JPH07165489A - Production of compound semiconductor and production unit therefor - Google Patents

Production of compound semiconductor and production unit therefor

Info

Publication number
JPH07165489A
JPH07165489A JP34143393A JP34143393A JPH07165489A JP H07165489 A JPH07165489 A JP H07165489A JP 34143393 A JP34143393 A JP 34143393A JP 34143393 A JP34143393 A JP 34143393A JP H07165489 A JPH07165489 A JP H07165489A
Authority
JP
Japan
Prior art keywords
crucible
opening
heat shield
crystal
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34143393A
Other languages
Japanese (ja)
Inventor
Toshinori Kimura
俊憲 木村
Nami Nishibe
名民 西部
Takashi Koseki
敬 古関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP34143393A priority Critical patent/JPH07165489A/en
Publication of JPH07165489A publication Critical patent/JPH07165489A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a compound semiconductor designed to suppress the dissociation of volatile elements from crystal surface in order to prevent crystal surface from getting rough or prevent polycrystallization. CONSTITUTION:This production unit 10 for compound semiconductors has a crucible combination 18 made up of a crucible 14 and a susceptor 16 for holding this crucible and a heater 20 set up around the crucible combination to heat it. Besides, this production unit has a thermal shield section 30 to thermally shield the upper region in a pressure vessel 12 from the heater 20. The thermal shield section 30 extends above the heater in the transverse direction of the pressure vessel and has a thermally shielding plate 32 provided with an opening 34 with its inner diameter larger than the outer diameter of the crucible combination and a skirt-like opening sidewall 36 extending so as to downwardly enlarge the opening diameter from the opening edge of the thermally shielding plate. In pulling a single crystal, the crucible combination is pushed up into the opening of the opening sidewall of the thermal shield section, and the annular gap between the outer peripheral edge of the crucible combination and the opening sidewall of the thermal shield section is ensured to decrease as the pull length of the single crystal increases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、引き上げ法にて化合物
半導体を製造する方法及びその製造装置に関し、更に詳
細には、結晶表面の表面荒れを防止して単結晶化率を高
くできるようにした、引き上げ法による化合物半導体の
製造方法及びその製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor by a pulling method and an apparatus for producing the compound semiconductor, and more specifically, to prevent surface roughness of a crystal surface and increase a single crystallization rate. The present invention also relates to a method of manufacturing a compound semiconductor by the pulling method and a manufacturing apparatus thereof.

【0002】[0002]

【従来の技術】GaAs、GaP、InP等の高分解性
化合物半導体結晶の製造方法の一例として、液体カプセ
ル引き上げ法(Liquid Encapsulate
d Czochralski法、以下LEC法)が知ら
れている。GaAs半導体の製造を例にとって、このL
EC法を説明する。この方法では、坩堝と、その周囲に
配置されたヒータとを圧力容器内に備えた装置を用い、
坩堝内に原料としてGaとAs、及び封止剤として、例
えばB2 3 を投入し、ヒータで加熱してGaAs融液
層と封止剤溶融層を形成し、かつGaAs融液層を封止
剤層で以て覆った状態にする。一方、圧力容器内に充満
させたArやN2 等の不活性ガスによって原料成分の解
離圧よりも大きな圧力をGaAs融液に作用させて原料
GaAsの分解を抑える。次いで、坩堝内の融液にGa
Asの種結晶を接触させ、この種結晶を徐々に引き上げ
ることにより、種結晶に連続してGaAsの単結晶を成
長させている。
2. Description of the Related Art As an example of a method for producing a highly decomposable compound semiconductor crystal of GaAs, GaP, InP, etc., a liquid encapsulation method (Liquid Encapsulate) is used.
The d Czochralski method (hereinafter referred to as the LEC method) is known. Taking the production of GaAs semiconductor as an example, this L
The EC method will be described. In this method, an apparatus having a crucible and a heater arranged around the crucible in a pressure vessel is used,
Ga and As as raw materials and, for example, B 2 O 3 as a sealant are put into the crucible and heated by a heater to form a GaAs melt layer and a sealant melt layer, and the GaAs melt layer is sealed. It is covered with a stopper layer. On the other hand, a pressure greater than the dissociation pressure of the raw material components is applied to the GaAs melt by the inert gas such as Ar or N 2 filled in the pressure vessel to suppress the decomposition of the raw GaAs. Then, Ga is added to the melt in the crucible.
By contacting an As seed crystal and gradually pulling this seed crystal, a GaAs single crystal is grown continuously to the seed crystal.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述のLE
C法によりGaAs単結晶を製造する際、成長結晶の縦
方向の中間部からテイル部にかけて、外周部より内側に
向かって多結晶が発生し、そのためGaAs単結晶の品
質の劣化及び収率の低下が問題となっていた。かかる多
結晶発生の原因として、次の二つのことが考えられる。
その一は、坩堝内の単結晶と融液との固液界面形状が液
体側に凹になり、そこに熱応力が集中して転位が発生
し、その部分が多結晶になる現象である。その二は、結
晶が引き上げられて、封止剤中から不活性ガス雰囲気に
出たところで、結晶表面のAsが解離して表面荒れを引
き起こすのと共に、残ったGaが表面を伝って固液界面
に流下して多結晶となる現象である。
By the way, the LE described above is used.
When a GaAs single crystal is manufactured by the C method, a polycrystal is generated from the middle portion in the vertical direction of the grown crystal to the tail portion, and from the outer peripheral portion to the inner side, which deteriorates the quality and yield of the GaAs single crystal. Was a problem. The following two factors can be considered as the causes of such polycrystal formation.
One is a phenomenon in which the solid-liquid interface shape between the single crystal in the crucible and the melt becomes concave toward the liquid side, thermal stress concentrates there, dislocations occur, and that portion becomes polycrystalline. The second is that when the crystal is pulled up and comes out of the sealant into an inert gas atmosphere, As on the crystal surface dissociates to cause surface roughness, and the remaining Ga propagates along the surface to form a solid-liquid interface. It is a phenomenon that it becomes a polycrystal when it flows down.

【0004】まず、第1の原因については、単結晶の引
き上げ速度、圧力容器内の圧力、結晶回転速度、坩堝の
回転速度等の操作条件を工夫したり、或いは坩堝の位
置、ホットゾーンの構成等に関し装置を工夫したり、ま
た、ヒータの発熱量をより厳密に制御したりして、固液
界面形状が融液側に凹部にならないように、精密なコン
トロールを行っている。しかし、第2の原因である結晶
表面からのAs解離については、種々の提案が成され、
また試みられているが、十分に満足できる成果を挙げて
いないのが現状である。
First, regarding the first cause, the operating conditions such as the pulling rate of the single crystal, the pressure in the pressure vessel, the crystal rotation speed, the rotation speed of the crucible, etc. are devised, or the position of the crucible and the constitution of the hot zone For example, the device is devised, and the heat generation amount of the heater is controlled more strictly so that the solid-liquid interface shape is not recessed toward the melt side, and thus precise control is performed. However, various proposals have been made for the second cause, As dissociation from the crystal surface,
Attempts have also been made, but the current situation is that they have not achieved satisfactory results.

【0005】そこで、以上の現状に鑑み、本発明の目的
は、結晶の表面荒れ、或いは多結晶化を防止するため
に、結晶表面からの揮発性元素の解離を抑制するように
した化合物半導体の製造方法及び製造装置を提供するこ
とである。
In view of the above circumstances, an object of the present invention is to provide a compound semiconductor in which dissociation of volatile elements from the crystal surface is suppressed in order to prevent crystal surface roughness or polycrystallization. A manufacturing method and a manufacturing apparatus are provided.

【0006】[0006]

【課題を解決するための手段】本発明者は、結晶表面か
らの揮発性元素、例えばGaAs結晶からのAsの解離
現象を抑制する手段を求めて、Asの解離現象を研究し
た。ところで、固液界面付近の熱伝導モデルは、次式の
ような熱の一次元連続式により示され、模式的には図1
1に示すようになる。 KmGm+Lvd=KsGs ここで、Km:融液の熱伝導率 Ks:結晶の熱伝導率 Gm:融液の温度勾配 Gs:結晶の温度勾配 L: 融液の結晶化潜熱 v: 結晶の成長速度 d: 融液の密度
DISCLOSURE OF THE INVENTION The inventors of the present invention have investigated the dissociation phenomenon of As in search of a means for suppressing the dissociation phenomenon of As from a volatile element such as a GaAs crystal from the crystal surface. By the way, the heat conduction model in the vicinity of the solid-liquid interface is expressed by the one-dimensional continuous equation of heat as shown in the following equation.
As shown in 1. KmGm + Lvd = KsGs where Km: thermal conductivity of melt Ks: thermal conductivity of crystal Gm: temperature gradient of melt Gs: temperature gradient of crystal L: latent heat of crystallization of melt v: growth rate of crystal d: Melt density

【0007】上式に基づいて、固液界面付近の熱解析を
実施したところ、引き上げた結晶の温度が低下しないと
するならば、引き上げた結晶の長さが長くなるととも
に、結晶中の温度勾配Gsが徐々に小さくなることがわ
かった。結晶中の温度勾配Gsが小さくなると言うこと
は、封止剤層の表面温度Ti (図11参照)が、上昇し
て、融液層と封止剤層との界面温度Tm に接近すること
を意味する。引き上げた結晶の長さが長くなるととも
に、封止剤層の表面温度Ti が上昇すると、封止剤層を
出た所での結晶の表面温度も上昇し、そのためAsが結
晶表面から解離し、結晶表面が表面荒れを引き起こし、
多結晶化する。従って、揮発性元素の解離現象を防止す
るには、引き上げた結晶の表面温度の上昇、従って封止
剤層の表面温度の上昇を抑制することが重要である。
A thermal analysis near the solid-liquid interface was carried out based on the above equation. Assuming that the temperature of the pulled crystal does not decrease, the length of the pulled crystal becomes longer and the temperature gradient in the crystal increases. It was found that Gs gradually decreased. The smaller temperature gradient Gs in the crystal means that the surface temperature T i of the sealant layer (see FIG. 11) rises and approaches the interface temperature T m between the melt layer and the sealant layer. Means that. When the length of the pulled-up crystal becomes longer and the surface temperature T i of the encapsulant layer rises, the surface temperature of the crystal at the place of leaving the encapsulant layer also rises, and As is dissociated from the crystal surface. , The crystal surface causes surface roughness,
Polycrystal. Therefore, in order to prevent the dissociation phenomenon of the volatile element, it is important to suppress an increase in the surface temperature of the pulled crystal, and thus an increase in the surface temperature of the encapsulant layer.

【0008】しかるに、従来の製造装置では、ヒータと
坩堝組合体との間に間隙があるので、ヒータ加熱領域の
高温の不活性ガスが、対流現象により坩堝とヒータとの
間を通って圧力容器内の上部領域(結晶成長領域)に流
入する。そのため、封止剤層の表面温度が、高温の不活
性ガスによって著しく影響され、その温度上昇が抑制さ
れ得ないことを見い出した。そこで、結晶の引き上げに
応じて不活性ガスの対流を抑制するような手段を設け、
対流不活性ガスの流量を減少させることにより、封止剤
層の表面温度、従って結晶の表面温度の上昇を抑制し、
低下させることに着眼した。
However, in the conventional manufacturing apparatus, since there is a gap between the heater and the crucible combination, the high temperature inert gas in the heater heating region passes between the crucible and the heater due to the convection phenomenon, and the pressure vessel is heated. Flows into the upper region (crystal growth region). Therefore, it has been found that the surface temperature of the sealant layer is significantly affected by the high temperature inert gas, and the temperature rise cannot be suppressed. Therefore, a means for suppressing the convection of the inert gas according to the pulling of the crystal is provided,
By reducing the flow rate of the convective inert gas, the surface temperature of the encapsulant layer, and thus the rise of the surface temperature of the crystal is suppressed,
I focused on lowering it.

【0009】上述の目的を達成するために、かかる知見
に基づいて、本発明に係る化合物半導体の製造方法は、
圧力容器内に、坩堝とその坩堝を保持する坩堝サセプタ
とからなる坩堝組合体と、その坩堝組合体の周囲に配置
されたヒータとを備えた装置を用いて、圧力容器に充満
した加圧不活性ガスの下で、種結晶に連続して坩堝内の
化合物半導体の融液から成長した単結晶を引き上げるよ
うにした化合物半導体の製造方法において、結晶の引き
上げ長さの増大に応じて坩堝組合体とヒータとの間隙の
大きさを小さくすることにより、坩堝組合体とヒータと
の間隙を通過して圧力容器内の上部領域に上昇する不活
性ガスの流量を結晶の引き上げ長さに応じて減少させる
ようにしたことを特徴としている。
In order to achieve the above-mentioned object, the method of manufacturing a compound semiconductor according to the present invention is based on the above findings.
Using a device provided with a crucible combination consisting of a crucible and a crucible susceptor for holding the crucible, and a heater arranged around the crucible combination in a pressure vessel, the pressure vessel filled with pressure In an active gas, in a method for producing a compound semiconductor in which a single crystal grown from a melt of a compound semiconductor in a crucible is pulled up continuously to a seed crystal, a crucible combination according to an increase in the pulling length of the crystal By reducing the size of the gap between the heater and the heater, the flow rate of the inert gas that passes through the gap between the crucible combination and the heater and rises to the upper region in the pressure vessel is reduced according to the pulling length of the crystal. The feature is that it is made to.

【0010】また、本発明に係る化合物半導体の製造装
置は、圧力容器内に、化合物半導体の融液を収容する坩
堝とその坩堝を保持する坩堝サセプタとからなる坩堝組
合体と、その坩堝組合体の周囲に配置され、坩堝内の融
液を加熱するヒータとを備え、圧力容器に充満した加圧
不活性ガスの下で、種結晶に連続して融液から成長した
単結晶を引き上げるようにした化合物半導体の製造装置
において、圧力容器内の上部領域をヒータから熱遮蔽す
るために、圧力容器の横断方向にヒータ上方に延在し、
かつ坩堝組合体の外径より僅かに大きい直径の開口を有
する熱遮蔽板と、熱遮蔽板の開口縁から下方に向かって
開口径が拡大するように延在する開口部側壁とを有する
熱遮蔽部を、その開口部側壁が坩堝組合体とほぼ同心状
の配置になるように設け、単結晶の引き上げに際し、熱
遮蔽部の開口部側壁の開口内に坩堝組合体を押し上げる
ことにより、結晶の引き上げ長さの増大に応じて、坩堝
組合体の外周縁部と熱遮蔽部の開口部側壁との間の環状
間隙の大きさを小さくするようにしたことを特徴として
いる。
In the compound semiconductor manufacturing apparatus according to the present invention, a crucible assembly comprising a crucible for containing a compound semiconductor melt and a crucible susceptor for holding the crucible in a pressure vessel, and a crucible assembly. Is equipped with a heater for heating the melt in the crucible, and is arranged to pull up the single crystal grown from the melt continuously to the seed crystal under the pressurized inert gas filled in the pressure vessel. In the manufacturing apparatus of the compound semiconductor described above, in order to thermally shield the upper region in the pressure vessel from the heater, it extends above the heater in the transverse direction of the pressure vessel,
And a heat shield having a heat shield plate having an opening whose diameter is slightly larger than the outer diameter of the crucible assembly, and an opening side wall extending downward from the opening edge of the heat shield plate so that the opening diameter expands downward. The opening side wall of the crucible combination is arranged substantially concentric with the crucible combination, and when pulling the single crystal, the crucible combination is pushed up into the opening of the side wall of the opening of the heat shield part so that It is characterized in that the size of the annular gap between the outer peripheral edge of the crucible assembly and the side wall of the opening of the heat shield is reduced in accordance with the increase in the pulling length.

【0011】更に、本発明に係る別の半導体装置の製造
装置は、圧力容器内に、化合物半導体の融液を収容する
坩堝とその坩堝を保持する坩堝サセプタとからなる坩堝
組合体と、その坩堝組合体の周囲に配置され、坩堝内の
融液を加熱するヒータとを備え、圧力容器に充満した加
圧不活性ガスの下で、種結晶に連続して融液から成長し
た単結晶を引き上げるようにした化合物半導体の製造装
置において、圧力容器内の上部領域をヒータから熱遮蔽
するために、圧力容器の横断方向にヒータ上方に延在
し、かつ坩堝組合体の外径より僅かに大きい直径の開口
を有する熱遮蔽板と、熱遮蔽板の開口縁から下方に向か
って開口径が拡大するように延在する開口部側壁とを有
し、更に自在に下降するようにされた熱遮蔽部を、その
開口部側壁が坩堝組合体に対しほぼ同心状の配置になる
ように設け、単結晶の引き上げに際し、熱遮蔽部を下降
させて坩堝組合体を熱遮蔽部の開口部側壁の開口内に入
れることにより、結晶の引き上げ長さの増大に応じて、
坩堝組合体の外周縁部と熱遮蔽部の開口部側壁との間の
環状間隙の大きさを小さくするようにしたことを特徴と
している。
Further, another semiconductor device manufacturing apparatus according to the present invention is a crucible combination comprising a crucible for containing a melt of a compound semiconductor and a crucible susceptor for holding the crucible in a pressure vessel, and the crucible. Equipped with a heater for heating the melt in the crucible, which is arranged around the combination, and pulls the single crystal grown from the melt continuously to the seed crystal under the pressurized inert gas filled in the pressure vessel. In the compound semiconductor manufacturing apparatus as described above, in order to thermally shield the upper region in the pressure vessel from the heater, the diameter extends above the heater in the transverse direction of the pressure vessel and is slightly larger than the outer diameter of the crucible assembly. A heat shield having an opening and a side wall of an opening extending downward from the opening edge of the heat shield so that the opening diameter increases, and the heat shield is further freely lowered. The side wall of the opening is a crucible assembly The pulling length of the crystal is set to be almost concentric with the body, and when pulling the single crystal, the heat shield is lowered and the crucible combination is put into the opening of the side wall of the opening of the heat shield. As the size increases,
It is characterized in that the size of the annular gap between the outer peripheral edge of the crucible assembly and the side wall of the opening of the heat shield is made small.

【0012】本発明は、引き上げ法による化合物半導体
の製造装置及び製造方法、特にLEC法による化合物半
導体の製造装置及び製造方法に好適に適用できる。ま
た、本発明を適用できる化合物半導体の種類には、特に
制約はなく、GaAs、GaP、InP等のIII 族−V
族元素の化合物半導体並びにCdS、CdSe、CdT
e等のII族−VI族元素の化合物半導体の製造に適用でき
る。本発明で使用する熱遮蔽部は、金属板、例えば、ス
テンレス鋼板、カーボン部材板等で形成されている。そ
の開口部側壁の上端の開口径は、坩堝組合体の外径より
僅かに大きくなるようにして、開口内における坩堝組合
体の昇降運動を妨げないようにする。例えば、直径10
8mmの単結晶を引き上げるようにした外径230mmの坩
堝組合体に対しては、開口径は、坩堝組合体の外径より
2mm大きくする。また、開口部側壁の下端の開口径は、
250mm、側壁の高さは60mmであるようにする。
The present invention can be suitably applied to a compound semiconductor manufacturing apparatus and manufacturing method by the pulling method, and particularly to a compound semiconductor manufacturing apparatus and manufacturing method by the LEC method. The type of compound semiconductor to which the present invention can be applied is not particularly limited, and Group III-V such as GaAs, GaP and InP can be used.
Group compound semiconductors and CdS, CdSe, CdT
It can be applied to the production of compound semiconductors of group II-VI elements such as e. The heat shield used in the present invention is formed of a metal plate such as a stainless steel plate or a carbon member plate. The opening diameter of the upper end of the side wall of the opening is set to be slightly larger than the outer diameter of the crucible assembly so as not to hinder the up-and-down movement of the crucible assembly in the opening. For example, diameter 10
For a crucible combination having an outer diameter of 230 mm adapted to pull up an 8 mm single crystal, the opening diameter is made 2 mm larger than the outer diameter of the crucible combination. Also, the opening diameter at the lower end of the opening side wall is
The height of the side wall should be 250 mm and the height of the side wall should be 60 mm.

【0013】結晶の引き上げ長さの全長にわたり、結晶
の引き上げ長さの増大に応じて、坩堝組合体の外周縁部
と熱遮蔽部の開口部側壁との間の環状間隙の大きさを小
さくする必要はなく、特定の引き上げ長さの範囲で環状
間隙の大きさを小さくなるようにして良い。例えば、長
さ300mmの単結晶を引き上げる場合には、結晶の引き
上げ長さが、0mmから、又は極めて短い長さ、例えば数
mmから、10cm乃至20cmになるまで、引き上げ長さに
応じて、環状間隙の大きさが小さくなるようにし、それ
以上の引き上げ長さに対しては環状間隙の大きさが一定
になるようにする。更に、環状間隙の大きさが、引き上
げ長さの増大に対して小さくなる比率は、特に限定はな
く、例えば環状間隙の幅が引き上げ長さの増大に対して
直線的に小さくなるようにしても良く、また非直線的に
小さくなるようにしても良い。
The size of the annular gap between the outer peripheral edge of the crucible assembly and the side wall of the opening of the heat shield is reduced in accordance with the increase in the crystal pulling length over the entire length of the crystal pulling length. It is not necessary, and the size of the annular gap may be reduced within a specific pull-up length range. For example, when pulling a single crystal having a length of 300 mm, the pulling length of the crystal is from 0 mm, or an extremely short length, for example, a few
Make the size of the annular gap smaller depending on the pulling length from mm to 10 cm to 20 cm, and make the size of the annular gap constant for longer pulling lengths. . Further, there is no particular limitation on the ratio of the size of the annular gap to the increase of the pulling length, and for example, the width of the annular gap may be linearly reduced to the increase of the pulling length. It may be good, or it may be made non-linearly small.

【0014】[0014]

【作用】請求項1の発明では、開口径が下方に向かって
拡大するスカート状の開口部側壁を有する熱遮蔽部を設
け、結晶の引き上げ長さの増大に応じて坩堝組合体を上
昇させ、坩堝内の融液量の減少により融液の液面が下が
らないようにする際、開口部側壁の開口内に坩堝組合体
を押し上げることにより、坩堝組合体の外周上部縁と開
口部側壁との間隙の大きさを結晶の引き上げ長さの増大
に応じて徐々に小さくしている。これにより、ヒータ加
熱領域から結晶成長領域への温度の高い不活性ガス上昇
流の流量が徐々に減少し、封止剤層の表面温度および結
晶表面温度は、その上昇が抑制され、低下する。
According to the invention of claim 1, a heat shield having a skirt-shaped opening side wall whose opening diameter expands downward is provided, and the crucible assembly is raised in accordance with an increase in the pulling length of the crystal, When preventing the liquid level of the melt from decreasing due to the decrease in the amount of melt in the crucible, by pushing up the crucible combination into the opening of the opening side wall, the outer peripheral upper edge of the crucible combination and the opening side wall are The size of the gap is gradually reduced as the pulling length of the crystal increases. As a result, the flow rate of the ascending flow of high-temperature inert gas from the heater heating region to the crystal growth region is gradually reduced, and the surface temperature of the encapsulant layer and the crystal surface temperature are suppressed from increasing and decrease.

【0015】請求項2の発明では、開口径が下方に向か
って拡大するスカート状の開口部側壁を有し、かつ自在
に下降するようにされた熱遮蔽部を設け、単結晶の引き
上げに際し、熱遮蔽部を下降させて坩堝組合体を開口部
側壁の開口内に入れることにより、結晶の引き上げ長さ
の増大に応じて坩堝組合体の外周縁部と熱遮蔽部の開口
部側壁との間の環状間隙の大きさを小さくしている。こ
れにより、ヒータ加熱領域から結晶成長領域への温度の
高い不活性ガス上昇流の流量が徐々に減少し、封止剤層
の表面温度および結晶表面温度は、その上昇が抑制さ
れ、低下する。
According to the second aspect of the present invention, a heat shield portion having a skirt-shaped opening side wall whose opening diameter expands downward and freely descending is provided, and when pulling a single crystal, By lowering the heat shield part and inserting the crucible combination into the opening of the opening side wall, between the outer peripheral edge part of the crucible combination and the opening side wall of the heat shield part according to the increase of the pulling length of the crystal. The size of the annular gap is reduced. As a result, the flow rate of the ascending flow of high-temperature inert gas from the heater heating region to the crystal growth region is gradually reduced, and the surface temperature of the encapsulant layer and the crystal surface temperature are suppressed from increasing and decrease.

【0016】請求項3の発明では、結晶の引き上げ長さ
の増大に対して坩堝組合体とヒータとの間隙の大きさを
小さくすることにより、坩堝組合体とヒータとの間隙を
通過して圧力容器内の上部領域に上昇する不活性ガスの
流量を結晶の引き上げ長さに応じて減少させている。結
晶の引き上げ長さの増大に応じてヒータ加熱領域から結
晶成長領域への温度の高い不活性ガス上昇流の流量が減
少するので、封止剤表面温度および結晶表面温度は、そ
の上昇が抑制され、低下する。
According to the third aspect of the present invention, the size of the gap between the crucible combination and the heater is reduced with respect to the increase in the pulling length of the crystal, so that the pressure is passed through the gap between the crucible combination and the heater. The flow rate of the inert gas rising to the upper region in the container is decreased according to the pulling length of the crystal. Since the flow rate of the high temperature inert gas ascending flow from the heater heating region to the crystal growth region decreases in accordance with the increase in the crystal pulling length, the increase in the sealant surface temperature and the crystal surface temperature is suppressed. ,descend.

【0017】[0017]

【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。図1は化合物半導体の本
発明に係る製造装置の一実施例の模式的断面図、及び図
2(a)は図1に示した製造装置の要部の拡大断面側面
図、図2(b)は図2(a)の矢視I−I′の断面図で
ある。本実施例の化合物半導体の製造装置(以下、製造
装置と略称する)10は、図1に示すように、不活性ガ
スを加圧、充満させる圧力容器12と、化合物半導体の
原料を収容する縦型坩堝14と、坩堝14をその底部及
び外周で保持する坩堝サセプタ16とを組み合わせて、
圧力容器12内に配置された坩堝組合体18と、坩堝組
合体18の周囲に配設され、坩堝14内の原料を加熱す
る円筒形ヒータ20とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail based on embodiments with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of an embodiment of a manufacturing apparatus for a compound semiconductor according to the present invention, and FIG. 2A is an enlarged cross-sectional side view of a main part of the manufacturing apparatus shown in FIG. 1, and FIG. FIG. 3 is a sectional view taken along the line I-I ′ of FIG. As shown in FIG. 1, a compound semiconductor manufacturing apparatus (hereinafter abbreviated as a manufacturing apparatus) 10 of the present embodiment includes a pressure container 12 for pressurizing and filling an inert gas, and a vertical container for containing a raw material of a compound semiconductor. By combining the mold crucible 14 and the crucible susceptor 16 that holds the crucible 14 at its bottom and outer periphery,
The pressure vessel 12 is provided with a crucible combination body 18 and a cylindrical heater 20 arranged around the crucible combination body 18 to heat the raw material in the crucible 14.

【0018】また、製造装置10は、坩堝組合体18を
回転させ、かつ昇降させる駆動機構を備えている。駆動
機構は、坩堝組合体18の底部に上端が固定され、圧力
容器12の底部を貫通して延びる下軸シャフト22と、
下軸シャフト22を回転させ、かつ昇降させる駆動装置
(図示せず)とから構成されている。圧力容器12の底
部の下軸シャフト貫通部には、高圧シール24が設けて
あって、圧力容器12に対して下軸シャフト22を摺動
自在に封止している。
Further, the manufacturing apparatus 10 is provided with a drive mechanism for rotating the crucible assembly 18 and moving it up and down. The drive mechanism has an upper end fixed to the bottom of the crucible assembly 18 and a lower shaft 22 extending through the bottom of the pressure vessel 12,
It is composed of a drive device (not shown) that rotates the lower shaft 22 and moves it up and down. A high-pressure seal 24 is provided at the bottom shaft penetrating portion of the bottom of the pressure container 12 to slidably seal the lower shaft 22 with respect to the pressure container 12.

【0019】更に、製造装置10は、結晶を引き上げる
ための結晶引き上げ機構を坩堝14の上方に備えてい
る。結晶引き上げ機構は、下端が坩堝14の上方に位置
して、そこから上方に圧力容器12の天板を貫通して延
びる上軸シャフト26と、上軸シャフト26を回転さ
せ、昇降させ、また回転させつつ昇降させる駆動装置
(図示せず)とから構成されている。圧力容器12の天
板の上軸シャフト貫通部には、高圧シール28が設けて
あって、圧力容器12に対して上軸シャフト26を摺動
自在に封止している。
Further, the manufacturing apparatus 10 is provided with a crystal pulling mechanism for pulling a crystal above the crucible 14. The crystal pulling mechanism has a lower end located above the crucible 14 and an upper shaft shaft 26 extending upward from there through the top plate of the pressure vessel 12 and the upper shaft shaft 26 for rotating, elevating, and rotating. And a drive device (not shown) for moving up and down. A high-pressure seal 28 is provided in the upper shaft shaft penetrating portion of the top plate of the pressure container 12 to slidably seal the upper shaft shaft 26 with respect to the pressure container 12.

【0020】ヒータ20の上部には、圧力容器12内の
結晶成長領域をヒータ20から熱遮蔽するために000
製の熱遮蔽部30が設けてある。熱遮蔽部30は、図2
(a)及び(b)に示すように、熱遮蔽板32と、熱遮
蔽板32の中央に設けられた開口34から下方に向かっ
て延在するスカート状の開口部側壁36とを備えてい
る。熱遮蔽板32は、圧力容器12の円筒壁から内方に
延在して円筒形ヒータ20の上部を覆う環状の板材であ
って、その中央に設けられた開口34は、坩堝組合体1
8の外径より僅かに大きい径であって、坩堝組合体18
の外周上部縁52に対して間隙Sを構成する。スカート
状の開口部側壁36は、熱遮蔽板32の開口34の周縁
部から下方に向かって中央に開口部を形成しつつ、開口
径が同心的に拡大するようにスカート状に延在し、その
軸芯が坩堝組合体18の軸芯と同心状になるように配置
されている。
On the upper part of the heater 20, 000 is provided in order to thermally shield the crystal growth region in the pressure vessel 12 from the heater 20.
A heat shield 30 made of metal is provided. The heat shield 30 is shown in FIG.
As shown in (a) and (b), a heat shield plate 32 and a skirt-shaped opening side wall 36 extending downward from an opening 34 provided at the center of the heat shield plate 32 are provided. . The heat shield plate 32 is an annular plate member that extends inward from the cylindrical wall of the pressure vessel 12 and covers the upper portion of the cylindrical heater 20, and the opening 34 provided in the center thereof is the crucible assembly 1
8 is slightly larger than the outer diameter of the crucible assembly 18
A gap S is formed with respect to the outer peripheral upper edge 52 of. The skirt-shaped opening side wall 36 extends in a skirt shape so that the opening diameter is concentrically expanded while forming an opening in the center downward from the peripheral edge of the opening 34 of the heat shield plate 32, The axis is arranged so as to be concentric with the axis of the crucible combination body 18.

【0021】図1中、38はヒータ20を支持する支持
部、40はヒータ20の周囲を取り巻くように設けられ
た断熱筒、42は坩堝組合体18及びヒータ20の底部
に設けられた断熱板である。ヒータ20の支持部38
は、断熱板42を貫通して圧力容器12の底部で支持さ
れている。
In FIG. 1, reference numeral 38 is a supporting portion for supporting the heater 20, 40 is a heat insulating cylinder provided so as to surround the heater 20, and 42 is a heat insulating plate provided on the bottoms of the crucible assembly 18 and the heater 20. Is. Support part 38 of heater 20
Are pierced through the heat insulating plate 42 and supported by the bottom portion of the pressure vessel 12.

【0022】圧力容器12には、ガス供給管44とガス
排出管46とが、不活性ガスを導入し、また排出するた
めに接続されていて、それぞれ圧力容器12の底部と断
熱板42との間の空間と連通している。また、圧力計4
8が圧力容器12に設けてあって、圧力容器12内の上
部領域の圧力を計測し、坩堝組合体18に設けた熱電対
50は、坩堝底の温度を測定する。別の実施例では、坩
堝組合体18を押し上げる代わりに、熱遮蔽部30を下
降させている。図1中、52は、この別の実施例におい
て使用される、熱遮蔽部30を上下させるための昇降軸
である。
A gas supply pipe 44 and a gas discharge pipe 46 are connected to the pressure vessel 12 for introducing and discharging an inert gas, and respectively connect the bottom of the pressure vessel 12 and the heat insulating plate 42. It communicates with the space between. Also, pressure gauge 4
8 is provided in the pressure vessel 12, measures the pressure of the upper region in the pressure vessel 12, and the thermocouple 50 provided in the crucible combination 18 measures the temperature of the crucible bottom. In another embodiment, instead of pushing up the crucible assembly 18, the heat shield 30 is lowered. In FIG. 1, reference numeral 52 is an elevating shaft for moving the heat shield 30 up and down, which is used in this other embodiment.

【0023】次に、上述の製造装置10を使用して化合
物半導体を製造する方法を図1を参照しながら説明す
る。目的とする化合物半導体結晶の原料、例えばGaと
As、及び封止剤、例えばB2 3 を充填した坩堝14
を圧力容器12内に配置する。次いで圧力容器12に不
活性ガス、例えばArガス、N2 ガスを導入して不活性
ガスで圧力容器12内を置換し、更に加圧する。ヒータ
ー20で坩堝組合体18を加熱して、原料及び封止剤を
融解する。それぞれが融解すると、原料融液層Aとその
上に封止剤層Bが形成され、原料融液層Aは封止剤層B
で覆われる。上軸シャフト26の下端に種結晶Cを取り
付けた上で、上軸シャフト26を下降させ、種結晶Cを
して封止剤層Bを貫通させ原料融液層Aの表面に接触さ
せる。次いで、上軸シャフト26を回転しながら引き上
げることにより、種結晶Cに連続して単結晶Dを成長さ
せる。一方、単結晶Dの成長に合わせて、原料融液層A
の液面の高さを所定の位置に維持するために、下軸シャ
フト22を介して坩堝組合体18を回転しつつ熱遮蔽部
30の開口部側壁36の開口34内に押し上げる。
Next, a method of manufacturing a compound semiconductor using the above-described manufacturing apparatus 10 will be described with reference to FIG. Crucible 14 filled with raw materials of a target compound semiconductor crystal, for example, Ga and As, and a sealant, for example, B 2 O 3.
Are placed in the pressure vessel 12. Then, an inert gas such as Ar gas or N 2 gas is introduced into the pressure vessel 12, the inside of the pressure vessel 12 is replaced with the inert gas, and the pressure is further increased. The heater 20 heats the crucible combination 18 to melt the raw material and the sealant. When each melts, the raw material melt layer A and the sealant layer B are formed thereon, and the raw material melt layer A becomes the sealant layer B.
Covered with. The seed crystal C is attached to the lower end of the upper shaft 26, and then the upper shaft 26 is lowered to cause the seed crystal C to penetrate the sealant layer B and contact the surface of the raw material melt layer A. Then, the upper shaft 26 is pulled while rotating to grow the single crystal D continuously with the seed crystal C. On the other hand, in accordance with the growth of the single crystal D, the raw material melt layer A
In order to maintain the height of the liquid surface at a predetermined position, the crucible assembly 18 is rotated through the lower shaft 22 and pushed up into the opening 34 of the opening side wall 36 of the heat shield 30.

【0024】坩堝組合体18を押し上げる際に、坩堝組
合体18の外周上部縁52と熱遮蔽部30の開口部側壁
36との間隔S(図2参照)は、単結晶Dの引き上げ長
さの増大に応じて減少する。更に説明すれば、図3
(a)、(b)及び(c)は、それぞれ単結晶の引き上
げ長さが0か、或いは極めて短い時、多少長くなった
時、更に長くなった時の熱遮蔽部30と坩堝組合体18
との関係を示す。図3(b)に示すS2 は、図3(a)
に示す間隔S1 より狭く、図3(c)に示すS3 は、図
3(a)に示す間隔S2 より狭い。単結晶Dの引き上げ
長さの増大に応じて間隔Sの大きさを小さくすることに
より、対流によって間隔Sを通り圧力容器12の上部領
域に上昇する温度の高い不活性ガスの流れが抑制される
ので、封止剤層B及び単結晶Dに対する高温の不活性ガ
スの熱的影響が減少する。よって、封止剤層Bの表面温
度、従って単結晶Dの表面温度が低下するので、単結晶
Dの表面荒れが抑制され、単結晶化率が向上する。
When pushing up the crucible combination 18, the distance S (see FIG. 2) between the outer peripheral upper edge 52 of the crucible combination 18 and the side wall 36 of the opening of the heat shield 30 is equal to the pulling length of the single crystal D. It decreases as it increases. To explain further, FIG.
(A), (b) and (c) respectively show the heat shield 30 and the crucible combination 18 when the pulling length of the single crystal is 0, or extremely short, slightly long, and further long.
Shows the relationship with. S 2 shown in FIG. 3B is the same as that shown in FIG.
3 is smaller than the space S 1 shown in FIG. 3C, and S 3 shown in FIG. 3C is smaller than the space S 2 shown in FIG. By reducing the size of the interval S in accordance with the increase in the pulling length of the single crystal D, the flow of the high temperature inert gas passing through the interval S and rising to the upper region of the pressure vessel 12 by convection is suppressed. Therefore, the thermal influence of the high temperature inert gas on the sealant layer B and the single crystal D is reduced. Therefore, the surface temperature of the sealant layer B, that is, the surface temperature of the single crystal D is lowered, so that the surface roughness of the single crystal D is suppressed and the single crystallization rate is improved.

【0025】以上のような構成の製造装置10を用い
て、上述のような方法でGaAs単結晶を製造し、得た
単結晶の品質を評価した。試験例1 上述の製造装置10において、坩堝組合体18の外周上
部縁52と熱遮蔽部30の開口部側壁36の下端との水
平間隔S1 (図3(a)参照)が10mmに、坩堝組合体
18の外周上部縁52と熱遮蔽部30の開口部側壁36
の上端との水平間隔S3 (図3(c)参照)が1mmにな
るように、開口部側壁36の形状を設定した。尚、坩堝
組合体18の外周上部縁52の直径は、230mmとし
た。坩堝14内に、封止剤として1500gのB
2 3 、及び化合物半導体原料としてGaとAsをAs
がやや過剰組成になるように合計15kgチャージし
た。圧力容器12内に不活性ガス(Arまたは窒素等)
を封入し、70気圧の圧力に保ちつつヒーター20で加
熱してGaAsを合成、融解し、GaAs融液層Aを形
成した。このときGaAs融液層Aの表面は、封止剤層
Bで覆われていた。次いで、圧力容器12内の圧力を2
0気圧まで下げた後、種結晶Cを降ろしてGaAs融液
層Aに接触させ、続いて坩堝組合体18を熱遮蔽部30
の開口部側壁36の開口34内に押し上げつつ、種結晶
Cを引き上げて単結晶Dを成長せしめ、最終的には、直
径108mm、長さ300mmの単結晶を試験例品1として
得た。
A GaAs single crystal was manufactured by the above-described method using the manufacturing apparatus 10 having the above-described structure, and the quality of the obtained single crystal was evaluated. Test Example 1 In the manufacturing apparatus 10 described above, the horizontal interval S 1 (see FIG. 3A) between the outer peripheral upper edge 52 of the crucible assembly 18 and the lower end of the opening side wall 36 of the heat shield 30 was 10 mm, and the crucible was The outer peripheral upper edge 52 of the combined body 18 and the opening side wall 36 of the heat shield 30.
The shape of the opening side wall 36 was set so that the horizontal spacing S 3 (see FIG. 3C) from the upper end of the opening was 1 mm. The outer peripheral upper edge 52 of the crucible assembly 18 had a diameter of 230 mm. 1500 g of B as a sealant is placed in the crucible 14.
2 O 3 and Ga and As as compound semiconductor raw materials
However, a total of 15 kg was charged so that the composition would be a little excessive. Inert gas (Ar or nitrogen, etc.) in the pressure vessel 12
Was sealed, heated with a heater 20 while maintaining a pressure of 70 atm, and GaAs was synthesized and melted to form a GaAs melt layer A. At this time, the surface of the GaAs melt layer A was covered with the sealant layer B. Then, the pressure in the pressure vessel 12 is increased to 2
After the pressure is reduced to 0 atm, the seed crystal C is lowered and brought into contact with the GaAs melt layer A, and then the crucible assembly 18 is attached to the heat shield portion 30.
While pushing up into the opening 34 of the side wall 36 of the opening, the seed crystal C was pulled up to grow the single crystal D, and finally a single crystal having a diameter of 108 mm and a length of 300 mm was obtained as a test example product 1.

【0026】坩堝組合体18を上昇させる際、坩堝組合
体18の外周上部縁52と熱遮蔽部30の開口部側壁3
6との間隔Sが、結晶長さLに対して図4に示す関係を
維持するようにした。即ち、間隔Sは、結晶長さLが0
mmから10mmの間で10mmであり、結晶長さLが10mm
から20cmまでの範囲で単結晶Dの結晶長さLが長くな
るにつれて直線関係で小さくなり、結晶長さLが20cm
以上では1mmである。結晶長さLが0〜10mmの間で、
間隔Sが一定となっているのは、坩堝組合体18の押し
上げが単結晶引き上げと同時に行われないからである。
以下の試験例でも同様である。これにより、熱遮蔽部3
0の開口部側壁36と坩堝組合体18との間の環状間隙
を通って圧力容器12内の上部領域に流れる不活性ガス
の流量が結晶の引き上げ長さの増大に応じて減少し、そ
の結果、不活性ガスによる熱的影響が減少する。これ
は、間隔Sと封止剤層の表面温度Tの関係を示す図5か
ら明らかであって、間隔Sが小さくなると、封止剤表面
温度Tは下がる。よって、結晶の成長と共に封止剤層の
表面温度が下がるので、結晶表面温度が下がる。得た試
験例品1の単結晶の表面を観察し、単結晶化率を測定し
た。その結果は、表1に示すように、As解離による多
結晶化即ち表面荒れは観察されず、また単結晶化率は1
00%であった。
When the crucible assembly 18 is raised, the outer peripheral upper edge 52 of the crucible assembly 18 and the side wall 3 of the opening of the heat shield 30.
The distance S from 6 is maintained to maintain the relationship shown in FIG. 4 with respect to the crystal length L. That is, the interval S is such that the crystal length L is 0.
It is 10 mm between mm and 10 mm, and the crystal length L is 10 mm.
To 20 cm, as the crystal length L of the single crystal D increases, it decreases linearly, and the crystal length L is 20 cm.
Above is 1 mm. If the crystal length L is between 0 and 10 mm,
The interval S is constant because the crucible assembly 18 is not pushed up at the same time as the pulling of the single crystal.
The same applies to the following test examples. Thereby, the heat shield 3
The flow rate of the inert gas flowing through the annular gap between the opening side wall 36 of 0 and the crucible combination 18 to the upper region in the pressure vessel 12 decreases in accordance with the increase of the pulling length of the crystal, and as a result, , The thermal effect of the inert gas is reduced. This is clear from FIG. 5 which shows the relationship between the space S and the surface temperature T of the sealant layer, and the surface temperature T of the sealant decreases as the space S becomes smaller. Therefore, the surface temperature of the encapsulant layer decreases as the crystal grows, and the crystal surface temperature decreases. The surface of the single crystal of the obtained test example product 1 was observed and the single crystallization rate was measured. As a result, as shown in Table 1, no polycrystallization due to As dissociation, that is, surface roughness was observed, and the single crystallization rate was 1.
It was 00%.

【表1】 [Table 1]

【0027】試験例2 坩堝組合体18を上昇させる際、坩堝組合体18の外周
上部縁52と熱遮蔽部30の開口部側壁36との間隔S
が、結晶長さLに対して図6に示す関係を維持するよう
にしたこと以外、即ち、間隔Sは、結晶長さLが0mmか
ら10mmの間で10mmであり、結晶長さLが10mmから
10cmまでの範囲で単結晶Dの結晶長さLが長くなるに
つれて直線関係で小さくなり、結晶長さLが10cm以上
では1mmであるように、坩堝組合体18を上昇させたこ
とを以外は、試験例1と同様にして直径108mm、長さ
300mmの単結晶を試験例品2として得た。間隔Sと封
止剤層Bの温度との関係は、試験例1と同様に、図5に
示す通りであった。得た試験例品2の単結晶の表面を観
察し、単結晶化率を測定した。その結果は、表1に示す
ように、As解離による多結晶化即ち表面荒れは観察さ
れず、また単結晶化率は100%であった。
Test Example 2 When raising the crucible combination 18, the space S between the outer peripheral upper edge 52 of the crucible combination 18 and the opening side wall 36 of the heat shield 30.
However, except that the relationship shown in FIG. 6 is maintained with respect to the crystal length L, that is, the interval S is 10 mm when the crystal length L is between 0 mm and 10 mm, and the crystal length L is 10 mm. From 10 cm to 10 cm, the linear length of the single crystal D becomes smaller as the crystal length L becomes longer, and when the crystal length L is 10 cm or more, it becomes 1 mm, except that the crucible assembly 18 is raised. A single crystal having a diameter of 108 mm and a length of 300 mm was obtained as Test Example Product 2 in the same manner as in Test Example 1. The relationship between the space S and the temperature of the sealant layer B was as shown in FIG. 5, as in Test Example 1. The surface of the single crystal of the obtained test example product 2 was observed and the single crystallization rate was measured. As a result, as shown in Table 1, no polycrystallization due to As dissociation, that is, surface roughness was observed, and the single crystallization rate was 100%.

【0028】試験例3 上述の製造装置10において、坩堝組合体18の外周上
部縁52と熱遮蔽部30の開口部側壁36の下端との水
平間隔S1 (図3(a)参照)が5mmに、坩堝組合体1
8の外周上部縁52と熱遮蔽部30の開口部側壁36の
上端との水平間隔S3 (図3(c)参照)が1mmになる
ように、開口部側壁36の形状を設定した。
Test Example 3 In the manufacturing apparatus 10 described above, the horizontal distance S 1 (see FIG. 3A) between the upper peripheral edge 52 of the crucible assembly 18 and the lower end of the side wall 36 of the opening of the heat shield 30 is 5 mm. And crucible union 1
The shape of the opening side wall 36 was set so that the horizontal interval S 3 (see FIG. 3C) between the outer peripheral upper edge 52 of 8 and the upper end of the opening side wall 36 of the heat shield 30 was 1 mm.

【0029】坩堝組合体18を上昇させる際、坩堝組合
体18の外周上部縁52と熱遮蔽部30の開口部側壁3
6との間隔Sが、結晶長さLに対して図7に示す関係を
維持するようにしたこと以外、即ち、間隔Sは、結晶長
さLが0mmから10mmの間で5mmであり、結晶長さLが
10mmから20cmまでの範囲で単結晶Dの結晶長さLが
長くなるにつれて直線関係で小さくなり、結晶長さLが
20cm以上では1mmであるように、坩堝組合体18を上
昇させたことを以外は、試験例1と同様にして直径10
8mm、長さ300mmの単結晶を試験例品3として得た。
間隔Sと封止剤層Bの温度との関係は、試験例1と同様
に、図5に示す通りであった。得た試験例品3の単結晶
の表面を観察し、単結晶化率を測定した。その結果は、
表1に示すように、As解離による多結晶化即ち表面荒
れは観察されず、また単結晶化率は100%であった。
When the crucible assembly 18 is raised, the upper peripheral edge 52 of the crucible assembly 18 and the side wall 3 of the opening of the heat shield 30.
6, except that the distance S between the crystal length L and the crystal length L maintains the relationship shown in FIG. 7, that is, the distance S is 5 mm when the crystal length L is between 0 mm and 10 mm. Raise the crucible assembly 18 so that the crystal length L of the single crystal D decreases linearly as the crystal length L increases in the range of the length L from 10 mm to 20 cm, and becomes 1 mm when the crystal length L is 20 cm or more. A diameter of 10 was obtained in the same manner as in Test Example 1 except that
A single crystal having a length of 8 mm and a length of 300 mm was obtained as a test example product 3.
The relationship between the space S and the temperature of the sealant layer B was as shown in FIG. 5, as in Test Example 1. The surface of the single crystal of the obtained test example product 3 was observed and the single crystallization rate was measured. The result is
As shown in Table 1, no polycrystallization due to As dissociation, that is, surface roughness was observed, and the single crystallization rate was 100%.

【0030】試験例4 上述の製造装置10において、坩堝組合体18の外周上
部縁52と熱遮蔽部30の開口部側壁36の下端との水
平間隔S1 (図3(a)参照)が5.5mmに、坩堝組合
体18の外周上部縁52と熱遮蔽部30の開口部側壁3
6の上端との水平間隔S3 (図3(c)参照)が1mmに
なるように、開口部側壁36の形状を設定した。
Test Example 4 In the manufacturing apparatus 10 described above, the horizontal interval S 1 (see FIG. 3 (a)) between the outer peripheral upper edge 52 of the crucible assembly 18 and the lower end of the opening side wall 36 of the heat shield 30 is 5 0.5 mm, the outer peripheral upper edge 52 of the crucible assembly 18 and the opening side wall 3 of the heat shield 30.
The shape of the opening side wall 36 was set so that the horizontal distance S 3 (see FIG. 3C) from the upper end of 6 was 1 mm.

【0031】坩堝組合体18を上昇させる際、坩堝組合
体18の外周上部縁52と熱遮蔽部30の開口部側壁3
6との間隔Sが、結晶長さLに対して図8に示す関係を
維持するようにしたこと以外、即ち、間隔Sは、結晶長
さLが0cmでは5.5mmであり、結晶長さLが0cmから
20cmまでの範囲で単結晶Dの結晶長さLが長くなるに
つれて直線関係で小さくなり、結晶長さLが20cm以上
では1mmであるように、坩堝組合体18を上昇させたこ
とを以外は、試験例1と同様にして直径108mm、長さ
300mmの単結晶を試験例品4として得た。間隔Sと封
止剤層Bの温度との関係は、試験例1と同様に、図5に
示す通りであった。得た試験例品4の単結晶の表面を観
察し、単結晶化率を測定した。その結果は、表1に示す
ように、As解離による多結晶化即ち表面荒れは観察さ
れず、また単結晶化率は100%であった。
When the crucible assembly 18 is raised, the outer peripheral upper edge 52 of the crucible assembly 18 and the opening side wall 3 of the heat shield portion 30.
8 except that the distance S with respect to the crystal length L maintains the relationship shown in FIG. 8 with respect to the crystal length L, that is, the distance S is 5.5 mm when the crystal length L is 0 cm. The crucible assembly 18 was raised so that the crystal length L of the single crystal D became linearly smaller in the range of L from 0 cm to 20 cm and became 1 mm when the crystal length L was 20 cm or more. A single crystal having a diameter of 108 mm and a length of 300 mm was obtained as Test Example product 4 in the same manner as in Test Example 1 except for. The relationship between the space S and the temperature of the sealant layer B was as shown in FIG. 5, as in Test Example 1. The surface of the single crystal of the obtained test example product 4 was observed and the single crystallization rate was measured. As a result, as shown in Table 1, no polycrystallization due to As dissociation, that is, surface roughness was observed, and the single crystallization rate was 100%.

【0032】比較例1 図9に示すように、上述したスカート状の開口部側壁3
6を有しない熱遮蔽部30を圧力容器内に設け、熱遮蔽
部30の開口32の縁部と坩堝組合体18との間隙Sが
10mmになるようにした。次いで、堝組合体18の外周
上部縁52と熱遮蔽部30の開口縁部との間隔Sを結晶
長さLとは無関係に10mmに維持したこと、即ち、図1
0に示す関係で坩堝組合体18を上昇させたことを以外
は、試験例1と同様にして直径108mm、長さ300mm
の単結晶を試験例品4として得た。得た比較例品1の単
結晶の表面を観察し、単結晶化率を測定した。その結果
は、表1に示すように、As解離による多結晶化即ち表
面荒れは観察され、また単結晶化率は40%であった。
Comparative Example 1 As shown in FIG. 9, the above-mentioned skirt-shaped opening side wall 3 is formed.
The heat shield 30 without 6 was provided in the pressure vessel so that the gap S between the edge of the opening 32 of the heat shield 30 and the crucible assembly 18 was 10 mm. Then, the distance S between the outer peripheral upper edge 52 of the crucible assembly 18 and the opening edge of the heat shield 30 was maintained at 10 mm regardless of the crystal length L, that is, FIG.
0 in the same manner as in Test Example 1 except that the crucible assembly 18 was raised in the relationship shown in FIG.
Was obtained as Test Example Product 4. The surface of the obtained single crystal of Comparative Example product 1 was observed and the single crystallization rate was measured. As a result, as shown in Table 1, polycrystallization due to As dissociation, that is, surface roughness was observed, and the single crystallization rate was 40%.

【0033】表1は、試験例1、2、3及び4と比較例
1によって得られたGaAs結晶のAs解離による表面
荒れの有無と単結晶化率を比較したものである。この表
から本発明によれば、表面荒れが防止され、単結晶化率
が向上したことが判る。
Table 1 compares the presence or absence of surface roughness due to As dissociation and the single crystallization rate of the GaAs crystals obtained in Test Examples 1, 2, 3 and 4 and Comparative Example 1. From this table, it can be seen that according to the present invention, the surface roughness was prevented and the single crystallization rate was improved.

【0034】なお、実施例として本発明方法をLEC法
に適用した例を示したが、本発明は封止剤を使用しない
引き上げ法にも適用可能である。さらに、製造する化合
物半導体としてはGaAs以外のIII 族−V族、Cd
S、CdSe、CdTe等のII族−IV族化合物半導体で
あってもよい。また、上述の実施例では、熱遮蔽部30
を固定し、坩堝組合体18を押し上げることにより、熱
遮蔽部30と坩堝組合体18との間の環状間隙が減少す
るようにしたが、熱遮蔽部30を下降させる下降装置
(図示せず)を設け、単結晶の引き上げに際し、熱遮蔽
部30を下降させて坩堝組合体18を熱遮蔽部の開口部
側壁36の開口34内に入れ、坩堝組合体18の外周上
部縁52と熱遮蔽部30の開口部側壁18との間の環状
間隙が、単結晶Dの引き上げ長さの増大に対して減少す
るようにしてもよい。
Although the method of the present invention is applied to the LEC method as an example, the present invention is also applicable to a pulling method which does not use a sealant. Further, as compound semiconductors to be manufactured, group III-V other than GaAs, Cd
It may be a group II-group IV compound semiconductor such as S, CdSe, or CdTe. In addition, in the above-described embodiment, the heat shield portion 30.
Although the annular gap between the heat shield 30 and the crucible combination 18 is reduced by fixing the above and pushing up the crucible combination 18, the lowering device (not shown) for lowering the heat shield 30 is provided. When the single crystal is pulled up, the heat shield 30 is lowered to put the crucible combination 18 into the opening 34 of the opening side wall 36 of the heat shield, and the outer peripheral upper edge 52 of the crucible combination 18 and the heat shield. The annular gap between the opening side wall 18 of 30 may decrease with an increase in the pulling length of the single crystal D.

【0035】[0035]

【発明の効果】請求項1及び2に記載の発明によれば、
熱遮蔽部と坩堝組合体との間の環状間隙の大きさが、結
晶の引き上げ長さに応じて小さくなるように構成するこ
とにより、結晶の引き上げ長さの増大と共に、ヒータ加
熱領域から結晶成長領域への温度の高い不活性ガス上昇
流の流量を徐々に小さくし、封止剤表面温度、従って結
晶表面温度を下げることができる、化合物半導体の製造
装置を簡単で経済的な構成により実現している。本製造
装置を使用すれば、引き上げ途中の結晶の表面温度が効
果的に低下するので、結晶の表面から揮発性成分の解離
に原因する多結晶化を防止することが出来、単結晶化率
を大幅に向上することができる。
According to the invention described in claims 1 and 2,
By making the size of the annular gap between the heat shield and the crucible combination smaller according to the crystal pulling length, the crystal pulling length increases and the crystal growth from the heater heating region. To realize a compound semiconductor manufacturing device with a simple and economical structure that can gradually reduce the flow rate of the high temperature inert gas upflow to the region and lower the encapsulant surface temperature, and thus the crystal surface temperature. ing. By using this manufacturing apparatus, the surface temperature of the crystal during pulling is effectively lowered, so that polycrystallization due to dissociation of volatile components from the surface of the crystal can be prevented and the single crystallization rate can be reduced. Can be greatly improved.

【0036】請求項3に記載の発明によれば、坩堝組合
体とヒータとの間隙を通過して圧力容器内の上部領域に
上昇する高温の不活性ガスの流量を結晶の引き上げ長さ
に応じて減少させることにより、封止剤表面温度、従っ
て結晶表面温度を下げることができる化合物半導体の製
造方法を簡単で経済的な手段により実現している。本発
明方法を使用すれば、引き上げ途中の結晶の表面温度が
効果的に低下するので、結晶の表面から揮発性成分の解
離に原因する多結晶化を防止することが出来、単結晶化
率を大幅に向上することができる。
According to the third aspect of the present invention, the flow rate of the high temperature inert gas passing through the gap between the crucible assembly and the heater and rising to the upper region in the pressure vessel depends on the pulling length of the crystal. The method for producing a compound semiconductor is capable of lowering the surface temperature of the encapsulant, and thus the surface temperature of the crystal, by realizing a simple and economical means. By using the method of the present invention, the surface temperature of the crystal during pulling is effectively lowered, so that polycrystallization due to dissociation of volatile components from the surface of the crystal can be prevented and the single crystallization rate can be reduced. Can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】化合物半導体の製造装置の模式的断面側面図で
ある。
FIG. 1 is a schematic cross-sectional side view of a compound semiconductor manufacturing apparatus.

【図2】図2(a)は図1の化合物半導体の製造装置の
要部の模式的拡大断面側面図、図2(b)は図2(a)
の矢視I−I′の断面図である。
2 (a) is a schematic enlarged sectional side view of a main part of the compound semiconductor manufacturing apparatus of FIG. 1, and FIG. 2 (b) is FIG. 2 (a).
FIG. 11 is a sectional view taken along line I-I ′ of FIG.

【図3】図3(a)、(b)及び(c)は、本発明にお
ける、坩堝組合体の位置と、熱遮蔽部の開口部側壁と坩
堝組合体の外周上部縁との間隔Sとの関係を示すグラフ
である。
3 (a), (b) and (c) show the position of the crucible combination and the distance S between the side wall of the opening of the heat shield and the outer peripheral upper edge of the crucible combination in the present invention. It is a graph which shows the relationship of.

【図4】試験例1における結晶引き上げ長さLと熱遮蔽
部の開口部側壁と坩堝組合体の外周上部縁との間隔Sと
の関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a crystal pulling length L and a distance S between an opening side wall of the heat shield and an outer peripheral upper edge of the crucible combination in Test Example 1.

【図5】封止剤層表面の温度と熱遮蔽部の開口部側壁と
坩堝組合体の外周上部縁との間隔Sとの関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the temperature of the surface of the sealant layer and the distance S between the side wall of the opening of the heat shield and the outer peripheral upper edge of the crucible combination.

【図6】試験例2における結晶引き上げ長さLと熱遮蔽
部の開口部側壁と坩堝組合体の外周上部縁との間隔Sと
の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the crystal pulling length L and the distance S between the side wall of the opening of the heat shield and the outer peripheral upper edge of the crucible combination in Test Example 2.

【図7】試験例3における結晶引き上げ長さLと熱遮蔽
部の開口部側壁と坩堝組合体の外周上部縁との間隔Sと
の関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a crystal pulling length L and a space S between an opening side wall of the heat shield and an outer peripheral upper edge of the crucible combination in Test Example 3.

【図8】試験例4における結晶引き上げ長さLと熱遮蔽
部の開口部側壁と坩堝組合体の外周上部縁との間隔Sと
の関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a crystal pulling length L and a space S between an opening side wall of the heat shield and an outer peripheral upper edge of the crucible combination in Test Example 4.

【図9】比較例1における熱遮蔽部と坩堝組合体との位
置関係を示す模式図である。
FIG. 9 is a schematic diagram showing a positional relationship between a heat shield and a crucible combination in Comparative Example 1.

【図10】比較例1における結晶引き上げ長さLと熱遮
蔽部の開口部側壁と坩堝組合体の外周上部縁との間隔S
との関係を示すグラフである。
FIG. 10 is a crystal pulling length L in Comparative Example 1, a space S between the side wall of the opening of the heat shield and the outer peripheral upper edge of the crucible combination.
It is a graph which shows the relationship with.

【図11】坩堝内の固液界面における温度分布を示すモ
デルである。
FIG. 11 is a model showing a temperature distribution at a solid-liquid interface in a crucible.

【符号の説明】[Explanation of symbols]

10 本発明に係る化合物半導体の製造装置の実施例 12 圧力容器 14 坩堝 16 坩堝サセプタ 18 坩堝組合体 20 ヒーター 22 下軸シャフト 24 高圧シール 26 上軸シャフト 28 高圧シール 30 熱遮蔽部 32 開口 34 熱遮蔽板 36 開口部側壁 38 ヒーターの支持部 40 断熱筒 42 断熱板 44 ガス供給管 46 ガス排出管 48 圧力計 50 熱電対 52 熱遮蔽部の昇降軸 10 Example of Compound Semiconductor Manufacturing Apparatus According to the Present Invention 12 Pressure Vessel 14 Crucible 16 Crucible Susceptor 18 Crucible Combination 20 Heater 22 Lower Shaft 24 High Pressure Seal 26 Upper Shaft 28 High Pressure Seal 30 Heat Shield 32 Open 34 Heat Shield Plate 36 Opening Side Wall 38 Heater Support 40 Heat Insulation Cylinder 42 Heat Insulation Plate 44 Gas Supply Pipe 46 Gas Discharge Pipe 48 Pressure Gauge 50 Thermocouple 52 Heat Shield Lifting Axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器(12)内に、坩堝(14)と
その坩堝を保持する坩堝サセプタ(16)とからなる坩
堝組合体(18)と、その坩堝組合体の周囲に配置され
たヒータ(20)とを備えた装置を用いて、圧力容器に
充満した加圧不活性ガスの下で、種結晶に連続して坩堝
内の化合物半導体の融液から成長した単結晶を引き上げ
るようにした化合物半導体の製造方法において、 結晶の引き上げ長さの増大に応じて坩堝組合体とヒータ
との間隙の大きさを小さくすることにより、坩堝組合体
とヒータとの間隙を通過して圧力容器内の上部領域に上
昇する不活性ガスの流量を結晶の引き上げ長さに応じて
減少させるようにしたことを特徴とする化合物半導体の
製造方法。
1. A pressure vessel (12), a crucible assembly (18) comprising a crucible (14) and a crucible susceptor (16) for holding the crucible, and a heater arranged around the crucible assembly. A single crystal grown from the melt of the compound semiconductor in the crucible is pulled up continuously from the seed crystal under the pressurized inert gas filled in the pressure vessel by using the apparatus including (20). In the method for producing a compound semiconductor, by reducing the size of the gap between the crucible combination and the heater in accordance with the increase in the pulling length of the crystal, the gap between the crucible combination and the heater is passed and A method for producing a compound semiconductor, wherein the flow rate of an inert gas rising to the upper region is decreased according to the pulling length of the crystal.
【請求項2】 圧力容器(12)内に、坩堝(14)と
その坩堝を保持する坩堝サセプタ(16)とからなる坩
堝組合体(18)と、その坩堝組合体の周囲に配置され
たヒータ(20)とを備え、圧力容器に充満した加圧不
活性ガスの下で、種結晶に連続して坩堝内の化合物半導
体の融液から成長した単結晶を引き上げるようにした化
合物半導体の製造装置において、 圧力容器内の上部領域をヒータから熱遮蔽するために、
圧力容器の横断方向にヒータ上方に延在し、かつ坩堝組
合体の外径より僅かに大きい直径の開口(34)を有す
る熱遮蔽板(32)と、熱遮蔽板の開口縁から下方に向
かって開口径が拡大するように延在する開口部側壁(3
6)とを有する熱遮蔽部(30)を、その開口部側壁が
坩堝組合体とほぼ同心状の配置になるように設け、 単結晶の引き上げに際し、熱遮蔽部の開口部側壁の開口
内に坩堝組合体を押し上げることにより、結晶の引き上
げ長さの増大に応じて坩堝組合体の外周縁部と熱遮蔽部
の開口部側壁との間の環状間隙の大きさを小さくするよ
うにしたことを特徴とする化合物半導体の製造装置。
2. A crucible assembly (18) comprising a crucible (14) and a crucible susceptor (16) for holding the crucible in a pressure vessel (12), and a heater arranged around the crucible assembly. (20), and a compound semiconductor manufacturing apparatus for pulling a single crystal grown from a compound semiconductor melt in a crucible in succession to a seed crystal under a pressurized inert gas filled in a pressure vessel In order to shield the upper area of the pressure vessel from the heater,
A heat shield plate (32) extending above the heater in the transverse direction of the pressure vessel and having an opening (34) having a diameter slightly larger than the outer diameter of the crucible assembly, and a heat shield plate (32) facing downward from the opening edge of the heat shield plate. Side wall (3) that extends so that the opening diameter increases.
6) is provided with a heat shield part (30) having an opening side wall substantially concentric with the crucible combination, and when pulling the single crystal, the heat shield part (30) is placed inside the opening of the heat shield part side wall. By pushing up the crucible combination, the size of the annular gap between the outer peripheral edge of the crucible combination and the side wall of the opening of the heat shield is reduced in accordance with the increase in the pulling length of the crystal. Characteristic compound semiconductor manufacturing equipment.
【請求項3】 圧力容器(12)内に、坩堝(14)と
その坩堝を保持する坩堝サセプタ(16)とからなる坩
堝組合体(18)と、その坩堝組合体の周囲に配置され
たヒータ(20)とを備え、圧力容器に充満した加圧不
活性ガスの下で、種結晶に連続して坩堝内の化合物半導
体の融液から成長した単結晶を引き上げるようにした化
合物半導体の製造装置において、 圧力容器内の上部領域をヒータから熱遮蔽するために、
圧力容器の横断方向にヒータ上方に延在し、かつ坩堝組
合体の外径より僅かに大きい直径の開口(34)を有す
る熱遮蔽板(32)と、熱遮蔽板の開口縁から下方に向
かって開口径が拡大するように延在する開口部側壁(3
6)とを有し、更に自在に下降するようにされた熱遮蔽
部(30)を、その開口部側壁が坩堝組合体に対しほぼ
同心状の配置になるように設け、 単結晶の引き上げに際し、熱遮蔽部を下降させて坩堝組
合体を熱遮蔽部の開口部側壁の開口内に入れることによ
り、結晶の引き上げ長さの増大に応じて坩堝組合体の外
周縁部と熱遮蔽部の開口部側壁との間の環状間隙の大き
さを小さくするようにしたことを特徴とする化合物半導
体の製造装置。
3. A crucible assembly (18) comprising a crucible (14) and a crucible susceptor (16) for holding the crucible in a pressure vessel (12), and a heater arranged around the crucible assembly. (20), and a compound semiconductor manufacturing apparatus for pulling a single crystal grown from a compound semiconductor melt in a crucible in succession to a seed crystal under a pressurized inert gas filled in a pressure vessel In order to shield the upper area of the pressure vessel from the heater,
A heat shield plate (32) extending above the heater in the transverse direction of the pressure vessel and having an opening (34) having a diameter slightly larger than the outer diameter of the crucible assembly, and a heat shield plate (32) facing downward from the opening edge of the heat shield plate. Side wall (3) that extends so that the opening diameter increases.
6) and a heat shield part (30) which is further freely lowered so that its opening side wall is arranged substantially concentrically with respect to the crucible combination, and when the single crystal is pulled up, By lowering the heat shield part and inserting the crucible combination into the opening of the side wall of the opening of the heat shield part, the outer peripheral edge part of the crucible combination part and the opening of the heat shield part are increased according to the increase in the pulling length of the crystal. An apparatus for manufacturing a compound semiconductor, characterized in that the size of an annular gap between the side wall and the side wall is reduced.
JP34143393A 1993-12-10 1993-12-10 Production of compound semiconductor and production unit therefor Pending JPH07165489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34143393A JPH07165489A (en) 1993-12-10 1993-12-10 Production of compound semiconductor and production unit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34143393A JPH07165489A (en) 1993-12-10 1993-12-10 Production of compound semiconductor and production unit therefor

Publications (1)

Publication Number Publication Date
JPH07165489A true JPH07165489A (en) 1995-06-27

Family

ID=18346046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34143393A Pending JPH07165489A (en) 1993-12-10 1993-12-10 Production of compound semiconductor and production unit therefor

Country Status (1)

Country Link
JP (1) JPH07165489A (en)

Similar Documents

Publication Publication Date Title
KR100415860B1 (en) Single Crystal Manufacturing Equipment and Manufacturing Method
KR920009565B1 (en) Apparatus for manufacturing silicon single crystals
KR100966182B1 (en) Method and apparatus for growing semiconductor crystals with a rigid support with carbon doping and resistivity control and thermal gradient control
KR20010102396A (en) Heat shield assembly for crystal puller
JPS6046998A (en) Pulling up of single crystal and its device
US4322263A (en) Method for horizontal ribbon crystal growth
JP4844127B2 (en) Single crystal manufacturing apparatus and manufacturing method
US4750969A (en) Method for growing single crystals of dissociative compound semiconductor
JPH07165489A (en) Production of compound semiconductor and production unit therefor
JP2690419B2 (en) Single crystal growing method and apparatus
JP2004262723A (en) Single crystal pulling unit and single crystal pulling method
US11873575B2 (en) Ingot puller apparatus having heat shields with voids therein
JP2855408B2 (en) Single crystal growth equipment
JP2814796B2 (en) Method and apparatus for producing single crystal
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JPH0952790A (en) Single crystal growth apparatus and single crystal growth process
JPH06340493A (en) Apparatus for growing single crystal and growing method
JPH0380180A (en) Device for producing single crystal
JP2005075670A (en) Manufacturing method for compound semiconductor single crystal
JPH09268097A (en) Apparatus for producing single crystal
JP2005097032A (en) Apparatus for growing semiconductor single crystal and heater for the same
JPH0559873B2 (en)
JPS63285183A (en) Production of compound semiconductor single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH061692A (en) Device for producing compound semiconductor single crystal