JPH07166204A - Rare earth-iron-based permanent magnet alloy powder and bond permanent magnet - Google Patents

Rare earth-iron-based permanent magnet alloy powder and bond permanent magnet

Info

Publication number
JPH07166204A
JPH07166204A JP5313222A JP31322293A JPH07166204A JP H07166204 A JPH07166204 A JP H07166204A JP 5313222 A JP5313222 A JP 5313222A JP 31322293 A JP31322293 A JP 31322293A JP H07166204 A JPH07166204 A JP H07166204A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
iron
alloy powder
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5313222A
Other languages
Japanese (ja)
Other versions
JP2986321B2 (en
Inventor
Masanobu Shimao
正信 島尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5313222A priority Critical patent/JP2986321B2/en
Publication of JPH07166204A publication Critical patent/JPH07166204A/en
Application granted granted Critical
Publication of JP2986321B2 publication Critical patent/JP2986321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE:To produce a rare earth-iron-based permanent magnet alloy powder and a bond permanent magnet improved in magnetic properties, particularly improved in saturation magnetic flux density by improving the compsn. of a binary rare earth-iron compound. CONSTITUTION:In rare earth-iron-based permanent magnet alloy powder consisting of rare earth elements-iron-oxygen-the elements to be added, the internal structure of each grain of rare earth-iron-based permanent magnet alloy powder expressed by the general formula Rd(Fe1-gCog)100-a-e-fOeMf (where R denotes one or >= two kinds of rare earth elements elected from all lanthanoids, M denotes one or >= two kinds among Ti, V, Si and Mo and, by atom, 4<=d<=20, 1<=e<=10, 0<=f<=10 and 0<=g<=1 are satisfied) is formed of a two phase mixed state of a phase rich in oxygen and a phase contg. no oxygen. Moreover, the rare earth-iron-based permanent magnet alloy powder is pulverized, is kneaded with a binder and is formed to obtain the bond permanent magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた磁気特性、特に
大きな飽和磁束密度を有する希土類−鉄系磁石合金粉末
及びこれを用いたボンド永久磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron based magnet alloy powder having excellent magnetic properties, particularly a large saturation magnetic flux density, and a bonded permanent magnet using the same.

【0002】[0002]

【従来の技術】現在、特に工業的に注目されている永久
磁石合金である希土類−鉄−ボロン(R−Fe −B)系
永久磁石合金は、希土類−鉄二元系化合物の磁気特性を
改良するため、希土類−鉄系合金に第三元素のBを添加
し、新しい結晶構造を持つ金属間化合物を生成させ、そ
の高い磁気特性、特に高い飽和磁束密度と大きな異方性
磁界を持つことでその用途は電子合金分野で拡大してい
る。
2. Description of the Related Art At present, a rare earth-iron-boron (R-Fe-B) -based permanent magnet alloy, which is a permanent magnet alloy which has been particularly attracting industrial attention, improves the magnetic properties of rare earth-iron binary compounds. Therefore, B of the third element is added to the rare earth-iron-based alloy to generate an intermetallic compound having a new crystal structure, and its high magnetic properties, particularly high saturation magnetic flux density and large anisotropic magnetic field Applications are expanding in the field of electronic alloys.

【0003】[0003]

【発明が解決しようとする課題】しかし、R−Fe −B
系永久磁石合金は、その合金の持つ宿命である酸化の影
響を受け易く、製造工程中での酸化は磁気特性を大幅に
低下させる要因となっており、そのために真空中もしく
は不活性ガス中での大掛かりな設備による製造が必要で
ある。また、第三元素Bを用いない二元系のみからなる
希土類−鉄化合物は、永久磁石の三要素である高い飽和
磁束密度、高いキュリー温度、大きな一軸結晶磁気異方
性を兼ね備えていないので、その改良が望まれている。
本発明は、この二元系希土類−鉄化合物に着目し、その
組成を改良して磁気特性、特には飽和磁束密度を向上さ
せた希土類−鉄系永久磁石合金粉末及び該粉末を成形し
たボンド永久磁石を提供しようとするものである。
However, R-Fe-B
Permanent magnet alloys are susceptible to the fate of the alloy, oxidation, and oxidation during the manufacturing process is a factor that significantly reduces magnetic properties. It is necessary to manufacture with large-scale equipment. Further, since the rare earth-iron compound consisting of only a binary system that does not use the third element B does not combine high saturation magnetic flux density, high Curie temperature, and large uniaxial crystal magnetic anisotropy, which are the three elements of the permanent magnet, The improvement is desired.
The present invention focuses on this binary rare earth-iron compound, and improves the composition thereof to improve magnetic properties, in particular, saturation magnetic flux density, and rare earth-iron permanent magnet alloy powder and bond permanent formed by molding the powder. It is intended to provide a magnet.

【0004】[0004]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するため鋭意研究を重ね、酸化を逆に利用し、
このR−Fe 系合金化合物に酸素を有効に用いることに
よりその磁気特性を改善し、高い飽和磁束密度を有する
ボンド永久磁石を見出したもので、その要旨は、希土類
元素−鉄−酸素−添加元素から成る希土類−鉄系永久磁
石合金粉末において、一般式 Rd(Fe1-gCog)
100-d-e-fef (但し、RはYを含む全てのランタ
ノイド元素から選択される1種又は2種以上の希土類元
素、MはTi 、V、Si 、Mo の内1種もしくは2種以
上、4≦ d≦20、1≦ e≦10、O≦ f≦10 各原子%、
O≦ g≦1原子比である。)で表わされる希土類−鉄系
永久磁石合金粉末の個々の粒子の内部組織が、酸素に富
む相と酸素を含まない相との二相混成状態から成ること
を特徴とする希土類−鉄系永久磁石合金粉末であり、か
つ前記の希土類−鉄系永久磁石合金粉末を微粉砕し、バ
インダーと混練し成形して成るボンド永久磁石にある。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to solve such problems, and reversely utilize oxidation.
The present inventors have found a bonded permanent magnet having a high saturation magnetic flux density by improving the magnetic properties by effectively using oxygen in this R-Fe alloy compound, and the gist thereof is a rare earth element-iron-oxygen-added element. rare earth consists - in iron-based permanent magnet alloy powders of the general formula R d (Fe 1-g Co g)
100-def O e M f (where R is one or more rare earth elements selected from all lanthanoid elements including Y, M is one or more of Ti, V, Si and Mo) 4 ≦ d ≦ 20, 1 ≦ e ≦ 10, O ≦ f ≦ 10 each atomic%,
O ≦ g ≦ 1 atomic ratio. ), The internal structure of the individual particles of the rare earth-iron-based permanent magnet alloy powder is composed of a two-phase hybrid state of an oxygen-rich phase and an oxygen-free phase. It is a bond permanent magnet that is an alloy powder and is obtained by finely pulverizing the rare earth-iron-based permanent magnet alloy powder, kneading it with a binder, and molding.

【0005】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【作用】本発明者の研究によれば、このR−Fe 系合金
化合物の酸化は初期段階ではRに富む相が顕著に進行
し、徐々に主相へと移行することが判明し、その反応速
度は主相ではRに富む相に較べ数段遅いことがわかっ
た。また、酸素は主相である希土類−鉄系合金内に侵入
した場合、結晶構造を変えることなく結晶格子間に侵入
し結果的に結晶格子を押し広げる役目をし、その体積効
果から磁気特性、特に飽和磁束密度を増加させ、キュリ
ー温度を上昇させ、一軸の異方性を発生させることを突
き止めた。本発明において希土類元素Rは、Fe との交
換相互作用により磁気的な異方性化を実現させるために
重要な元素であり、その種類はYを含む全てのランタノ
イド元素であるLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、
YbおよびLuから成る群から選択される1種または2種以
上の希土類元素について有効で、磁気特性向上効果も大
きい。
According to the research conducted by the present inventor, it was found that in the oxidation of this R-Fe alloy compound, the R-rich phase remarkably progressed in the initial stage and gradually transitioned to the main phase. The velocity was found to be several orders of magnitude slower in the main phase than in the R-rich phase. Further, when oxygen enters the main phase rare earth-iron-based alloy, it penetrates between the crystal lattices without changing the crystal structure and consequently serves to expand the crystal lattice, and due to its volume effect, magnetic characteristics, In particular, it was found that the saturation magnetic flux density is increased, the Curie temperature is increased, and uniaxial anisotropy is generated. In the present invention, the rare earth element R is an important element for realizing magnetic anisotropy by exchange interaction with Fe, and its type is all lanthanoid elements including Y, such as La, Ce, Pr. , Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
It is effective for one or more rare earth elements selected from the group consisting of Yb and Lu, and has a large effect of improving magnetic properties.

【0006】しかし、このRをただ単に用いたのではそ
の効果は半減してしまうが、軽希土類元素の内、Ce、N
d、Pr、Sm とその他の希土類元素を組み合わせることに
よりその効果は格段に大きくなることがわかった。Rは
原子百分率で4〜20%、好ましくは5〜16%の範囲であ
ることが必要で、4%未満では十分な保磁力が得られ
ず、20%を越えると純粋な希土類金属の析出が多くな
り、合金の持つ磁気特性、特に飽和磁束密度が低下し、
実用合金としては低性能のものとなってしまう。
However, if R is simply used, its effect is halved, but among the light rare earth elements, Ce and N
By combining d, Pr, Sm and other rare earth elements, it was found that the effect was significantly increased. R must be in the range of 4 to 20%, preferably 5 to 16% in atomic percentage. If it is less than 4%, a sufficient coercive force cannot be obtained, and if it exceeds 20%, pure rare earth metal precipitation occurs. The magnetic properties of the alloy, especially the saturation magnetic flux density, decrease,
It has low performance as a practical alloy.

【0007】添加元素(M)としては、Ti、V、 Si、M
o 等がこの希土類−鉄系、特にR1(Fe、M)12 系には効
果が大きい。これらの元素はR1(Fe、M)12 系金属間化
合物の結晶性を安定化させるような働きを持つことが解
っており、あまり多量に添加しても本来の磁気特性、特
に飽和磁束密度を減少させてしまうのでその範囲は10原
子%以内が好ましい。Fe はCo で任意の量を置換可能
である。
As the additive element (M), Ti, V, Si, M
O and the like have a great effect on the rare earth-iron system, especially the R 1 (Fe, M) 12 system. It is known that these elements have a function of stabilizing the crystallinity of the R 1 (Fe, M) 12 intermetallic compound, and even if added in a too large amount, the original magnetic characteristics, especially the saturation magnetic flux density Therefore, the range is preferably 10 atomic% or less. Fe can be replaced with Co in any amount.

【0008】酸素(O)は、磁石合金には不必要な元素
として嫌われていたが、最近の金属−ガス反応系、言い
換えれば、格子間侵入元素として有望な元素であること
が解ってきた。通常のR−Fe 系合金、ここでは例とし
てR2 Fe17 及びR1(Fe、M)12 系の合金、特にMはT
i、V、 Si、Mo について酸素の挙動を述べてみる。
Oxygen (O) was disliked as an unnecessary element for magnet alloys, but it has become clear that it is a promising element as a metal-gas reaction system, in other words, as an interstitial interstitial element. . Ordinary R-Fe based alloys, here by way of example R 2 Fe 17 and R 1 (Fe, M) 12 based alloys, especially where M is T
Let us describe the behavior of oxygen for i, V, Si, and Mo.

【0009】これらの合金系の結晶格子に酸素(O)イ
オンが侵入した状態では、OイオンはRイオンの周囲に
侵入し、O-2p 電子とR-5d 電子、O-2p 電子とFe-3d
電子とが混成化し、自由エネルギーを下げ安定化する。
O-2p 電子とFe-3d電子の混成化により上向きのスピン
バンドのフェルミレベル付近に非結合状態ができる。非
結合状態はOイオン近くに局在化し、最近接Fe イオン
のスピンモーメントを減少させる。非結合状態はO<N
<C<Bの順でフェルミレベルの上方へできるからこの
順で減少が大きくなる。O-2p 電子とFe-3d電子の非結
合的な混成化状態は空の3dバンド付近で大きく、占有さ
れていない下向きスピンバンドはO-2p電子より強く押
し上げられる。これは強い交換相互作用と同じ働きであ
り、Oイオンと離れたFe イオンは上向きスピンバンド
が完全に占有されたCo と同じ強い強磁性が実現され、
モーメントが増大されキュリー温度が上昇する。R2
e17 及びR1(Fe、M)12 系ではB<C<N<Oの順で有
効に働くことになる。従って、永久磁石合金として要求
される高い飽和磁束密度、高いキュリー温度、大きな結
晶磁気異方性が期待される。
When oxygen (O) ions penetrate the crystal lattice of these alloys, the O ions penetrate around the R ions, and O-2p and R-5d electrons, O-2p and Fe- 3d
Hybridizes with electrons, lowers free energy and stabilizes.
Due to the hybridization of O-2p and Fe-3d electrons, a non-bonded state is created near the Fermi level of the upward spin band. The unbound state is localized near the O ion, reducing the spin moment of the closest Fe ion. Non-bonded state is O <N
The decrease becomes larger in this order because the Fermi level can be increased in the order of <C <B. The non-bonded hybrid state of O-2p and Fe-3d electrons is large near the empty 3d band, and the unoccupied downward spin band is pushed up more strongly than O-2p electron. This is the same action as the strong exchange interaction, and Fe ions separated from O ions realize the same strong ferromagnetism as Co in which the upward spin band is completely occupied.
The moment increases and the Curie temperature rises. R 2 F
In the e 17 and R 1 (Fe, M) 12 systems, they work effectively in the order of B <C <N <O. Therefore, high saturation magnetic flux density, high Curie temperature, and large magnetocrystalline anisotropy required for permanent magnet alloys are expected.

【0010】これらの理論的な背景から、希土類元素−
鉄系合金の第3元素として有望視される酸素は、あまり
多量に含有してもその効果は半減してしまう。酸素量
は、原子百分率で1〜10%の範囲であることが望まし
い。1%未満ではその効果はほとんど見られず、10%を
越えると過剰な酸素により主相であるR−Fe 相が分解
し、希土類酸化物R23 とα−Fe もしくは鉄酸化物
Fe −Oとに別れてしまい磁気特性を劣化させる。
From these theoretical backgrounds, rare earth elements--
Oxygen, which is regarded as a promising third element of the iron-based alloy, has its effect halved even if it is contained in a too large amount. The oxygen content is preferably in the range of 1 to 10% in atomic percentage. If it is less than 1%, the effect is hardly seen, and if it exceeds 10%, the R-Fe phase which is the main phase is decomposed by excess oxygen, and the rare earth oxides R 2 O 3 and α-Fe or iron oxide Fe-. It separates from O and deteriorates the magnetic characteristics.

【0011】このR−Fe 合金に酸素を含有させるには
以下のような方法で行なう。出発合金は、希土類元素及
び鉄を高周波誘導溶解炉もしくはアーク溶解炉などで不
活性雰囲気下に溶解し、その後鋳型に鋳造してインゴッ
トとするか、またはそのまま冷却して合金塊とする。次
いでジョークラッシャー、スタンプミル、ブラウンミ
ル、ボールミル、ジェットミルなどで粉砕する。この合
金粉末を電気炉に所定量供給し、真空引き及び加熱後、
酸素を含有したガスを導入して所定時間だけ合金と酸素
ガスを反応させる。酸素が合金中に取り込まれた否かは
電子線探傷微小分析(EPMA)、オージェ電子分光分析(AE
S) 等により合金粉末粒子断面の酸素分析をすれば容易
に判断できる。
The R-Fe alloy is allowed to contain oxygen by the following method. The starting alloy is prepared by melting a rare earth element and iron in a high frequency induction melting furnace or an arc melting furnace under an inert atmosphere, and then casting it in a mold to form an ingot, or cooling it as it is to form an alloy ingot. Then, it is ground with a jaw crusher, a stamp mill, a brown mill, a ball mill, a jet mill, or the like. A predetermined amount of this alloy powder is supplied to an electric furnace, and after evacuation and heating,
A gas containing oxygen is introduced to react the alloy with oxygen gas for a predetermined time. Whether oxygen is taken into the alloy depends on electron beam flaw detection microanalysis (EPMA) and Auger electron spectroscopy analysis (AE
This can be easily determined by oxygen analysis of the cross section of the alloy powder particles by S) or the like.

【0012】しかしながら、酸素は合金粒子中の全ての
領域に侵入してもその合金の持つ磁気特性を十分に活用
しているとはいえないことが解った。粒子全体に酸素が
侵入した場合、磁気特性、特に結晶磁気異方性が低下
し、性能が低下することが本発明者により究明された。
この問題を解決するために、前述の合金粉末を希土類酸
化物と鉄酸化物とに分解する寸前の高温度で、しかも短
時間処理することで、一つ一つの粒子内部で酸素に富む
相と酸素を含まない相との二相混成状態を実現すること
により、保磁力を低下させることなく、飽和磁束密度を
増大することができた。以上のことより粒子を酸素と完
全に反応させる必要がなく、しかも処理時間を短縮でき
るメリットがある。得られた合金粉末は、酸素含有ガス
中の処理により合金粉末表面の活性化を抑制することが
でき、大気中で処理してもさらに酸化することなく安定
である。従って、従来の酸素の侵入を抑える大掛かりな
設備を必要としないこと、さらには取り扱いの容易な高
耐食性粉末が得られた。
However, it has been found that even if oxygen penetrates all regions in the alloy particles, it cannot be said that the magnetic properties of the alloy are fully utilized. It has been found by the present inventors that when oxygen penetrates into the entire particles, magnetic properties, particularly crystalline magnetic anisotropy, are deteriorated and performance is deteriorated.
In order to solve this problem, the alloy powder described above is treated at a high temperature on the verge of decomposing into rare earth oxides and iron oxides, and for a short time, so that the oxygen-rich phase inside each particle becomes By realizing a two-phase hybrid state with a phase not containing oxygen, the saturation magnetic flux density could be increased without lowering the coercive force. From the above, it is not necessary to completely react the particles with oxygen, and there is an advantage that the processing time can be shortened. The obtained alloy powder can suppress activation of the surface of the alloy powder by treatment in an oxygen-containing gas, and is stable without further oxidation even when treated in the atmosphere. Therefore, it was possible to obtain a highly corrosion resistant powder which does not require conventional large-scale equipment for suppressing the invasion of oxygen and is easy to handle.

【0013】本発明で得られるR−Fe 系合金粉末は、
その磁気特性、特に飽和磁束密度が向上するのでボンド
永久磁石用粉末として適している。ボンド永久磁石の製
造は公知の製造方法によれば良く、例えば本発明で酸化
処理して得られた合金粉末を窒素ガス雰囲気中ジェット
ミルで平均粒径約3μmまで粉砕し、得られた微粉末を
バインダーと重量比で97:3の割合で混練し、片押しダ
イスを用いて、プレス圧10ton/cm2 、磁場15kOe 中で成
形し、その後100 ℃で1時間加熱硬化させればよい。バ
インダーとしては、エポキシ樹脂またはフェノール樹脂
等の熱硬化性樹脂あるいはナイロン樹脂等の熱可塑性樹
脂、あるいはZn、Sn、Pb 等の金属を使用することがで
きる。これらのバインダーの添加量は、2重量%未満で
は結合力が不足し、20重量%を越えると磁気特性、特に
飽和磁束密度の低下を招くので、2〜20重量%とするの
が好ましい。樹脂バインダーの場合、上記プレス成形の
他、射出成形、押し出し成形法を用いることができる。
なお、これらの成形を加熱しながら行う場合は、成形後
の熱処理またはキュア工程を省略することができる。
The R-Fe alloy powder obtained by the present invention is
It is suitable as a powder for bonded permanent magnets because its magnetic properties, especially the saturation magnetic flux density are improved. The bonded permanent magnet may be manufactured by a known manufacturing method. For example, the alloy powder obtained by the oxidation treatment of the present invention is pulverized in a nitrogen gas atmosphere with a jet mill to an average particle size of about 3 μm, and the obtained fine powder is obtained. Is mixed with a binder at a weight ratio of 97: 3, and is molded with a pressing die at a pressing pressure of 10 ton / cm 2 in a magnetic field of 15 kOe, and then heat-cured at 100 ° C. for 1 hour. As the binder, a thermosetting resin such as an epoxy resin or a phenol resin, a thermoplastic resin such as a nylon resin, or a metal such as Zn, Sn, or Pb can be used. If the amount of these binders added is less than 2% by weight, the binding strength will be insufficient, and if it exceeds 20% by weight, the magnetic properties, especially the saturation magnetic flux density will be deteriorated. In the case of a resin binder, in addition to the above press molding, injection molding and extrusion molding methods can be used.
If these moldings are carried out while heating, the heat treatment or curing step after molding can be omitted.

【0014】[0014]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1〜4、比較例1〜3)純度99.9%のSm と純
度99.9%の電解鉄を用い、原子百分率でSm 11.0%、F
e 89.0%の組成比に調合し、アルゴン雰囲気中高周波誘
導溶解炉にて原料合金を作製した。得られた合金塊を11
00℃で12時間、均質化処理を施した。この合金塊の内部
金属組織を電子顕微鏡により観察したところ、単一相で
あることがわかった。この合金塊をジョークラッシャー
及びブラウンミルを用いて窒素雰囲気中で粉砕し、平均
粒径約30μmの粗粉末を得た。この粉末に酸素を含有さ
せるため、アルゴンガスに10容量%の酸素を混合したガ
スを用い、表1に示す条件で酸化処理した。磁気特性及
び含有する酸素量を共に表1に示した。なお、酸素含有
量は合金粉末を赤外線吸収法により測定し重量百分率で
示してあるが、例えば、0.049 、2.950 重量%の含有量
は原子百分率で示すと夫々0.222 、5.14原子%になる。
また、EPMAにて粒子の断面を観察したところ、粒子の周
辺部は中心より反射電子像のコントラストが暗く、元素
分析をしたところ、中心付近には酸素を含有していない
が周辺部は多量に酸素が検出された。比較例1〜3とし
て実施例1〜4と同じ組成のR−Fe 合金を用いた以外
は表1に示した酸化条件で処理し、その結果を表1に示
した。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Examples 1 to 4 and Comparative Examples 1 to 3) Using Sm having a purity of 99.9% and electrolytic iron having a purity of 99.9%, Sm 11.0% and F in atomic percentage were obtained.
e 89.0% was compounded to a composition ratio, and a raw material alloy was produced in a high frequency induction melting furnace in an argon atmosphere. The obtained alloy lump is 11
The mixture was homogenized at 00 ° C for 12 hours. Observation of the internal metallographic structure of this alloy lump with an electron microscope revealed that it had a single phase. This alloy block was crushed in a nitrogen atmosphere using a jaw crusher and a brown mill to obtain a coarse powder having an average particle size of about 30 μm. In order to contain oxygen in this powder, an oxidation treatment was performed under the conditions shown in Table 1 using a gas in which 10% by volume of oxygen was mixed with argon gas. The magnetic properties and the amount of oxygen contained are shown in Table 1. The oxygen contents are shown as weight percentages by measuring the alloy powder by an infrared absorption method. For example, the contents of 0.049 and 2.950 wt% are 0.222 and 5.14 atom% when expressed as atomic percentages, respectively.
Also, when observing the cross section of the particle with EPMA, the contrast of the backscattered electron image is darker in the peripheral part of the particle than in the center, and elemental analysis shows that oxygen is not contained near the center but a large amount in the peripheral part. Oxygen was detected. As Comparative Examples 1 to 3, treatment was carried out under the oxidizing conditions shown in Table 1 except that R-Fe alloys having the same compositions as those in Examples 1 to 4 were used, and the results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例5〜8、比較例4〜6)純度99.9
%のNd 、純度99.9%の電解鉄と純度99.9%のTi を用
い、原子百分率でNd 8.0 %、Fe 84.3%、Ti 7.7 %
の組成比に調合し、アルゴン雰囲気中高周波誘導溶解炉
にて原料合金を作製した。得られた合金塊を1100℃で12
時間均質化処理を施した。この合金塊の内部金属組織を
電子顕微鏡により観察したところ単一相であることがわ
かった。この合金塊をジョークラッシャー及びブラウン
ミルを用いて窒素雰囲気中で粉砕し、平均粒径約40μm
の粗粉末を得た。この粉末に酸素を含有させるため、ア
ルゴンガスに10容量%の酸素を混合したガスを用い、表
2に示す条件で酸化処理した。磁気特性及び含有する酸
素量を共に表2に示した。なお、酸素含有量は合金粉末
を赤外線吸収法により測定し重量百分率で示してある
が、例えば、0.056 、2.170 重量%の含有量は原子百分
率で示すとそれぞれ0.217 、7.85原子%になる。また、
EPMAにて粒子の断面を観察したところ、粒子の周辺部は
中心より反射電子像のコントラストが暗く、元素分析し
たところ、中心付近には酸素を含有していないが周辺部
は多量に酸素が検出された。比較例4〜6として実施例
5〜8同じ組成のR−Fe 合金を用いた以外は表2に示
した酸化条件で処理し、その結果を表2に示した。
(Examples 5-8, Comparative Examples 4-6) Purity 99.9
% Nd, 99.9% pure electrolytic iron and 99.9% pure Ti, atomic percentage of Nd 8.0%, Fe 84.3%, Ti 7.7%
A raw material alloy was prepared in a high frequency induction melting furnace in an argon atmosphere. The obtained alloy ingot is heated at 1100 ° C for 12
Homogenization treatment was performed. Observation of the internal metallographic structure of the alloy block with an electron microscope revealed that it had a single phase. This alloy block was crushed in a nitrogen atmosphere using a jaw crusher and a brown mill, and the average particle size was about 40 μm.
The crude powder of was obtained. In order to contain oxygen in this powder, an oxidation treatment was carried out under the conditions shown in Table 2 using a gas in which argon was mixed with 10% by volume of oxygen. The magnetic properties and the amount of oxygen contained are shown in Table 2. The oxygen content is measured by infrared absorption method of the alloy powder and is shown as a weight percentage. For example, the contents of 0.056 and 2.170 wt% are 0.217 and 7.85 atom%, respectively. Also,
When the cross section of the particle was observed with EPMA, the contrast of the backscattered electron image was darker in the peripheral part of the particle than in the center, and elemental analysis showed that oxygen was not contained near the center, but a large amount of oxygen was detected in the peripheral part. Was done. As Comparative Examples 4 to 6, Examples 5 to 8 were treated under the oxidizing conditions shown in Table 2 except that R-Fe alloys having the same composition were used, and the results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】(実施例9、比較例7)上記実施例4及び
比較例1の合金粉末を用いてボンド永久磁石を作製し
た。各合金粉末は窒素ガス雰囲気中ジェットミルで平均
粒径約3μmまで粉砕した。得られた微粉末をエポキシ
樹脂と重量比で97:3の割合で混練し、片押しダイスを
用いて、プレス圧10ton/cm2 、磁場15kOe 中で成形し、
その後100 ℃で1時間加熱硬化させた。得られたボンド
磁石を振動試料型磁気測定計で磁気特性を測定した結
果、実施例4の粉末を用いた場合、保磁力6.0kOe、最大
エネルギー積18.5MGOeを得た。比較例1の粉末を用いた
場合は、保磁力0.4kOe、最大エネルギー積2.2MGOe であ
った。
Example 9 and Comparative Example 7 Bond permanent magnets were produced using the alloy powders of Example 4 and Comparative Example 1 above. Each alloy powder was pulverized in a nitrogen gas atmosphere with a jet mill to an average particle size of about 3 μm. The fine powder thus obtained was kneaded with an epoxy resin in a weight ratio of 97: 3, and molded with a pressing die at a pressing pressure of 10 ton / cm 2 and a magnetic field of 15 kOe,
Then, it was heat-cured at 100 ° C. for 1 hour. As a result of measuring the magnetic characteristics of the obtained bonded magnet with a vibrating sample magnetometer, a coercive force of 6.0 kOe and a maximum energy product of 18.5 MGOe were obtained when the powder of Example 4 was used. When the powder of Comparative Example 1 was used, the coercive force was 0.4 kOe and the maximum energy product was 2.2 MGOe.

【0019】[0019]

【発明の効果】本発明によれば、希土類−鉄系永久磁石
合金粉末の磁気特性、特に飽和磁束密度を改良したこと
で、磁性合金として実用上極めて有用であり、その特性
からボンド永久磁石用合金粉末としての価値が高く、該
粉末を成形した高磁気特性を有するボンド永久磁石を提
供することができ、産業上その利用価値は極めて高い。
INDUSTRIAL APPLICABILITY According to the present invention, the magnetic properties of the rare earth-iron-based permanent magnet alloy powder, particularly the saturation magnetic flux density are improved, which makes it extremely useful in practice as a magnetic alloy. It is highly valuable as an alloy powder, and it is possible to provide a bonded permanent magnet having a high magnetic property obtained by molding the powder, and its utility value in industry is extremely high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 1/06 1/08 7/02 A H01F 1/08 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display part H01F 1/053 1/06 1/08 7/02 A H01F 1/08 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類元素−鉄−酸素−添加元素から成る
希土類−鉄系永久磁石合金粉末において、下記一般式で
表わされる希土類−鉄系永久磁石合金粉末の個々の粒子
の内部組織が、酸素に富む相と酸素を含まない相との二
相混成状態から成ることを特徴とする希土類−鉄系永久
磁石合金粉末。 Rd(Fe1-gCog)100-d-e-fef (但し、RはYを含む全てのランタノイド元素から選択
される1種又は2種以上の希土類元素、MはTi 、V、
Si 、Mo の内1種もしくは2種以上、4≦ d≦20、1
≦ e≦10、O≦ f≦10 各原子%、O≦ g≦1原子比で
ある。)
1. In a rare earth-iron-based permanent magnet alloy powder comprising a rare earth element-iron-oxygen-added element, the internal structure of each particle of the rare earth-iron-based permanent magnet alloy powder represented by the following general formula is oxygen. A rare earth-iron-based permanent magnet alloy powder, characterized by comprising a two-phase hybrid state of a rich phase and a phase not containing oxygen. R d (Fe 1-g Co g ) 100-def O e M f (where R is one or more rare earth elements selected from all lanthanoid elements including Y, M is Ti, V,
1 or 2 or more of Si and Mo, 4≤d≤20, 1
≤ e ≤ 10, O ≤ f ≤ 10 atomic%, O ≤ g ≤ 1 atomic ratio. )
【請求項2】請求項1に記載の希土類−鉄系永久磁石合
金粉末を微粉砕し、バインダーと混練し成形して成るボ
ンド永久磁石。
2. A bond permanent magnet obtained by finely pulverizing the rare earth-iron-based permanent magnet alloy powder according to claim 1, kneading with a binder, and molding.
JP5313222A 1993-12-14 1993-12-14 Rare earth-iron permanent magnet alloy powder and bonded permanent magnet Expired - Fee Related JP2986321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5313222A JP2986321B2 (en) 1993-12-14 1993-12-14 Rare earth-iron permanent magnet alloy powder and bonded permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5313222A JP2986321B2 (en) 1993-12-14 1993-12-14 Rare earth-iron permanent magnet alloy powder and bonded permanent magnet

Publications (2)

Publication Number Publication Date
JPH07166204A true JPH07166204A (en) 1995-06-27
JP2986321B2 JP2986321B2 (en) 1999-12-06

Family

ID=18038584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5313222A Expired - Fee Related JP2986321B2 (en) 1993-12-14 1993-12-14 Rare earth-iron permanent magnet alloy powder and bonded permanent magnet

Country Status (1)

Country Link
JP (1) JP2986321B2 (en)

Also Published As

Publication number Publication date
JP2986321B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
KR101855530B1 (en) Rare earth permanent magnet and their preparation
EP1860668A1 (en) R-t-b based sintered magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
WO2005001856A1 (en) R-t-b based rare earth permanent magnet and method for production thereof
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
EP0302947B1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JP2012079796A (en) Alloy material for r-t-b based rare-earth permanent magnet, production method of r-t-b based rare-earth permanent magnet, and motor
JPH0551656B2 (en)
JPH0320046B2 (en)
JPH045740B2 (en)
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH045739B2 (en)
JP2986321B2 (en) Rare earth-iron permanent magnet alloy powder and bonded permanent magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JPS61264133A (en) Permanent magnet alloy and its manufacture
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
EP0539592B1 (en) Magnetic material
JPS6077961A (en) Permanent magnet material and its manufacture
CN106876073A (en) R T B systems sintered magnet
JPH045737B2 (en)
JPH05267027A (en) Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees