク部16、17
には、隣設する冷媒流路管15と連通させるための略楕
円形状の連通穴19、20がそれぞれ形成されている。
The molded plate forming the refrigerant flow pipe 15 is formed by pressing a thin plate-shaped aluminum alloy, as shown in part in FIG. A tank portion 16 is formed on the windward side on the lower end side of the refrigerant flow path pipe 15, and the tank portion 1 is provided on the leeward side on the lower end side of the refrigerant flow path pipe 15.
7 are formed. The two tank portions 16 and 17 formed on the lower end side of the refrigerant passage pipe 15 are communicated with each other through the substantially U-shaped refrigerant evaporation passage 18 formed above them. , So as to be joined to the lower end side of the adjacent refrigerant flow path pipe 15 by means such as brazing, and bulges in a substantially bowl shape in the stacking direction. In addition, two tank parts 16 and 17
In each of these, substantially elliptical communication holes 19 and 20 for communicating with the adjacent refrigerant flow path pipes 15 are formed.

【0032】複数の冷媒流路管15の冷媒蒸発流路18
は、複数のコルゲートフィン14と共に積層型冷媒蒸発
器3のコア部21を構成するものである。なお、冷媒蒸
発流路18には、冷媒が幅方向全体に広く行き渡るよう
にするための多数の傾斜リブ22が内側に突出するよう
に形成されている。また、冷媒流路管15の中央部およ
び外周縁には、一対の成形プレート同士をろう付け等の
手段により接合するための接合壁23、24が内側に突
出するように形成されている。そして、一対の成形プレ
ートの一方側の成形プレートの最上端からは、コルゲー
トフィン14の座屈防止用のかえり部25が複数の冷媒
流路管15の積層方向に延長されている。
Refrigerant evaporation passages 18 of the plurality of refrigerant passage pipes 15
Together with the plurality of corrugated fins 14 constitute the core portion 21 of the laminated refrigerant evaporator 3. In addition, a large number of inclined ribs 22 are formed in the refrigerant evaporating flow path 18 so as to project the refrigerant widely in the entire width direction so as to project inward. Further, joining walls 23 and 24 for joining the pair of molding plates to each other by means such as brazing are formed at the central portion and the outer peripheral edge of the refrigerant channel pipe 15 so as to project inward. A burr portion 25 for preventing buckling of the corrugated fins 14 extends in the stacking direction of the plurality of refrigerant flow pipes 15 from the uppermost end of one of the pair of molding plates.

【0033】排水ケース4は、本発明の誘導手段であっ
て、図3および図4に示したように、例えばPP(ポリ
プロピレン)樹脂製で断面形状がW形状に形成されてお
り、ユニットケース2の底壁6と積層型冷媒蒸発器3の
下端との間に挟み込まれている。この排水ケース4は、
冷媒流路管15(13)の中央部最下端、2個のタンク
部16、17の側方端(積層型冷媒蒸発器3の風上側端
および風下側端)からユニットケース2の排水口7へ積
層型冷媒蒸発器3表面に生じた凝縮水を誘導するもので
ある。
The drainage case 4 is the guiding means of the present invention, and is made of, for example, PP (polypropylene) resin and has a W-shaped cross section, as shown in FIGS. It is sandwiched between the bottom wall 6 and the lower end of the laminated refrigerant evaporator 3. This drain case 4
The lowermost end of the central portion of the refrigerant flow pipe 15 (13), the lateral ends of the two tank portions 16 and 17 (the windward end and the leeward end of the laminated refrigerant evaporator 3) to the drain port 7 of the unit case 2. The condensed water generated on the surface of the laminated refrigerant evaporator 3 is guided.

【0034】この排水ケース4は、2つの側壁部31、
2つの外側傾斜壁32、への字状の突条壁33、2つの
内側傾斜壁34、およびこれらの幅方向端部を塞ぐ閉塞
壁35等よりなる。2つの側壁部31は、断面形状が円
弧状を呈し、冷媒流路管15(13)の下端側に形成さ
れた2個のタンク部16、17の側方端を塞いで、積層
型冷媒蒸発器3の下端側の風洩れを防止する洩れ防止手
段である。また、2つの側壁部31の内側面は2個のタ
ンク部16、17の側方端に当接し、その外側面はユニ
ットケース2の底壁6の内側面に当接している。
The drain case 4 has two side walls 31,
It is composed of two outer inclined walls 32, a V-shaped protruding wall 33, two inner inclined walls 34, and a closing wall 35 that closes these widthwise end portions. The two side wall portions 31 have an arc-shaped cross-section and close the lateral ends of the two tank portions 16 and 17 formed at the lower end side of the refrigerant flow pipe 15 (13) to allow the laminated refrigerant evaporation. It is a leakage prevention means for preventing air leakage on the lower end side of the container 3. Further, the inner side surfaces of the two side wall portions 31 are in contact with the side ends of the two tank portions 16 and 17, and the outer side surfaces thereof are in contact with the inner side surface of the bottom wall 6 of the unit case 2.

【0035】2つの外側傾斜壁32のうちの風上側の外
側傾斜壁32は、本発明の風上側側方傾斜部であって、
風下側の傾斜壁32は、本発明の風下側側方傾斜部であ
る。また、2つの外側傾斜壁32は、2つの側壁部31
の下端部より下方へ傾斜しており、最下端がユニットケ
ース2の底壁6の底面に当接している。突条壁33は、
本発明の突状部であって、冷媒流路管15(13)の中
央部最下端に形成された方形状の凹み部28に当接す
る。なお、凹み部28は、隣設する2個のタンク部1
6、17間の部位最下端に形成されている。2つの内側
傾斜壁34は、外側傾斜壁32と突条壁33とを連結す
る部分で、ユニットケース2の底壁6上へ凝縮水を排水
するための排水孔36をそれぞれ形成している。なお、
排水孔36は、本発明の排出孔であって、排水ケース4
の最下端で開口するように傾斜して形成されている。
The windward outer side inclined wall 32 of the two outer side inclined walls 32 is the windward sideward inclined portion of the present invention.
The leeward inclined wall 32 is the leeward sideward inclined portion of the present invention. Further, the two outer inclined walls 32 are the two side wall portions 31.
Is inclined downward from the lower end of the unit case, and the lowermost end is in contact with the bottom surface of the bottom wall 6 of the unit case 2. The ridge wall 33 is
The protrusion of the present invention is in contact with the rectangular recess 28 formed at the lowermost end of the central portion of the refrigerant flow pipe 15 (13). In addition, the recessed portion 28 has two tank portions 1 adjacent to each other.
It is formed at the lowest end of the area between 6 and 17. The two inner slanted walls 34 are portions that connect the outer slanted wall 32 and the projecting wall 33, and each form a drain hole 36 for draining condensed water onto the bottom wall 6 of the unit case 2. In addition,
The drainage hole 36 is the drainage hole of the present invention, and is the drainage case 4
Is formed so as to be open at the lowermost end.

【0036】〔第1実施例の作用〕次に、この実施例の
作用を図1ないし図6に基づいて説明する。ここで、図
4は積層型冷媒蒸発器3の下端に排水ケース4を接触さ
せた技術(第1実施例)の排水原理を示した図で、図5
は積層型冷媒蒸発器3の下端に排水ケース4を配しない
技術(第1比較例)の排水原理を示した図で、図6は従
来のユニットケース100を積層型冷媒蒸発器3の下方
に用いた技術(第2比較例)の排水原理を示した図であ
る。
[Operation of First Embodiment] Next, the operation of this embodiment will be described with reference to FIGS. Here, FIG. 4 is a diagram showing a drainage principle of a technique (first embodiment) in which the drainage case 4 is brought into contact with the lower end of the laminated refrigerant evaporator 3, and FIG.
Is a diagram showing a drainage principle of a technology (first comparative example) in which the drainage case 4 is not arranged at the lower end of the laminated refrigerant evaporator 3, and FIG. 6 shows a conventional unit case 100 below the laminated refrigerant evaporator 3. It is the figure which showed the drainage principle of the technique (2nd comparative example) used.

【0037】コルゲートフィン14や冷媒流路管15の
表面に親水性処理を施した積層型冷媒蒸発器3は、ユニ
ットケース2内を流れる空気と冷媒流路管15内を流れ
る冷媒とが熱交換することによって空気を冷却する。そ
して、空気が、積層型冷媒蒸発器3により露点温度以下
に冷却されると、空気中に含まれる水分が凝縮してコル
ゲートフィン14や冷媒流路管15の表面に付着して、
これらの表面に0.1mm程度の水膜を形成していく。
In the laminated refrigerant evaporator 3 in which the surfaces of the corrugated fins 14 and the refrigerant flow tube 15 are hydrophilically treated, the air flowing in the unit case 2 and the refrigerant flowing in the refrigerant flow tube 15 exchange heat with each other. To cool the air. Then, when the air is cooled to the dew point temperature or lower by the laminated refrigerant evaporator 3, the moisture contained in the air is condensed and adheres to the surfaces of the corrugated fins 14 and the refrigerant flow pipe 15,
A water film of about 0.1 mm is formed on these surfaces.

【0038】そして、コルゲートフィン14表面に付着
した凝縮水はコルゲートフィン14に沿って冷媒流路管
15側へと流れていき、冷媒流路管15表面に付着した
凝縮水は他部より凹んでいる傾斜リブ22や接合壁2
3、24に沿って下降していく。そして、冷媒流路管1
5の2個のタンク部16、17の側方端および2個のタ
ンク部16、17間からタンク部16、17の下端側に
流れ落ちた凝縮水は、第1比較例の場合には、図5に示
したように、排水ケース4やガイドを有しないため、2
個のタンク部16、17の下端(水平部分)A、Bに滞
留してしまう。
The condensed water adhering to the surface of the corrugated fins 14 flows along the corrugated fins 14 toward the refrigerant passage pipe 15 side, and the condensed water adhered to the surface of the refrigerant passage pipe 15 is recessed from other parts. Inclined rib 22 and joint wall 2
It descends along 3, 24. And the refrigerant flow pipe 1
In the case of the first comparative example, the condensed water flowing down from the lateral ends of the two tank parts 16 and 17 and between the two tank parts 16 and 17 to the lower end side of the tank parts 16 and 17 in FIG. As shown in 5, there is no drainage case 4 or guide, so 2
The individual tank portions 16 and 17 stay at the lower ends (horizontal portions) A and B of the tank portions 16 and 17, respectively.

【0039】また、第2比較例の場合には、図6に示し
たように、タンク部17の側方端より下端側に流れ落ち
た凝縮水は、ユニットケース100の底壁に沿って流れ
易いが、タンク部16の側方端より下端側に流れ落ちた
凝縮水は、タンク部16とインシュレータ111との間
で水滴がブリッジしてタンク部16の下端(水平部分)
Aに滞留してしまう。そして、2個のタンク部16、1
7間からタンク部16、17の下端側に流れ落ちた凝縮
水は、タンク部16の下端側に流れた場合はブリッジし
た水滴と合体して保持されるため滞留し、タンク部17
の下端側に流れた場合はガイドを有しないため、タンク
部16の下端(水平部分)Bで滞留してしまう。
Further, in the case of the second comparative example, as shown in FIG. 6, the condensed water that has flowed down from the side end of the tank portion 17 to the lower end side easily flows along the bottom wall of the unit case 100. However, the condensed water that has flowed down from the side end of the tank portion 16 to the lower end side is bridged by water droplets between the tank portion 16 and the insulator 111, and the lower end of the tank portion 16 (horizontal portion).
Stay in A. And the two tank parts 16, 1
Condensed water that has flowed from between 7 to the lower end sides of the tank parts 16 and 17 is retained because it is held by being combined with the bridged water drops when flowing to the lower end side of the tank part 16.
When it flows to the lower end side of the tank, since it does not have a guide, it stays at the lower end (horizontal portion) B of the tank section 16.

【0040】これらに対して、第1実施例のように複数
の冷媒流路管15の下端にW形状の排水ケース4を当接
した場合には、図4に示したように、タンク部16の側
方端およびタンク部17の側方端より下端側に流れ落ち
た凝縮水は、タンク部16、17の下端へ達する前に排
水ケース4の側壁部31へ伝わり、この側壁部31から
外側傾斜壁32→排水孔36→底壁6を通って排水口7
へ導かれ効率良く排水される。
On the other hand, when the W-shaped drainage case 4 is brought into contact with the lower ends of the plurality of refrigerant flow path pipes 15 as in the first embodiment, as shown in FIG. Condensed water that has flowed to the lower end side from the side end of the tank portion 17 and the side end of the tank portion 17 is transmitted to the side wall portion 31 of the drainage case 4 before reaching the lower ends of the tank portions 16 and 17, and the side wall portion 31 is inclined outward Wall 32 → drain hole 36 → bottom wall 6 through drain port 7
To be drained efficiently.

【0041】また、2個のタンク部16、17間からタ
ンク部16、17の下端側に流れ落ちた凝縮水は、タン
ク部16、17の下端へ達する前に排水ケース4の突条
壁33へ伝わり、この突条壁33から内側傾斜壁34→
排水孔36→底壁6を通って排水口7へ導かれ効率良く
排水される。
Condensed water that has flowed down between the two tank parts 16 and 17 to the lower end sides of the tank parts 16 and 17 reaches the ridge wall 33 of the drainage case 4 before reaching the lower ends of the tank parts 16 and 17. It is transmitted from this ridge wall 33 to the inner inclined wall 34 →
The water is drained efficiently from the drain hole 36 through the bottom wall 6 to the drain port 7.

【0042】〔第1実施例の効果〕ここで、図7および
図8は第1比較例と第1実施例の上下方向の各部位にお
ける(水保持量)/(表面積)を実験により調査した実
験データである。この図7からも確認できるように、第
1比較例はタンク部16、17の下端A、Bにおいて、
局所的な凝縮水の滞留が発生していることが分かる。そ
れに対して、この第1実施例は、図8からも確認できる
ように、局所的な凝縮水の滞留が抑えられるので、大気
中の腐食要因成分(塩素やNOx等)を要因とする冷媒
流路管15(13)の下端側の局所的な腐食の発生を抑
制することができる。
[Effect of First Embodiment] Here, in FIGS. 7 and 8, (water retention amount) / (surface area) at each site in the vertical direction of the first comparative example and the first embodiment was investigated by an experiment. These are experimental data. As can be seen from FIG. 7, in the first comparative example, at the lower ends A and B of the tank portions 16 and 17,
It can be seen that local accumulation of condensed water occurs. On the other hand, in the first embodiment, as can be confirmed from FIG. 8, the local accumulation of condensed water is suppressed, so that the refrigerant flow caused by the corrosion factor components (chlorine, NOx, etc.) in the atmosphere is a factor. The occurrence of local corrosion on the lower end side of the passage pipe 15 (13) can be suppressed.

【0043】〔第2実施例の構成〕図9ないし図10は
本発明の第2実施例の構造を示したもので、積層型冷媒
蒸発器と排水ケースを示した図である。
[Structure of the Second Embodiment] FIGS. 9 to 10 show the structure of the second embodiment of the present invention, which is a view showing a laminated refrigerant evaporator and a drainage case.

【0044】この実施例の積層型冷媒蒸発器3の冷媒流
路管15を構成する成形プレートの下端側に形成された
2個のタンク部16、17には、隣設する冷媒流路管1
5と連通させるための円形状の連通穴19、20がそれ
ぞれ形成されている。また、隣設する冷媒流路管15間
に介在するコルゲートフィン14は、図10にて一点鎖
線で示したように、2個のタンク部16、17の上端部
より上方側にろう付け等の手段により接合されている。
In the two tank portions 16 and 17 formed on the lower end side of the molding plate constituting the refrigerant flow pipe 15 of the laminated refrigerant evaporator 3 of this embodiment, the adjacent refrigerant flow pipe 1 is provided.
Circular communication holes 19 and 20 for communicating with 5 are formed, respectively. Further, the corrugated fins 14 interposed between the adjacent refrigerant flow path pipes 15 are, for example, brazed above the upper ends of the two tank portions 16 and 17 as shown by the alternate long and short dash line in FIG. It is joined by means.

【0045】この実施例の排水ケース4は、スチレンペ
ーパーやピーライト等の材料製のインシュレータ73を
介してユニットケース2の底壁6と積層型冷媒蒸発器3
の下端との間に挟み込まれている。
In the drainage case 4 of this embodiment, the bottom wall 6 of the unit case 2 and the laminated refrigerant evaporator 3 are interposed via an insulator 73 made of a material such as styrene paper or peelite.
It is sandwiched between the bottom edge of and.

【0046】この排水ケース4は、平行に配された2つ
の立壁部74、これらの立壁部74より下方へ傾斜した
2つの円弧状壁75、冷媒流路管15(13)の中央部
最下端に形成された溝状部29に当接する比較的に長い
寸法の突条壁76、円弧状壁75と突条壁76とを連結
する2列の底壁77、およびこれらの幅方向端部を塞ぐ
閉塞壁78等よりなる。
The drainage case 4 has two standing wall portions 74 arranged in parallel, two arcuate walls 75 inclined downward from these standing wall portions 74, and the bottom end of the central portion of the refrigerant flow pipe 15 (13). A relatively long dimension of the ridge wall 76 that abuts the groove-shaped portion 29 formed in, the two rows of bottom walls 77 that connect the arcuate wall 75 and the ridge wall 76, and the widthwise end portions thereof. It comprises a closing wall 78 for closing.

【0047】なお、2つの立壁部74は、その外側面は
ユニットケース2の底壁6の内側面に当接している。ま
た、2つの円弧状壁75は、冷媒流路管15(13)の
下端側に形成された2個のタンク部16、17の側方端
を塞いでいる。そして、2つの円弧状壁75の裏面に
は、インシュレータ73を傷付けないように断面形状が
半円形状のエッジ部80が2列で形成されており、2列
のエッジ部80はユニットケース2の底壁6に形成され
た位置決め用溝部79に嵌め合わされる。
The outer surfaces of the two standing wall portions 74 are in contact with the inner surface of the bottom wall 6 of the unit case 2. Further, the two arcuate walls 75 block the lateral ends of the two tank portions 16 and 17 formed on the lower end side of the refrigerant flow pipe 15 (13). On the back surfaces of the two arc-shaped walls 75, two rows of edge portions 80 having a semicircular cross section are formed so as not to damage the insulator 73, and the two rows of edge portions 80 are formed on the unit case 2. It is fitted in a positioning groove 79 formed in the bottom wall 6.

【0048】これらのエッジ部80は、積層型冷媒蒸発
器3および排水ケース4のユニットケース2への位置決
めを行うためのものであり、積層型冷媒蒸発器3の下端
側の風洩れを防止するものである。また、積層型冷媒蒸
発器3の下端と底壁77との間には、凝縮水を排水する
ための排水流路81が形成されている。そして、2列の
底壁77には、ユニットケース2の底壁6上へ凝縮水を
排水するための複数の排水孔82がそれぞれ長手方向に
列設されている。
These edge portions 80 are for positioning the laminated refrigerant evaporator 3 and the drainage case 4 with respect to the unit case 2, and prevent air leakage on the lower end side of the laminated refrigerant evaporator 3. It is a thing. A drainage channel 81 for draining the condensed water is formed between the bottom end of the laminated refrigerant evaporator 3 and the bottom wall 77. A plurality of drain holes 82 for draining the condensed water onto the bottom wall 6 of the unit case 2 are respectively provided in the two rows of the bottom wall 77 in the longitudinal direction.

【0049】〔第2実施例の作用〕次に、この実施例の
作用を図9および図10に基づいて説明する。積層型冷
媒蒸発器3の冷媒流路管15(13)の表面およびコル
ゲートフィン14の表面に付着した凝縮水は、傾斜リブ
22を通り、接合壁23、24に集まり、下方へと流れ
ていく。そして、タンク部16の側方端およびタンク部
17の側方端より下端側に流れ落ちた凝縮水は、タンク
部16、17の下端へ達する前に排水ケース4の円弧状
壁75へ伝わり、この円弧状壁75から底壁77→排水
孔82→底壁6(インシュレータ73)を通って排水口
7へ導かれ効率良く排水される。
[Operation of Second Embodiment] Next, the operation of this embodiment will be described with reference to FIGS. 9 and 10. Condensed water adhering to the surfaces of the refrigerant flow pipes 15 (13) and the surfaces of the corrugated fins 14 of the laminated refrigerant evaporator 3 passes through the inclined ribs 22, collects on the joint walls 23 and 24, and flows downward. . Then, the condensed water flowing down to the lower end side from the lateral ends of the tank portion 16 and the tank portion 17 is transmitted to the arc-shaped wall 75 of the drainage case 4 before reaching the lower ends of the tank portions 16 and 17, From the arcuate wall 75 through the bottom wall 77-> drain hole 82-> bottom wall 6 (insulator 73) to the drain port 7, the water is efficiently drained.

【0050】また、2個のタンク部16、17間からタ
ンク部16、17の下端側に流れ落ちた凝縮水は、タン
ク部16、17の下端へ達する前に排水ケース4の突条
壁76へ伝わり、この突条壁76から底壁77→排水孔
82→底壁6(インシュレータ73)を通って排水口7
へ導かれ効率良く排水される。
Condensed water that has flowed down between the two tank parts 16 and 17 to the lower end sides of the tank parts 16 and 17 reaches the ridge wall 76 of the drainage case 4 before reaching the lower ends of the tank parts 16 and 17. It is transmitted from this ridge wall 76 to the bottom wall 77 → the drain hole 82 → the bottom wall 6 (insulator 73) and the drain port 7.
To be drained efficiently.

【0051】〔第2実施例の効果〕ここで、第1実施例
の排水ケース4の形状では、図11に示したように、積
層型冷媒蒸発器3の下方に排水流路83を設ける必要が
あり、クーリングユニット1の搭載上、大型化してしま
う可能性があると共に、排水ケース4とユニットケース
2の底壁6との間のインシュレータ73を鋭角に尖った
エッジ部84で傷を付けたり、破ってしまったりする可
能性があった。
[Effect of Second Embodiment] Here, in the shape of the drainage case 4 of the first embodiment, as shown in FIG. 11, it is necessary to provide the drainage flow path 83 below the laminated refrigerant evaporator 3. There is a possibility that the cooling unit 1 may become large in size when mounted, and the insulator 73 between the drainage case 4 and the bottom wall 6 of the unit case 2 may be damaged by the sharply pointed edge portion 84. , There was a possibility of breaking.

【0052】これに対して、この実施例では、エッジ部
80の断面形状が半円形状(鈍角)に形成することによ
りインシュレータ73が傷付いたり、破れたりするなど
の不具合を解消することができる。
On the other hand, in this embodiment, by forming the cross section of the edge portion 80 in a semi-circular shape (obtuse angle), it is possible to solve the problem that the insulator 73 is damaged or torn. .

【0053】また、隣設する冷媒流路管15間に介在す
るコルゲートフィン14の介在範囲の下端が、排水ケー
ス4の2つの立壁部74の上端面およびユニットケース
2の下壁2aの端面よりも下方に位置している。これに
より、ユニットケース2内を流れる空気が比較的に積層
型冷媒蒸発器3の上方側に導かれて、積層型冷媒蒸発器
3の下端と排水ケース4との隙間を通過して冷媒と熱交
換しないで洩れる空気がほとんどなくなる。
Further, the lower ends of the intervening ranges of the corrugated fins 14 interposed between the adjacent refrigerant flow passage pipes 15 are higher than the upper end faces of the two standing wall portions 74 of the drainage case 4 and the end face of the lower wall 2a of the unit case 2. Is also located below. As a result, the air flowing in the unit case 2 is relatively guided to the upper side of the laminated refrigerant evaporator 3, passes through the gap between the lower end of the laminated refrigerant evaporator 3 and the drainage case 4, and the refrigerant and the heat are removed. Almost no air leaks without replacement.

【0054】〔第3実施例〕図12は本発明の第3実施
例の構造を示したもので、積層型冷媒蒸発器と排水ケー
スを示した図である。
[Third Embodiment] FIG. 12 shows a structure of a third embodiment of the present invention, and is a view showing a laminated refrigerant evaporator and a drainage case.

【0055】この実施例の排水ケース4は、冷媒流路管
15の2個のタンク部16、17の側方端を塞ぐ側壁部
51、2つの側壁部51より下方へ傾斜した2つの傾斜
壁52、これらの傾斜壁52の連結部分より上方に延ば
され、冷媒流路管15の中央部最下端に形成された方形
状の凹み部28に当接する柱状壁53等よりなる。
In the drainage case 4 of this embodiment, the side wall portion 51 that closes the side ends of the two tank portions 16 and 17 of the refrigerant flow pipe 15 and the two inclined wall portions inclined downward from the two side wall portions 51. 52, a columnar wall 53 and the like extending above the connecting portion of these inclined walls 52 and abutting on a rectangular recess 28 formed at the lowermost end of the central portion of the refrigerant flow pipe 15.

【0056】〔第4実施例〕図13ないし図15は本発
明の第4実施例の構造を示したもので、図13および図
14は積層型冷媒蒸発器と排水ケースを示した図であ
る。
[Fourth Embodiment] FIGS. 13 to 15 show the structure of a fourth embodiment of the present invention, and FIGS. 13 and 14 are views showing a laminated refrigerant evaporator and a drainage case. .

【0057】この実施例では、排水ケース4の外側傾斜
壁32と内側傾斜壁34に、積層型冷媒蒸発器3より落
下した凝縮水を集水する溝部66、67が切削加工等に
より形成されている。溝部66、67は、図15に示し
たように、断面形状が方形形状に形成されている。
In this embodiment, grooves 66 and 67 for collecting condensed water dropped from the laminated refrigerant evaporator 3 are formed in the outer inclined wall 32 and the inner inclined wall 34 of the drainage case 4 by cutting or the like. There is. As shown in FIG. 15, the groove portions 66 and 67 are formed in a rectangular cross section.

【0058】この実施例の場合には、冷媒圧縮機がオフ
またはエアコンスイッチがオフの時、すなわち、排水ケ
ース4上の水滴の成長がない時でも、排水ケース4上の
水滴が溝部66、67に集められる。これにより、その
水滴が成長して排水孔36、底壁6を通って排水口7へ
導かれるので、第1実施例と比較してより効率良く排水
される。
In the case of this embodiment, even when the refrigerant compressor is off or the air conditioner switch is off, that is, when there is no growth of water droplets on the drainage case 4, the waterdrops on the drainage case 4 are in the grooves 66, 67. Collected in. As a result, the water droplets grow and are guided to the drainage port 7 through the drainage hole 36 and the bottom wall 6, so that the water is drained more efficiently than in the first embodiment.

【0059】〔第5実施例〕図16は本発明の第5実施
例の構造を示したもので、排水ケースを示した図であ
る。
[Fifth Embodiment] FIG. 16 shows a structure of a fifth embodiment of the present invention, and is a view showing a drainage case.

【0060】この実施例の排水ケース4の溝部66、6
7の周りには、なだらかな傾斜面68が形成されてい
る。この実施例は、第5実施例と比較して、広い範囲の
排水ケース4の外側傾斜壁32と内側傾斜壁34上の水
滴を溝部66、67に集めることができる。
Grooves 66, 6 of the drainage case 4 of this embodiment
Around the periphery of 7, a gentle slope 68 is formed. Compared to the fifth embodiment, this embodiment can collect water droplets on the outer inclined wall 32 and the inner inclined wall 34 of the drainage case 4 in a wider range in the grooves 66 and 67.

【0061】〔第6実施例〕図17は本発明の第6実施
例の構造を示したもので、排水ケースを示した図であ
る。この実施例では、排水ケース4の外側傾斜壁32と
内側傾斜壁34に台形形状の溝部69と平面部70とを
交互に形成している。
[Sixth Embodiment] FIG. 17 shows a structure of a sixth embodiment of the present invention, and is a view showing a drainage case. In this embodiment, trapezoidal grooves 69 and flat portions 70 are alternately formed on the outer inclined wall 32 and the inner inclined wall 34 of the drainage case 4.

【0062】〔第7実施例〕図18は本発明の第7実施
例の構造を示したもので、積層型冷媒蒸発器と排水ケー
スを示した図である。この実施例では、排水ケース4の
外側傾斜壁32と内側傾斜壁34に、積層型冷媒蒸発器
3の冷媒流路管13の鍔部71に沿うように断面形状が
方形形状の溝部72を形成している。
[Seventh Embodiment] FIG. 18 shows a structure of a seventh embodiment of the present invention, and is a view showing a laminated refrigerant evaporator and a drainage case. In this embodiment, a groove 72 having a rectangular cross-section is formed on the outer inclined wall 32 and the inner inclined wall 34 of the drainage case 4 so as to follow the flange 71 of the refrigerant flow pipe 13 of the laminated refrigerant evaporator 3. is doing.

【0063】〔第8実施例〕図19および図20は本発
明の第8実施例の構造を示したもので、積層型冷媒蒸発
器とユニットケースを示した図である。この実施例の排
水ケース4は、平行に配された2つの立壁部74、これ
らの立壁部74より下方へ傾斜した2つの円弧状壁7
5、冷媒流路管15(13)の中央部最下端に形成され
た方形状の凹み部28に当接する比較的に短い寸法の突
条壁76、円弧状壁75と突条壁76とを連結する2列
の底壁77、およびこれらの幅方向端部を塞ぐ閉塞壁7
8等よりなる。
[Eighth Embodiment] FIGS. 19 and 20 show the structure of an eighth embodiment of the present invention, which is a view showing a laminated refrigerant evaporator and a unit case. The drainage case 4 of this embodiment has two standing wall portions 74 arranged in parallel and two arcuate walls 7 inclined downward from these standing wall portions 74.
5, a ridge wall 76, a circular arc wall 75, and a ridge wall 76 of a relatively short size that come into contact with the rectangular recess 28 formed at the lowermost end of the central portion of the refrigerant flow pipe 15 (13). Two rows of bottom walls 77 that are connected to each other, and a closing wall 7 that closes these width direction end portions
It consists of 8 mag.

【0064】なお、この実施例では、第2実施例と同様
にして、エッジ部80の断面形状が半円形状(鈍角)に
形成することによりインシュレータ73が傷付いたり、
破れたりするなどの不具合を解消することができる。
In this embodiment, similarly to the second embodiment, the insulator 73 is damaged by forming the edge portion 80 in a semicircular shape (obtuse angle).
Problems such as tearing can be resolved.

【0065】また、積層型冷媒蒸発器3からの凝縮水の
排水効率を低下させることなく、積層型冷媒蒸発器3の
下方に設けられる排水流路81のスペースを小さなもの
とすることにより排水ケース4の高さを低くしてクーリ
ングユニット1全体の小型化を図ることができる。な
お、排水流路81の高さは、表面処理剤にもよるが、親
水性処理を施した積層型冷媒蒸発器3では3mm以上の隙
間aを確保すれば積層型冷媒蒸発器3と排水ケース4と
の間で凝縮水は滞留しない。
Further, the drainage channel 81 provided below the laminated refrigerant evaporator 3 has a small space without reducing the drainage efficiency of the condensed water from the laminated refrigerant evaporator 3, thereby reducing the drainage case. By reducing the height of the cooling unit 4, the cooling unit 1 as a whole can be downsized. The height of the drainage channel 81 depends on the surface treatment agent, but in the laminated refrigerant evaporator 3 that has been subjected to the hydrophilic treatment, if a gap a of 3 mm or more is secured, the laminated refrigerant evaporator 3 and the drainage case Condensed water does not stay between 4 and 4.

【0066】〔第9実施例〕図21は本発明の第9実施
例の構造を示したもので、積層型冷媒蒸発器とユニット
ケースを示した図である。この実施例の排水ケース4の
2つの底壁85は円弧状の曲面をそれぞれ有している。
[Ninth Embodiment] FIG. 21 shows a structure of a ninth embodiment of the present invention, and is a view showing a laminated refrigerant evaporator and a unit case. The two bottom walls 85 of the drainage case 4 of this embodiment each have an arcuate curved surface.

【0067】〔第10実施例〕図22は本発明の第10
実施例の構造を示したもので、積層型冷媒蒸発器とユニ
ットケースを示した図である。この実施例の排水ケース
4の底壁86は2つの円弧状壁75を緩やかに繋ぐよう
に円弧状の曲面を有している。
[Tenth Embodiment] FIG. 22 shows a tenth embodiment of the present invention.
It is a figure showing the structure of the example and showing the laminated refrigerant evaporator and the unit case. The bottom wall 86 of the drainage case 4 of this embodiment has an arcuate curved surface so as to gently connect the two arcuate walls 75.

【0068】〔第11実施例〕図23および図24は本
発明の第11実施例の構造を示したもので、積層型冷媒
蒸発器と排水ケースを示した図である。
[Eleventh Embodiment] FIGS. 23 and 24 show the structure of an eleventh embodiment of the present invention, which is a view showing a laminated refrigerant evaporator and a drainage case.

【0069】この実施例の排水ケース4は、積層型冷媒
蒸発器3の冷媒流路管15の2個のタンク部16、17
の側方端を塞ぐ側壁部41、2つの側壁部41より2個
のタンク部16、17の最下端にそれぞれ当接する2つ
の当接壁部42、これらの当接壁部42の内側端部より
下方に傾斜した2つの傾斜壁部43、これらの傾斜壁部
43の最下端同士を連結し、冷媒流路管15の最下端よ
り所定の距離だけ離れた底壁部44、およびこれらの幅
方向端部を塞ぐ閉塞壁45等よりなる。傾斜壁部43お
よび底壁部44には、ユニットケース2の底壁6上へ凝
縮水を排水するための排水孔46が形成されている。
The drainage case 4 of this embodiment includes two tank portions 16 and 17 of the refrigerant flow pipe 15 of the laminated refrigerant evaporator 3.
Side wall portion 41 that closes the side ends of the two side wall portions 41, two contact wall portions 42 that respectively contact the lowermost ends of the two tank portions 16 and 17 from the two side wall portions 41, and inner end portions of these contact wall portions 42. Two inclined wall portions 43 that are inclined further downward, bottom walls 44 that connect the lowermost ends of these inclined wall portions 43 and are separated from the lowermost end of the refrigerant channel pipe 15 by a predetermined distance, and their widths. It is composed of a closing wall 45 or the like that closes the end in the direction. A drain hole 46 for draining condensed water onto the bottom wall 6 of the unit case 2 is formed in the inclined wall portion 43 and the bottom wall portion 44.

【0070】この実施例の場合には、図24に示したよ
うに、タンク部16の側方端およびタンク部17の側方
端より下端側に流れ落ちた凝縮水は、タンク部16、1
7の下端より当接壁部42へ伝わり、この当接壁部42
から傾斜壁部43→底壁部44→排水孔46を通って排
水口7へ導かれ排水される。
In the case of this embodiment, as shown in FIG. 24, the condensed water flowing down to the lower end side from the side end of the tank portion 16 and the side end of the tank portion 17 is the tank portions 16, 1.
7 is transmitted to the contact wall portion 42 from the lower end, and the contact wall portion 42
From the inclined wall portion 43 to the bottom wall portion 44 to the drain hole 46, the water is guided to the drain port 7 and drained.

【0071】また、2個のタンク部16、17間からタ
ンク部16、17の下端側に流れ落ちた凝縮水は、タン
ク部16、17の下端へ達する前に排水ケース4の当接
壁部42を伝わる側方端からの凝縮水と合体して傾斜壁
部43側へ流れ落ちる。
The condensed water that has flowed down between the two tank parts 16 and 17 to the lower end side of the tank parts 16 and 17 reaches the contact wall part 42 of the drainage case 4 before reaching the lower ends of the tank parts 16 and 17. The water merges with the condensed water from the side end that travels through and flows down to the inclined wall portion 43 side.

【0072】〔第12実施例〕図25は本発明の第12
実施例の構造を示したもので、積層型冷媒蒸発器とユニ
ットケースを示した図である。
[Twelfth Embodiment] FIG. 25 shows a twelfth embodiment of the present invention.
It is a figure showing the structure of the example and showing the laminated refrigerant evaporator and the unit case.

【0073】この実施例では、ユニットケース2の底壁
6形状を変更して凝縮水が冷媒流路管15の下端に滞留
しないようにしている。ユニットケース2の底壁6は、
冷媒流路管15の2個のタンク部16、17の側方端を
塞ぐ円弧状の側壁部61、2つの側壁部61より2個の
タンク部16、17の最下端にそれぞれ当接する2つの
当接壁部62、これらの当接壁部62の内側端部より下
方に傾斜した2つの傾斜壁部63、およびこれらの傾斜
壁部63の最下端同士を連結し、冷媒流路管15の最下
端より所定の距離だけ離れた底壁部64等よりなる。
In this embodiment, the shape of the bottom wall 6 of the unit case 2 is changed so that condensed water does not stay at the lower end of the refrigerant flow pipe 15. The bottom wall 6 of the unit case 2 is
The arc-shaped side wall portion 61 that closes the side ends of the two tank portions 16 and 17 of the refrigerant flow pipe 15 and the two side wall portions 61 that come into contact with the lowermost ends of the two tank portions 16 and 17 respectively. The contact wall portions 62, the two inclined wall portions 63 inclined downward from the inner end portions of these contact wall portions 62, and the lowermost ends of these inclined wall portions 63 are connected to each other, and The bottom wall portion 64 and the like are separated from the lowermost end by a predetermined distance.

【0074】〔変形例〕本実施例では、本発明を冷媒流
路管15の下端側に2個のタンク部16、17を形成し
た積層型冷媒蒸発器3に用いたが、本発明を冷媒流路管
の下端側に3個以上のタンク部を形成した冷媒蒸発器に
用いても良い。また、冷媒流路管の上端部にもタンク部
を持つ冷媒蒸発器に本発明を用いても良い。
[Modification] In the present embodiment, the present invention is used in the laminated refrigerant evaporator 3 in which the two tank portions 16 and 17 are formed at the lower end side of the refrigerant flow pipe 15, but the present invention is used as a refrigerant. It may be used for a refrigerant evaporator in which three or more tank parts are formed on the lower end side of the flow path pipe. Further, the present invention may be applied to a refrigerant evaporator having a tank portion at the upper end of the refrigerant flow pipe.

【0075】[0075]

【発明の効果】請求項1に記載の発明および請求項11
に記載の発明は、冷媒流路管の下端側に2個のタンク部
を形成した冷媒蒸発器の表面に生じた凝縮水を効率的に
排水することにより、2個のタンク部の最下端に凝縮水
が滞留しなくなるので、冷媒流路管の下端側の局所的な
腐食を抑制することができる。
The invention according to claim 1 and claim 11
The invention described in (3) efficiently discharges the condensed water generated on the surface of the refrigerant evaporator in which two tank parts are formed on the lower end side of the refrigerant flow pipe, and Since the condensed water does not stay, it is possible to suppress local corrosion on the lower end side of the refrigerant flow pipe.

【0076】請求項10に記載の発明は、表面に親水性
処理が施された冷媒流路管の下端側にタンク部を形成し
た冷媒蒸発器の表面に生じた凝縮水を効率的に排水する
ことにより、他部より外方に膨らんだタンク部の最下端
に凝縮水が滞留しなくなるので、冷媒流路管の下端側の
局所的な腐食を抑制することができる。
According to the tenth aspect of the invention, the condensed water generated on the surface of the refrigerant evaporator in which the tank portion is formed at the lower end side of the refrigerant flow tube whose surface is hydrophilically treated is efficiently drained. As a result, the condensed water does not stay at the lowermost end of the tank portion that bulges outward from the other portion, so that local corrosion on the lower end side of the refrigerant flow pipe can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示した断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第1実施例に用いた積層型冷媒蒸発器
を示した正面図である。
FIG. 2 is a front view showing a laminated refrigerant evaporator used in the first embodiment of the present invention.

【図3】本発明の第1実施例に用いた積層型冷媒蒸発器
と排水ケースを示した斜視図である。
FIG. 3 is a perspective view showing a laminated refrigerant evaporator and a drain case used in the first embodiment of the present invention.

【図4】本発明の第1実施例の排水原理を示した説明図
である。
FIG. 4 is an explanatory view showing a drainage principle of the first embodiment of the present invention.

【図5】第1比較例の排水原理を示した説明図である。FIG. 5 is an explanatory diagram showing a drainage principle of the first comparative example.

【図6】第2比較例の排水原理を示した説明図である。FIG. 6 is an explanatory diagram showing a drainage principle of a second comparative example.

【図7】第1比較例の実験データを示したグラフであ
る。
FIG. 7 is a graph showing experimental data of the first comparative example.

【図8】本発明の第1実施例の実験データを示したグラ
フである。
FIG. 8 is a graph showing experimental data of the first example of the present invention.

【図9】本発明の第2実施例に用いた積層型冷媒蒸発器
と排水ケースを示した斜視図である。
FIG. 9 is a perspective view showing a laminated refrigerant evaporator and a drain case used in a second embodiment of the present invention.

【図10】本発明の第2実施例に用いた積層型冷媒蒸発
器と排水ケースを示した断面図である。
FIG. 10 is a sectional view showing a laminated refrigerant evaporator and a drain case used in a second embodiment of the present invention.

【図11】本発明の第2実施例の比較例を示した断面図
である。
FIG. 11 is a sectional view showing a comparative example of the second embodiment of the present invention.

【図12】本発明の第3実施例に用いた積層型冷媒蒸発
器と排水ケースを示した断面図である。
FIG. 12 is a sectional view showing a laminated refrigerant evaporator and a drain case used in a third embodiment of the present invention.

【図13】本発明の第4実施例に用いた積層型冷媒蒸発
器と排水ケースを示した斜視図である。
FIG. 13 is a perspective view showing a laminated refrigerant evaporator and a drain case used in a fourth embodiment of the present invention.

【図14】本発明の第4実施例に用いた排水ケースを示
した斜視図である。
FIG. 14 is a perspective view showing a drainage case used in a fourth embodiment of the present invention.

【図15】本発明の第4実施例に用いた排水ケースを示
した断面図である。
FIG. 15 is a sectional view showing a drainage case used in a fourth embodiment of the present invention.

【図16】本発明の第5実施例に用いた排水ケースを示
した断面図である。
FIG. 16 is a sectional view showing a drainage case used in a fifth embodiment of the present invention.

【図17】本発明の第6実施例に用いた排水ケースを示
した断面図である。
FIG. 17 is a sectional view showing a drainage case used in a sixth embodiment of the present invention.

【図18】本発明の第7実施例に用いた積層型冷媒蒸発
器と排水ケースを示した断面図である。
FIG. 18 is a sectional view showing a laminated refrigerant evaporator and a drain case used in a seventh embodiment of the present invention.

【図19】本発明の第8実施例の主要部を示した断面図
である。
FIG. 19 is a sectional view showing a main part of an eighth embodiment of the present invention.

【図20】本発明の第8実施例に用いた排水ケースを示
した斜視図である。
FIG. 20 is a perspective view showing a drainage case used in an eighth embodiment of the present invention.

【図21】本発明の第9実施例の主要部を示した断面図
である。
FIG. 21 is a sectional view showing a main part of a ninth embodiment of the present invention.

【図22】本発明の第10実施例の主要部を示した断面
図である。
FIG. 22 is a sectional view showing a main part of a tenth embodiment of the present invention.

【図23】本発明の第11実施例に用いた積層型冷媒蒸
発器と排水ケースを示した斜視図である。
FIG. 23 is a perspective view showing a laminated refrigerant evaporator and a drain case used in an eleventh embodiment of the present invention.

【図24】本発明の第11実施例に用いた積層型冷媒蒸
発器と排水ケースを示した断面図である。
FIG. 24 is a sectional view showing a laminated refrigerant evaporator and a drain case used in an eleventh embodiment of the present invention.

【図25】本発明の第12実施例に用いた積層型冷媒蒸
発器とユニットケースを示した断面図である。
FIG. 25 is a sectional view showing a laminated refrigerant evaporator and a unit case used in a twelfth embodiment of the present invention.

【図26】従来のタンク上置き型冷媒蒸発器を用いた空
気調和装置のクーリングユニットを示した断面図であ
る。
FIG. 26 is a cross-sectional view showing a cooling unit of an air conditioner using a conventional tank-top type refrigerant evaporator.

【図27】従来のタンク下置き型冷媒蒸発器を用いた空
気調和装置のクーリングユニットを示した断面図であ
る。
FIG. 27 is a cross-sectional view showing a cooling unit of an air conditioner using a conventional tank bottom type refrigerant evaporator.

【図28】従来のシングルタンク式積層型冷媒蒸発器を
示した正面図である。
FIG. 28 is a front view showing a conventional single tank type laminated refrigerant evaporator.

【図29】凝縮水の排水原理を示した説明図である。FIG. 29 is an explanatory diagram showing the principle of draining condensed water.

【図30】凝縮水の排水原理を示した説明図である。FIG. 30 is an explanatory diagram showing the principle of draining condensed water.

【図31】フィンのルーバを示した断面図である。FIG. 31 is a sectional view showing a louver of a fin.

【図32】従来のタンク上置き型冷媒蒸発器の冷媒流路
管における凝縮水の滞留部を示した説明図である。
FIG. 32 is an explanatory view showing a condensed water retention portion in a refrigerant flow pipe of a conventional tank-top type refrigerant evaporator.

【図33】従来のタンク下置き型冷媒蒸発器の冷媒流路
管における凝縮水の滞留部を示した説明図である。
[Fig. 33] Fig. 33 is an explanatory view showing a condensate retention part in a refrigerant flow pipe of a conventional tank-under-placed refrigerant evaporator.

【図34】従来のタンク下置き型冷媒蒸発器の冷媒流路
管における凝縮水の滞留部を示した説明図である。
FIG. 34 is an explanatory diagram showing a condensate retention portion in a refrigerant flow pipe of a conventional tank-under-placed refrigerant evaporator.

【符号の説明】[Explanation of symbols]

1 自動車用空気調和装置のクーリングユニット 2 ユニットケース 3 積層型冷媒蒸発器 4 排水ケース(誘導手段) 7 排水口 13 冷媒流路管 15 冷媒流路管 16 タンク部 17 タンク部 31 側壁部 32 外側傾斜壁(風上側側方傾斜部、風下側側方傾斜
部) 33 突条壁(突状部) 34 内側傾斜壁 36 排水孔(排出孔)
1 Cooling Unit of Air Conditioner for Automobile 2 Unit Case 3 Laminated Refrigerator Evaporator 4 Drainage Case (Induction Means) 7 Drainage Port 13 Refrigerant Channel Pipe 15 Refrigerant Channel Pipe 16 Tank Section 17 Tank Section 31 Side Wall Section 32 Outer Inclination Wall (windward side slanted portion, leeward side slanted portion) 33 projected wall (projected portion) 34 inner slanted wall 36 drainage hole (discharge hole)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 末広 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 山本 敏博 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 長沢 聡也 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 角 省吾 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Suehiro 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor Toshihiro Yamamoto 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nidec Incorporated (72) Inventor Sataya Nagasawa, 1-1, Showa-cho, Kariya, Aichi Prefecture, Nippon Denso Co., Ltd. (72) Inventor, Shogo Kaku, 1-1, Showa-cho, Kariya, Aichi Prefecture, Nihondenso Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】(a)下端側に2個のタンク部が形成され
た冷媒流路管を複数積層し、隣設する冷媒流路間にフィ
ンを介在してなる冷媒蒸発器と、 (b)この冷媒蒸発器の下方に配され、前記2個のタン
ク部の風上側端部に当接する風上側側方傾斜部、前記タ
ンク部の風下側端部に当接する風下側側方傾斜部、前記
2個のタンク部間の部位下端部に当接する突状部、およ
び前記冷媒蒸発器にて発生した凝縮水を排水するための
排出孔を有する排水ケースとを備えた空気調和装置のク
ーリングユニット。
1. A refrigerant evaporator comprising: (a) a plurality of refrigerant flow path pipes each having two tank portions formed on the lower end side thereof, and fins interposed between adjacent refrigerant flow paths; ) Located below this refrigerant evaporator, the windward sideward inclined portion that abuts the windward side end portions of the two tank portions, the leeward sideward inclined portion that abuts the leeward side end portions of the tank portions, A cooling unit for an air conditioner, comprising: a protruding portion that abuts a lower end portion of a portion between the two tank portions; and a drainage case having a discharge hole for draining condensed water generated in the refrigerant evaporator. .
【請求項2】前記排水ケースは、前記2個のタンク部の
風上側の側方端および風下側の側方端に当接する2つの
側壁部と、 これらの側壁部より下方に傾斜し、前記風上側側方傾斜
部および前記風下側側方傾斜部を形成する2つの外側傾
斜壁と、 前記2個のタンク部間の部位下端部に当接し、前記突状
部を形成するへの字形状の突状壁と、 前記2つの外側傾斜壁と前記突状壁とを連結する2つの
内側傾斜壁とからなることを特徴とする請求項1に記載
の空気調和装置のクーリングユニット。
2. The drainage case includes two side wall portions that come into contact with side edges on the windward side and side edges on the leeward side of the two tank portions, and the side wall portions are inclined downward from the side wall portions. Two outer inclined walls forming the windward sideward inclined portion and the leeward sideward inclined portion, and a V-shape that abuts the lower end portion of the site between the two tank portions to form the protruding portion. 2. The cooling unit for an air conditioner according to claim 1, wherein the cooling unit is formed of two protruding walls, and two inner inclined walls connecting the two outer inclined walls and the protruding wall.
【請求項3】前記排出孔は、前記内側傾斜壁に穿設され
ていることを特徴とする請求項2に記載の空気調和装置
のクーリングユニット。
3. The cooling unit for an air conditioner according to claim 2, wherein the discharge hole is formed in the inner inclined wall.
【請求項4】前記排水ケースは、前記2個のタンク部の
風上側の側方端および風下側の側方端に当接する2つの
側壁部と、 これらの側壁部より下方に傾斜し、前記風上側側方傾斜
部および前記風下側側方傾斜部を形成する2つの傾斜壁
と、 これらの傾斜壁の連結部分より上方に延ばされ、前記2
個のタンク部間の部位下端部に当接し、前記突状部を形
成する柱状壁とからなることを特徴とする請求項1に記
載の空気調和装置のクーリングユニット。
4. The drain case includes two side wall portions that come into contact with side edges on the windward side and side edges on the leeward side of the two tank portions, and the side wall portions are inclined downward from the side wall portions. Two inclined walls forming the windward sideward inclined portion and the leeward sideward inclined portion, and extending above a connecting portion of these inclined walls,
The cooling unit for an air conditioner according to claim 1, comprising a columnar wall that abuts a lower end portion of a portion between the individual tank portions and forms the protruding portion.
【請求項5】前記排水ケースは、前記2個のタンク部の
風上側の側方端および風下側の側方端に当接する2つの
側壁部と、 これらの側壁部より下方に傾斜し、前記風上側側方傾斜
部および前記風下側側方傾斜部を形成する2つの傾斜壁
と、 これらの傾斜壁の最下端同士を連結し、前記2個のタン
ク部の下端部から所定の距離だけ離れた底壁部と、 この底壁部の中央から上方に延ばされ、前記2個のタン
ク部間の部位下端部に当接し、前記突状部を形成する柱
状壁とからなることを特徴とする請求項1に記載の空気
調和装置のクーリングユニット。
5. The drainage case includes two side wall portions that come into contact with the side edges on the windward side and the side edges on the leeward side of the two tank portions, and slopes downward from the side wall portions. Two slanted walls forming the windward side slanted portion and the leeward side slanted portion, and the lowermost ends of these slanted walls are connected to each other and separated from each other by a predetermined distance from the lower end portions of the two tank portions. A bottom wall portion, and a columnar wall that extends upward from the center of the bottom wall portion and that abuts the lower end portion of the portion between the two tank portions to form the protruding portion. The cooling unit for an air conditioner according to claim 1.
【請求項6】前記排出孔は、前記底壁部に穿設されてい
ることを特徴とする請求項5に記載の空気調和装置のク
ーリングユニット。
6. The cooling unit for an air conditioner according to claim 5, wherein the discharge hole is formed in the bottom wall portion.
【請求項7】前記冷媒蒸発器の前記成形プレートおよび
前記フィンには親水性処理が施されていることを特徴と
する請求項1ないし請求項6のいずれかひとつに記載の
空気調和装置のクーリングユニット。
7. The cooling of the air conditioner according to claim 1, wherein the molded plate and the fins of the refrigerant evaporator are subjected to hydrophilic treatment. unit.
【請求項8】隣設する成形プレート間に介在しているフ
ィンの介在範囲の最下端は、前記排水ケースの上端より
も下方であることを特徴とする請求項1ないし請求項7
のいずれかひとつに記載の空気調和装置のクーリングユ
ニット。
8. The lower end of the interposition range of the fins interposed between the adjacent molding plates is lower than the upper end of the drain case.
The cooling unit for an air conditioner described in any one of 1.
【請求項9】前記排水ケースは、前記冷媒蒸発器の下端
とユニットケースの底壁との間に挟み込まれており、 前記ユニットケースは、前記排水ケースの位置決めを行
う係合部を有することを特徴とする請求項1ないし請求
項7のいずれかひとつに記載の空気調和装置のクーリン
グユニット。
9. The drain case is sandwiched between the lower end of the refrigerant evaporator and the bottom wall of the unit case, and the unit case has an engaging portion for positioning the drain case. The cooling unit for an air conditioner according to any one of claims 1 to 7.
【請求項10】表面に親水性処理が施された冷媒流路管
の下端側に、他部より外方に膨らんだタンク部を形成し
た冷媒蒸発器と、この冷媒蒸発器より下方に凝縮水を排
水する排水口を有するユニットケースとを備え、 前記冷媒蒸発器あるいは前記ユニットケースのうちいず
れか一方は、前記タンク部の最下端または前記タンク部
の側方端から前記排水口へ凝縮水を誘導する誘導手段を
有する空気調和装置のクーリングユニット。
10. A refrigerant evaporator having a tank portion bulging outward from the other portion on the lower end side of a refrigerant flow tube whose surface is hydrophilically treated, and condensed water below the refrigerant evaporator. And a unit case having a drainage port for draining the refrigerant evaporator, or one of the unit case, the condensed water from the bottom end of the tank portion or the lateral end of the tank portion to the drainage port. A cooling unit for an air conditioner having a guiding means for guiding.
【請求項11】前記冷媒流路管の下端側に2個のタンク
部を形成した一対の成形プレートを複数積層してなる冷
媒蒸発器の下方に配され、前記冷媒蒸発器にて発生した
凝縮水を排出するための排出ケースであって、 前記2個のタンク部の風上側端部に当接する風上側側方
傾斜部と、 前記2個のタンク部の風下側端部に当接する風下側側方
傾斜部と、 前記2個のタンク部間の部位下端部に当接する突状部
と、 前記冷媒蒸発器にて発生した凝縮水を排水するための排
出孔とを有することを特徴とする排水ケース。
11. Condensation generated in the refrigerant evaporator, which is arranged below a refrigerant evaporator formed by stacking a plurality of paired molding plates each having two tanks formed on the lower end side of the refrigerant flow pipe. A drainage case for draining water, which includes a windward sideward slant portion that abuts on windward end portions of the two tank portions, and a leeward side that abuts on leeward side end portions of the two tank portions. It has a lateral inclined part, a projecting part which abuts on a lower end part of the portion between the two tank parts, and a discharge hole for discharging condensed water generated in the refrigerant evaporator. Drainage case.
JP04560194A 1993-05-19 1994-03-16 Cooling unit and drain case for air conditioner Expired - Fee Related JP3287100B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP04560194A JP3287100B2 (en) 1993-05-19 1994-03-16 Cooling unit and drain case for air conditioner
CA002123368A CA2123368C (en) 1993-05-19 1994-05-11 Cooling unit and drain case for air conditioners
MYPI94001187A MY110801A (en) 1993-05-19 1994-05-12 Cooling unit and drain case for air conditioners
EP94107620A EP0625679B1 (en) 1993-05-19 1994-05-17 Cooling unit and drain case for air conditioners
DE69406847T DE69406847T2 (en) 1993-05-19 1994-05-17 Cooling unit and drain tank for air conditioning
US08/245,502 US5481886A (en) 1993-05-19 1994-05-18 Cooling unit and drain case for air conditioners
CN94105730A CN1099557C (en) 1993-05-19 1994-05-18 Cooling assembly for air conditioner
AU63211/94A AU679050B2 (en) 1993-05-19 1994-05-19 Cooling unit and drain case for air conditioners

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP11736793 1993-05-19
JP21306093 1993-08-27
JP27637593 1993-11-05
JP5-117367 1993-11-05
JP5-213060 1993-11-05
JP5-276375 1993-11-05
JP04560194A JP3287100B2 (en) 1993-05-19 1994-03-16 Cooling unit and drain case for air conditioner

Publications (2)

Publication Number Publication Date
JPH07172152A true JPH07172152A (en) 1995-07-11
JP3287100B2 JP3287100B2 (en) 2002-05-27

Family

ID=27461736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04560194A Expired - Fee Related JP3287100B2 (en) 1993-05-19 1994-03-16 Cooling unit and drain case for air conditioner

Country Status (8)

Country Link
US (1) US5481886A (en)
EP (1) EP0625679B1 (en)
JP (1) JP3287100B2 (en)
CN (1) CN1099557C (en)
AU (1) AU679050B2 (en)
CA (1) CA2123368C (en)
DE (1) DE69406847T2 (en)
MY (1) MY110801A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198641A (en) * 1998-01-09 1999-07-27 Denso Corp Vehicular air conditioner
JP2000094944A (en) * 1998-09-24 2000-04-04 Denso Corp Air conditioning system for vehicle
JP2001150940A (en) * 1999-11-22 2001-06-05 Calsonic Kansei Corp Air-conditioning unit for vehicle
JP2004053132A (en) * 2002-07-19 2004-02-19 Denso Corp Cooler
JP2004184034A (en) * 2002-12-05 2004-07-02 Denso Corp Cooling unit for air-conditioning system
JP2006056342A (en) * 2004-08-19 2006-03-02 Calsonic Kansei Corp Air-conditioner for automobile
JP2006183952A (en) * 2004-12-28 2006-07-13 Fuji Koki Corp Auxiliary cooling device
JP2007083855A (en) * 2005-09-21 2007-04-05 Calsonic Kansei Corp Condensed water draining structure
JP2008101855A (en) * 2006-10-19 2008-05-01 Aoki Jutaku Kizai Hanbai Kk Ceiling radiation system
JP2010158947A (en) * 2009-01-07 2010-07-22 Sanden Corp Vehicular air conditioning unit
WO2013051418A1 (en) * 2011-10-07 2013-04-11 シャープ株式会社 Device equipped with side-flow-type parallel-flow heat exchanger
KR101396437B1 (en) * 2008-01-22 2014-05-19 한라비스테온공조 주식회사 Evaporator And Air conditioner for an Automobile equipped with same
JP2015007503A (en) * 2013-06-25 2015-01-15 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
WO2016170878A1 (en) * 2015-04-24 2016-10-27 株式会社デンソー Vehicle air-conditioning unit
JP2017116217A (en) * 2015-12-25 2017-06-29 三菱重工業株式会社 Air conditioner
JP6349011B1 (en) * 2017-04-28 2018-06-27 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2020021706A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2020118368A (en) * 2019-01-24 2020-08-06 パナソニックIpマネジメント株式会社 Air conditioner
JP2020194829A (en) * 2019-05-27 2020-12-03 株式会社日立産機システム Oil-filled transformer
WO2021152984A1 (en) * 2020-01-29 2021-08-05 株式会社デンソー Heat exchanger
KR102538124B1 (en) * 2022-11-14 2023-05-31 주식회사 신안그린테크 Dehumidifier that secures improved dehumidification amount by reducing wind loss
WO2023145042A1 (en) * 2022-01-31 2023-08-03 三菱電機株式会社 Heat exchanger

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755107A (en) * 1994-09-22 1998-05-26 Denso Corporation Automotive air conditioner
US6643765B1 (en) * 1995-08-16 2003-11-04 Microunity Systems Engineering, Inc. Programmable processor with group floating point operations
JP3924902B2 (en) * 1998-02-25 2007-06-06 株式会社デンソー Cooling unit for vehicle air conditioner
US5966959A (en) * 1998-03-09 1999-10-19 American Standard Inc. Condensate drain pan arrangement with positive slope
FR2783906B1 (en) * 1998-09-24 2000-12-15 Valeo Climatisation PLATE HEAT EXCHANGER, ESPECIALLY FOR A MOTOR VEHICLE
AU757671B2 (en) * 1998-11-27 2003-02-27 Mitsubishi Denki Kabushiki Kaisha Indoor unit for an air conditioner
GB9826047D0 (en) * 1998-11-28 1999-01-20 Smiths Industries Plc Fancoil assemblies
WO2001050070A1 (en) * 1999-12-30 2001-07-12 Carrier Corporation Coil support pan for an air handling unit
DE10146368A1 (en) * 2000-09-22 2002-06-06 Denso Corp Heat exchanger
ES2223303B1 (en) * 2003-08-14 2005-12-16 Bsh Electrodomesticos España S.A. CLIMATE CONTROL TEAM.
US7971636B2 (en) * 2004-07-05 2011-07-05 Showa Denko K.K. Heat exchanger with drain grooves
JP4599245B2 (en) * 2004-07-15 2010-12-15 昭和電工株式会社 Heat exchanger
JP2006046694A (en) * 2004-07-30 2006-02-16 Daikin Ind Ltd Refrigerating device
JP2006082725A (en) * 2004-09-16 2006-03-30 Denso Corp Air-conditioner
US7430877B2 (en) * 2005-11-22 2008-10-07 Rheem Manufacturing Company Air conditioning apparatus and associated condensate drain pan structure
SE529344C2 (en) 2005-11-28 2007-07-10 Scania Cv Abp A unit for ventilation and air conditioning of a driver's compartment of a motor vehicle
KR20070107281A (en) * 2006-05-02 2007-11-07 엘지전자 주식회사 A dehumidifier
GB2444792B (en) * 2007-03-17 2008-11-12 Senior Uk Ltd U-shaped cooler
US8468836B2 (en) * 2008-11-12 2013-06-25 General Mills, Inc. Portable thermoelectric cooling/heating unit and related merchandizing system
JP5868088B2 (en) 2011-09-15 2016-02-24 株式会社ケーヒン・サーマル・テクノロジー Cooling unit for vehicle air conditioner
EP2595463B8 (en) * 2011-11-17 2017-08-02 ABB Schweiz AG Method and arrangement for reducing the amount of condensed moisture inside an enclosure for electrical equipment
KR101919887B1 (en) * 2012-05-15 2018-11-19 엘지전자 주식회사 A clothes dryer
CN102997393B (en) * 2012-10-10 2015-06-24 合肥天鹅制冷科技有限公司 Heat exchanger system of small type air conditioner for cabin
CN103939982A (en) * 2013-01-21 2014-07-23 凌泽民 Automobile air conditioner
US9372018B2 (en) * 2013-06-05 2016-06-21 Hamilton Sundstrand Corporation Evaporator heat exchanger
US9989276B2 (en) * 2014-04-17 2018-06-05 Mahle International Gmbh Condensate drainage device for heat exchanger
CN103957685B (en) * 2014-05-16 2016-07-06 赵威 It is easy to cold air air channel in the cabinet of communication equipment of collection condensed water
EP3118560A1 (en) * 2015-07-16 2017-01-18 Büchi Labortechnik AG Device for collecting a condensate
DE102016203871A1 (en) * 2016-03-09 2017-09-14 Mahle International Gmbh air conditioning
CN106369882B (en) * 2016-08-25 2019-02-22 安徽江淮松芝空调有限公司 A kind of evaporator double-decked insulation
US10168114B2 (en) * 2016-08-30 2019-01-01 Hamilton Sundstrand Corporation Integral drain assembly for a heat exchanger and method of forming
JP2019016709A (en) * 2017-07-07 2019-01-31 富士通株式会社 Cooling device, exhaust purifier, and motor vehicle
DE102017218810A1 (en) 2017-10-20 2019-04-25 Mahle International Gmbh Collection box of a heat exchanger
CN109334383A (en) * 2018-08-20 2019-02-15 安徽江淮松芝空调有限公司 A kind of air conditioning for automobiles host condensate water extraction device
DE202021100397U1 (en) * 2021-01-27 2022-04-28 Akg Verwaltungsgesellschaft Mbh Device for cooling and drying air
CN113338473A (en) * 2021-06-07 2021-09-03 浙江明筑新材料有限公司 Simulation plant wall with cooling and heating functions and mosquito repelling effect
WO2023286000A1 (en) * 2021-07-16 2023-01-19 Mahle Anand Thermal System Private Limited System and method for condensate draining in automobile air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137771A (en) * 1983-01-25 1984-08-07 カルソニックカンセイ株式会社 Evaporator
JPS6082170U (en) * 1983-11-14 1985-06-07 株式会社ボッシュオートモーティブ システム Stacked evaporator
US4907420A (en) * 1988-06-13 1990-03-13 Snyder General Corporation Dual wall evaporator pan
US4843835A (en) * 1988-09-27 1989-07-04 Amana Refrigeration, Inc. Refrigerator drain funnel
JP2502210B2 (en) * 1991-06-11 1996-05-29 株式会社日立製作所 Heat exchanger and its manufacturing method
JPH0587469A (en) * 1991-09-27 1993-04-06 Showa Alum Corp Lamination type heat exchanger

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198641A (en) * 1998-01-09 1999-07-27 Denso Corp Vehicular air conditioner
JP2000094944A (en) * 1998-09-24 2000-04-04 Denso Corp Air conditioning system for vehicle
JP2001150940A (en) * 1999-11-22 2001-06-05 Calsonic Kansei Corp Air-conditioning unit for vehicle
JP2004053132A (en) * 2002-07-19 2004-02-19 Denso Corp Cooler
JP2004184034A (en) * 2002-12-05 2004-07-02 Denso Corp Cooling unit for air-conditioning system
JP2006056342A (en) * 2004-08-19 2006-03-02 Calsonic Kansei Corp Air-conditioner for automobile
JP4721698B2 (en) * 2004-12-28 2011-07-13 株式会社不二工機 Auxiliary cooling device
JP2006183952A (en) * 2004-12-28 2006-07-13 Fuji Koki Corp Auxiliary cooling device
JP2007083855A (en) * 2005-09-21 2007-04-05 Calsonic Kansei Corp Condensed water draining structure
JP2008101855A (en) * 2006-10-19 2008-05-01 Aoki Jutaku Kizai Hanbai Kk Ceiling radiation system
KR101396437B1 (en) * 2008-01-22 2014-05-19 한라비스테온공조 주식회사 Evaporator And Air conditioner for an Automobile equipped with same
JP2010158947A (en) * 2009-01-07 2010-07-22 Sanden Corp Vehicular air conditioning unit
WO2013051418A1 (en) * 2011-10-07 2013-04-11 シャープ株式会社 Device equipped with side-flow-type parallel-flow heat exchanger
JP2013083392A (en) * 2011-10-07 2013-05-09 Sharp Corp Device with side-flow-type parallel flow heat exchanger
CN103765151A (en) * 2011-10-07 2014-04-30 夏普株式会社 Device equipped with side-flow-type parallel-flow heat exchanger
JP2015007503A (en) * 2013-06-25 2015-01-15 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
US10661635B2 (en) 2015-04-24 2020-05-26 Denso Corporation Vehicle air-conditioning unit
JPWO2016170878A1 (en) * 2015-04-24 2017-08-31 株式会社デンソー Air conditioning unit for vehicles
WO2016170878A1 (en) * 2015-04-24 2016-10-27 株式会社デンソー Vehicle air-conditioning unit
JP2017116217A (en) * 2015-12-25 2017-06-29 三菱重工業株式会社 Air conditioner
WO2018198398A1 (en) * 2017-04-28 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2018189254A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP6349011B1 (en) * 2017-04-28 2018-06-27 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2020021706A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2020118368A (en) * 2019-01-24 2020-08-06 パナソニックIpマネジメント株式会社 Air conditioner
JP2020194829A (en) * 2019-05-27 2020-12-03 株式会社日立産機システム Oil-filled transformer
WO2021152984A1 (en) * 2020-01-29 2021-08-05 株式会社デンソー Heat exchanger
JP2021116989A (en) * 2020-01-29 2021-08-10 株式会社デンソー Heat exchanger
WO2023145042A1 (en) * 2022-01-31 2023-08-03 三菱電機株式会社 Heat exchanger
KR102538124B1 (en) * 2022-11-14 2023-05-31 주식회사 신안그린테크 Dehumidifier that secures improved dehumidification amount by reducing wind loss

Also Published As

Publication number Publication date
EP0625679B1 (en) 1997-11-19
AU679050B2 (en) 1997-06-19
EP0625679A1 (en) 1994-11-23
MY110801A (en) 1999-04-30
CA2123368C (en) 2001-10-16
CA2123368A1 (en) 1994-11-20
DE69406847T2 (en) 1998-03-12
AU6321194A (en) 1994-11-24
DE69406847D1 (en) 1998-01-02
US5481886A (en) 1996-01-09
CN1099557C (en) 2003-01-22
JP3287100B2 (en) 2002-05-27
CN1102472A (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JPH07172152A (en) Cooling unit and drain case for air conditioning device
US20080105416A1 (en) Cooling heat exchanger
JP2000179988A (en) Refrigerant evaporator
EP2478318A1 (en) Free-draining finned surface architecture for a heat exchanger
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
JPH0823477B2 (en) Stacked heat exchanger
US6435268B1 (en) Evaporator with improved condensate drainage
WO2011049015A1 (en) Evaporator
JP3700144B2 (en) Heat exchanger for cooling
US7080682B2 (en) Heat exchanger
US20030106678A1 (en) Heat exchanger
JPH10231724A (en) Heat-exchanger
JPH10197173A (en) Flat tube for heat exchanger and heat exchanger
JPH0749914B2 (en) Stacked heat exchanger
JP2004317002A (en) Heat exchanger
JPH0331693A (en) Finned heat exchanger
JPH0547954Y2 (en)
JP2001174180A (en) Heat exchanger for cooling
JPS6032847Y2 (en) Stacked evaporator
JP2002318090A (en) Duplex heat exchanger
JPH05248732A (en) Heat-exchanger
JPH09203593A (en) Heat exchanger
JP6975656B2 (en) Evaporator with cold storage function
JPH0245647Y2 (en)
JP2001221590A (en) Heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140315

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees