JPH07157827A - Production of non-burning agglomerate - Google Patents

Production of non-burning agglomerate

Info

Publication number
JPH07157827A
JPH07157827A JP30662393A JP30662393A JPH07157827A JP H07157827 A JPH07157827 A JP H07157827A JP 30662393 A JP30662393 A JP 30662393A JP 30662393 A JP30662393 A JP 30662393A JP H07157827 A JPH07157827 A JP H07157827A
Authority
JP
Japan
Prior art keywords
ore
blast furnace
dust
binder
molasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30662393A
Other languages
Japanese (ja)
Inventor
Hidetoshi Noda
英俊 野田
Masanori Nagano
誠規 長野
Sumiyuki Kishimoto
純幸 岸本
Kazumasa Wakimoto
一政 脇元
Atsushi Sakai
敦 酒井
Kenichi Nemoto
謙一 根本
Tomoo Kamoshita
友男 鴨志田
Minoru Ueda
稔 上田
Kiyoshi Omizo
潔 大溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEIHAN KK
JFE Engineering Corp
Original Assignee
KEIHAN KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEIHAN KK, NKK Corp, Nippon Kokan Ltd filed Critical KEIHAN KK
Priority to JP30662393A priority Critical patent/JPH07157827A/en
Publication of JPH07157827A publication Critical patent/JPH07157827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce non-burning agglomerate being simply useable to a blast furnace in a short period by forming fine grain-state raw material for blast furnace into lump- state while using molasses as the binder. CONSTITUTION:Raw material dust 30 having <=0.5mm of fine powder-state of iron ore, lime, etc., recovered with a dust collector and minus sieve sintered ore having <=4mm produced in a fine returned ore and the carrying process of the sintered ore for blast furnace are charged into blending vessels 31-33. Each suitable quantity is discharged with a fixed quantity discharging device 26 and the suitable water is added in a first mixer 34 and a second mixer 35 through a belt conveyor 12 and kneaded. The mixed material is supplied into blending vessels 36 and segmented together with the fine grain 43 in the product produced through a vibrating sieve 42 in the last process on a belt conveyor 26 with a fixed quantity segmenting device 24 at a prescribed ratio. The molasses as the binder from a binder adding device 38 is added with a mixer 37 so as to contain at 1-6%, and after sufficiently kneading by a kneader 39, this kneaded material is agglomerated by a forming machine 40 providing two rolls. The lumpy raw material for blast furnace having excellent collapse strength is obtd. through the vibrating sieve 42 and the fine grain of the minus sieve is also reused as the fine returned ore.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉または直接還元炉
等の冶金反応炉用原料用として、好適な非焼成塊成鉱の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-calcined agglomerated ore suitable as a raw material for a metallurgical reaction furnace such as a blast furnace or a direct reduction furnace.

【0002】[0002]

【従来の技術】例えば図8に示すように、焼結鉱を製造
する場合は、配合槽1において大略粒径8mm以下の粉
鉄鉱石に生石灰、石灰石等の媒溶剤を成品中の塩基度
(CaO/SiO2 )の値が1.0〜2.5程度となる
ように調整し、さらに燃料用粉コークスを添加する。次
いで、ドラム式のミキサー2及び3において所要量の水
分をこれに添加、混合し、造粒された後に、サージホッ
パー6に投入される。次いで、造粒された焼結原料はロ
ールフィーダー7によって切り出されて、直前に既に床
敷ホッパー9より切り出されている床敷鉱と共に焼結機
4のパレット上に給鉱され、点火され、焼結が行われな
がら排鉱部の方向へ移動して行く。焼結後は、粗破砕、
冷却、篩分け工程を経て、概ね4〜50mmの粒径を成
品とし、これを高炉に投入する一方、4mm以下の粒径
は返鉱となって焼結工程で再焼成される。また、高炉搬
送過程等で発生する4mm以下の粉を途中に設けられた
篩にて除去したものは通常、焼結篩下粉(庫下粉)とし
てヤードに戻され焼結原料の一部として返鉱と同様に再
焼成される。この返鉱及び篩下粉は、焼結工程にて既に
焼結したものであり、これらを再循環することは焼成コ
ストおよび輸送コストの面から極めて不合理である。
2. Description of the Related Art For example, as shown in FIG. 8, when a sintered ore is manufactured, a powdery iron ore having a particle size of approximately 8 mm or less is mixed with a solvent such as quick lime or limestone in a mixing tank 1 to obtain a basicity ( The value of CaO / SiO 2 ) is adjusted to be about 1.0 to 2.5, and powder coke for fuel is further added. Then, a required amount of water is added to and mixed with the drum type mixers 2 and 3 and then granulated, and then charged into the surge hopper 6. Next, the granulated sintering raw material is cut out by the roll feeder 7 and fed to the pallet of the sintering machine 4 together with the bedding ore already cut out immediately before from the bedding hopper 9, ignited, and fired. It moves in the direction of the mining department while the connection is being made. After sintering, coarse crushing,
After a cooling and sieving process, a product having a particle size of approximately 4 to 50 mm is made into a product, and this product is put into a blast furnace, while a particle size of 4 mm or less is returned ore and refired in a sintering process. In addition, the powder of 4 mm or less generated in the process of conveying the blast furnace, etc. removed by a sieve provided on the way is usually returned to the yard as a powder under the sieve (undergarden powder) and is used as a part of the sintering raw material. It is re-fired in the same manner as return ore. The returned ore and undersize powder have been already sintered in the sintering process, and recirculating them is extremely unreasonable in terms of firing cost and transportation cost.

【0003】そこで、これらを団塊化し、高炉等に装入
可能な成品を製造する製造方法が提供されている。例え
ば、特開昭58−123839号公報には、20〜25
重量%の水を添加、混練したボール状のポルトランドセ
メントを核とし、これに返鉱を付着結合させて団鉱化
し、養生後、団鉱成品として使用する焼結返鉱の団鉱法
が開示されている。
Therefore, there is provided a manufacturing method for producing a product which can be put into a nodule and charged into a blast furnace or the like. For example, JP-A-58-123839 discloses 20-25.
Disclosed is a sinter return ore lumping method in which ball-like Portland cement, to which wt% water has been added and kneaded, is used as a core, and return slag is adhered and bonded to this to be slag. Has been done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来方法においては、セメントが硬化して強度発現する
までに長時間を要するため、少なくとも48時間以上の
養生期間が必要になる。さらに、成品養生を行うために
バンカーあるいはヤードスペースを確保する必要性もあ
る。
However, in the above-mentioned conventional method, since it takes a long time for the cement to harden and develop its strength, a curing period of at least 48 hours or more is required. In addition, it is necessary to secure a bunker or a yard space for product curing.

【0005】このような欠点を補うために特公昭58−
53054号公報及び特公昭59−33648号公報で
は連続急速養生方法が提案されているが、このような養
生方法は養生塔や蒸気ガス吹込装置等の多くの付帯設備
を設置する必要があり、広面積の敷地を要し、設備コス
トが高い。
In order to compensate for such drawbacks, Japanese Patent Publication No. 58-
Although a continuous rapid curing method is proposed in Japanese Patent Publication No. 53054 and Japanese Patent Publication No. 59-33648, such a curing method requires many auxiliary equipment such as a curing tower and a steam gas blowing device to be installed. The area is large and the equipment cost is high.

【0006】本発明は、上記問題点を解決するためにな
されたものであって、焼結返鉱または焼結篩下粉(高炉
成品篩下粉、庫下品)の1種あるいは2種と、これより
相対的に粒度の細かいダストの混合粉と、を少ない付帯
設備を用いて再循環させることなく効率よく塊成化する
ことができる非焼成塊成鉱の製造方法を提供することを
目的とする。
The present invention has been made in order to solve the above-mentioned problems, and is one or two kinds of sinter reclaimed or sintered sieving powder (blast furnace product sieving powder, warehousing product), An object of the present invention is to provide a method for producing a non-calcined agglomerated ore that can be efficiently agglomerated without recirculating a mixed powder of dust having a relatively smaller particle size than this, and using a small amount of auxiliary equipment. To do.

【0007】[0007]

【課題を解決するための手段】本発明に係る非焼成塊成
鉱の製造方法は、焼結返鉱または焼結篩下粉(高炉成品
篩下粉、庫下品)の1種あるいは2種と、これより相対
的に粒度の細かいダストの混合粉に、速乾性があり、搬
送、ハンドリング等に必要な強度発現可能なバインダー
として糖蜜あるいはこの希釈液を添加して混練し、造粒
機もしくは成型機にて塊成化する。
The method for producing a non-sintered agglomerated ore according to the present invention comprises one or two types of sinter reclaimed or sintered sieving powder (blast furnace product sieving powder, warehousing product). Mixing powder of dust with a relatively finer particle size than this, kneading by adding molasses or its diluent as a binder capable of developing strength required for transportation, handling, etc., by kneading, granulating or molding Agglomerate with a machine.

【0008】[0008]

【作用】図2に示すように、焼結返鉱51および焼結篩
下粉52からなる混合物に細粒ダスト53を混合する
と、粗い返鉱51および篩下粉52の粒子間に細粒ダス
ト53が充填され、全体としての成型性や結合性が向上
し、塊成鉱の強度が増大する。
As shown in FIG. 2, when the fine particle dust 53 is mixed with the mixture of the sintered return ore 51 and the sintered undersize powder 52, the fine dust 53 is formed between the particles of the coarse returned ore 51 and the undersize powder 52. 53 is filled, the overall formability and bondability are improved, and the strength of the agglomerated ore is increased.

【0009】図3は、横軸に温度をとり、縦軸に粘度を
とって、各種バインダー材料における両者の関係を示す
特性図である。図中、曲線Aは糖蜜を、曲線Bはデキス
トリン1を、曲線Cはアルコール廃液1を、曲線Dはア
ルコール廃液2を、曲線Eはデキストリン2を、それぞ
れ示す。図から明らかなように、バインダーに用いる糖
蜜はそれ自身の粘度が高く、結合作用をもたらすが、圧
縮成型過程あるいは成型後に水分が蒸発することによ
り、短時間で固化し強固な結合状態を示す。なお、液送
可能限界は粘度1×103 のところにあり、これを上回
る粘度の液は実質的に輸送管を通過できない。
FIG. 3 is a characteristic diagram showing the relationship between various binder materials, with the horizontal axis representing temperature and the vertical axis representing viscosity. In the figure, curve A shows molasses, curve B shows dextrin 1, curve C shows alcohol waste solution 1, curve D shows alcohol waste solution 2, and curve E shows dextrin 2. As is clear from the figure, molasses used as a binder has a high viscosity itself and brings about a binding action, but it solidifies in a short time due to evaporation of water after the compression molding process or after molding, and shows a strong bonded state. The liquid transferable limit is at a viscosity of 1 × 10 3 , and a liquid having a viscosity exceeding this cannot substantially pass through the transport pipe.

【0010】[0010]

【実施例】以下、添付の図面を参照しながら本発明の実
施例について説明する。図1は本発明の実施例に係る非
焼成塊成鉱の製造方法を示すプロセスフロー図である。
この実施例では成型機によるブリケットの製造工程につ
いて説明するが、成型機の代わりとして造粒機を用いて
も同様の効果が得られることは勿論である(成品はペレ
ットとなる)。焼結返鉱、焼結篩下粉およびダストは配
合槽31〜33にそれぞれ貯鉱され、各定量切出装置2
0によって所定の配合割合となるようにコンベア12上
に切出される。なお、ダストは集塵機などで集められた
細粒のものを用いるが、これは小ホッパ30からコンベ
ア11に移載され、コンベア11により第1配合槽31
に輸送されるようになっている。これらの原料はコンベ
ア12,13により第1ミキサー34および第2ミキサ
ー35に輸送され、混ぜ合される。この混練工程におい
て必要があれば調湿(水分添加)してもよい。さらに、
原料はコンベア14,15を経て受入配合槽36に輸送
される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a process flow diagram showing a method for producing a non-fired agglomerated ore according to an embodiment of the present invention.
In this embodiment, the briquette manufacturing process using a molding machine will be described, but it goes without saying that the same effect can be obtained by using a granulating machine instead of the molding machine (the product becomes pellets). Sintered ore, sintered undersize powder and dust are stored in the mixing tanks 31 to 33, respectively, and each fixed quantity cutting device 2
0 is cut out on the conveyor 12 so as to have a predetermined mixing ratio. It should be noted that the fine particles collected by a dust collector or the like are used as the dust, which is transferred from the small hopper 30 to the conveyor 11 and is conveyed by the conveyor 11 to the first mixing tank 31.
To be shipped to. These raw materials are transported to the first mixer 34 and the second mixer 35 by the conveyors 12 and 13 and mixed. If necessary in this kneading step, humidity control (addition of water) may be performed. further,
The raw materials are transported to the receiving compounding tank 36 via the conveyors 14 and 15.

【0011】発生粉貯鉱槽43にはグリズリまたは振盪
篩42で篩われた成品発生粉が貯えられており、これら
を定量切出装置24によって切出し、所定の配合比率で
原料に配合する。そして、これにバインダー添加設備3
8より送られてきた糖蜜を混合機37(通常はハグミ
ル)において混合し、必要に応じて調湿を行い混練す
る。ここでバインダー(糖蜜)の添加量はコスト的な観
点からも、極力少なくすることが望ましい。本実施例で
は糖蜜添加量を1〜6重量%としている。糖蜜添加量の
下限値を1重量%としたのは、1重量%未満では成型性
や成型後の強度が悪化するためである。一方、糖蜜添加
量の上限値を6重量%としたのは、6重量%を超えると
バインダーの固化に時間がかかり、成型直後の圧潰強度
が低下するためである。
In the generated powder storage tank 43, the product generated powder that has been sieved by the grizzly or shaking sieve 42 is stored, and these are cut out by the quantitative cutting device 24 and mixed into the raw material at a predetermined mixing ratio. And the binder addition equipment 3 to this
The molasses sent from No. 8 is mixed in a mixer 37 (usually a hagmill), and if necessary, the humidity is adjusted and kneaded. From the viewpoint of cost, it is desirable that the amount of the binder (molasses) added be as small as possible. In this embodiment, the molasses addition amount is set to 1 to 6% by weight. The lower limit of the amount of molasses added is set to 1% by weight because if it is less than 1% by weight, moldability and strength after molding deteriorate. On the other hand, the upper limit of the molasses addition amount is set to 6% by weight, because if it exceeds 6% by weight, it takes time for the binder to solidify, and the crush strength immediately after molding is lowered.

【0012】次いで、ニーダー39より成型機40に供
給された混合原料は塊成化され、グリズリまたは振盪篩
42を経て搬出される。この場合に、ロール成型圧力は
1.0〜1.5トン/cm程度の範囲とすることが望ま
しい。このようにして下記(イ)及び(ロ)に記載の成
品をそれぞれ得ることができた。 (イ)実施例1〜5のブリケット成品は粒径25mm〜
45mmの篩分け成品となる。 (ロ)成型した後の製品塊成物の大きさが50mmφ〜
1mmφのものは高炉用原料となる。
Next, the mixed raw material supplied from the kneader 39 to the molding machine 40 is agglomerated and discharged through the grizzly or shaking sieve 42. In this case, it is desirable that the roll forming pressure be in the range of about 1.0 to 1.5 ton / cm. In this way, the products described in (a) and (b) below could be obtained. (A) The briquette products of Examples 1 to 5 have a particle size of 25 mm
It becomes a 45 mm sieving product. (B) The size of the product agglomerate after molding is 50 mmφ ~
Those with a diameter of 1 mm are raw materials for the blast furnace.

【0013】表1に本発明の実施例に用いた焼結返鉱の
粒度分布を示す。表2には実施例に用いた焼結返鉱の化
学成分を示す。表3には実施例に用いた焼結篩下粉の粒
度分布を示す。表4には実施例に用いた焼結篩下粉の化
学成分を示す。表5には実施例に用いたダストの粒度分
布を示す。表6には実施例に用いたダストの化学成分を
示す。なお、それぞれの組成の成分表示は重量%であ
る。
Table 1 shows the particle size distribution of the sintered reclaimed ore used in the examples of the present invention. Table 2 shows the chemical composition of the sintered slag ore used in the examples. Table 3 shows the particle size distribution of the sintered undersize powder used in the examples. Table 4 shows the chemical components of the sintered undersize powder used in the examples. Table 5 shows the particle size distribution of the dust used in the examples. Table 6 shows the chemical components of the dust used in the examples. In addition, the component indication of each composition is% by weight.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【表5】 [Table 5]

【0019】[0019]

【表6】 [Table 6]

【0020】表7にバインダーとして用いる糖蜜の主要
成分(重量%)を示す。表8に実施例1〜5の原料配合
条件をそれぞれ示す。なお、表8においてバインダーお
よび水の添加量は焼結返鉱、焼結篩下粉、ダストの粉体
原料総重量(100%)に対する外掛割合を示す。
Table 7 shows the main components (% by weight) of molasses used as a binder. Table 8 shows the raw material mixing conditions of Examples 1 to 5, respectively. In addition, in Table 8, the addition amounts of the binder and water are the ratios of the sinter reclaimed powder, the sinter undersize powder, and the dust to the total weight (100%) of the powder raw material.

【0021】[0021]

【表7】 [Table 7]

【0022】[0022]

【表8】 [Table 8]

【0023】上記の表1〜7に示す原料およびバインダ
ーを用いて、表8に示す配合で調合された混合原料を使
用した場合に、成型されたブリケット45〜25mmφ
につき圧潰強度およびドラム強度(DI強度)をそれぞ
れ調べた。その結果を図4〜7にそれぞれ示す。
Using the raw materials and binders shown in Tables 1 to 7 above and using mixed raw materials prepared in the formulations shown in Table 8, molded briquettes 45 to 25 mmφ
The crush strength and the drum strength (DI strength) were examined. The results are shown in FIGS.

【0024】図4および図5は、横軸に成型後の経過時
間(分)をとり、縦軸にブリケットの圧潰強度(kg/
ρ)をとって、それぞれ実施例1〜3と実施例4〜5と
につき硬化速度について調べた結果を示すグラフ図であ
る。図中、曲線Fは実施例1の結果を、曲線Gは実施例
2の結果を、曲線Hは実施例3の結果を、曲線Jは実施
例4の結果を、曲線Kは実施例5の結果をそれぞれ示
す。
In FIGS. 4 and 5, the horizontal axis represents the elapsed time (minutes) after molding, and the vertical axis represents the crushing strength (kg / kg) of the briquette.
6 is a graph showing the results of examining the curing rate for Examples 1 to 3 and Examples 4 to 5, respectively. In the figure, curve F shows the result of Example 1, curve G shows the result of Example 2, curve H shows the result of Example 3, curve J shows the result of Example 4, and curve K shows the result of Example 5. The results are shown below.

【0025】図6および図7は、横軸に成型後の経過時
間(分)をとり、縦軸に成品DI強度(+15mm%)を
とって、それぞれ実施例1〜3と実施例4〜5とにつき
ドラム強度の変化について調べた結果を示すグラフ図で
ある。図中、曲線Lは実施例1の結果を、曲線Mは実施
例2の結果を、曲線Nは実施例3の結果を、曲線Pは実
施例4の結果を、曲線Qは実施例5の結果をそれぞれ示
す。
6 and 7, the horizontal axis represents the elapsed time (minutes) after molding, and the vertical axis represents the product DI strength (+15 mm%). Examples 1 to 3 and Examples 4 to 5, respectively. FIG. 6 is a graph showing the results of examining changes in drum strength with respect to FIG. In the figure, the curve L shows the results of Example 1, the curve M shows the results of Example 2, the curve N shows the results of Example 3, the curve P shows the results of Example 4, and the curve Q shows the results of Example 5. The results are shown below.

【0026】これらの結果より明らかなように、成型後
20分経過で既に搬送に必要な30kg以上の圧潰強度
が得られるとともに、80%のDI強度が得られた。ま
た、成型後1時間経過ではDI強度は上限値に達してし
まい実質的にそれ以上に増加しない。このように本実施
例では、長期の養生時間および急速養生に必要な付帯設
備の設置を必要とすることなく、強固な塊成鉱を得るこ
とが可能である。
As is clear from these results, the crush strength of 30 kg or more, which is already required for transport, was obtained 20 minutes after the molding and the DI strength of 80% was obtained. In addition, the DI strength reaches the upper limit value one hour after the molding, and does not substantially increase further. As described above, in this embodiment, it is possible to obtain a strong agglomerated ore without requiring long-term curing time and installation of auxiliary equipment required for rapid curing.

【0027】[0027]

【発明の効果】本発明方法によれば従来法に比較して、
養生時間が短縮され、養生スペースも省スペース化さ
れ、養生時間短縮に必要な多くの付帯設備を用いること
なく、焼結返鉱、焼結篩下粉、ダスト等を塊成化するこ
とができる。
According to the method of the present invention, compared with the conventional method,
The curing time is shortened, the curing space is also saved, and it is possible to agglomerate sinter return ore, sintered sieving powder, dust, etc. without using many auxiliary equipment required for shortening the curing time. .

【0028】また、焼結返鉱、焼結篩下粉、ダストとい
った本来循環再処理、再焼成を行っていた原料を塊成化
し、これを高炉等の原料として使用することができるた
め、焼結コスト及び各種原単位の低減、焼結設備費、保
全コストの削減を達成することができる。さらに、資源
の有効活用、環境保全への貢献といった波及効果をもた
らすことができる。
[0028] Further, since the raw material which was originally subjected to the cyclic reprocessing and re-firing such as the sintered reclaimed mineral powder, the sintered undersize powder, and the dust can be agglomerated and used as a raw material for the blast furnace, etc. It is possible to reduce the binding cost and various basic units, the sintering equipment cost, and the maintenance cost. In addition, ripple effects such as effective use of resources and contribution to environmental conservation can be brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る非焼成塊成鉱の製造方法
を示すプロセスフロー図。
FIG. 1 is a process flow diagram showing a method for producing a non-fired agglomerated ore according to an embodiment of the present invention.

【図2】本発明方法により製造された塊成物の構造概念
図。
FIG. 2 is a structural conceptual diagram of an agglomerate produced by the method of the present invention.

【図3】各種バインダー材料における粘度と温度との関
係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between viscosity and temperature of various binder materials.

【図4】本発明方法の各実施例における成品の圧潰強度
を示すグラフ図。
FIG. 4 is a graph showing the crush strength of a product in each example of the method of the present invention.

【図5】本発明方法の各実施例における成品の圧潰強度
を示すグラフ図。
FIG. 5 is a graph showing the crush strength of a product in each example of the method of the present invention.

【図6】本発明方法の各実施例における成品のドラム強
度(Dl)を示すグラフ図。
FIG. 6 is a graph showing the drum strength (Dl) of the product in each example of the method of the present invention.

【図7】本発明方法の各実施例における成品のドラム強
度(Dl)を示すグラフ図。
FIG. 7 is a graph showing the drum strength (Dl) of the product in each example of the method of the present invention.

【図8】従来の焼結鉱の製造工程を説明するためのプロ
セスフロー図である。
FIG. 8 is a process flow diagram for explaining a conventional sinter production process.

【符号の説明】[Explanation of symbols]

31,32,33,36,43…配合槽、34,35…
ミキサー、37…混合機、38…バインダ添加設備、4
0…成型機、41…成品槽、42…振盪篩
31, 32, 33, 36, 43 ... Blending tank, 34, 35 ...
Mixer, 37 ... Mixer, 38 ... Binder addition equipment, 4
0 ... Molding machine, 41 ... Product tank, 42 ... Shaking sieve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長野 誠規 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 岸本 純幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 脇元 一政 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 酒井 敦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 根本 謙一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 鴨志田 友男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 上田 稔 京都府京都市中京区新町通四条上ル小結棚 町429番地 株式会社ケイハン内 (72)発明者 大溝 潔 京都府京都市中京区新町通四条上ル小結棚 町429番地 株式会社ケイハン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masanori Nagano 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) 1-2-1 Marunouchi, Chiyoda-ku, Tokyo No. Nippon Steel Pipe Co., Ltd. (72) Inventor Kazumasa Wakimoto 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Atsushi Sakai 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Kenichi Nemoto 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Tomio Kamoshida 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside the Steel Pipe Co., Ltd. (72) Minor Ueda Minoru Ueda 429, Shinjo-dori Shijo-Kamikanatancho, Shinmachi-dori, Nakagyo-ku, Kyoto Prefecture Keihan Co., Ltd. (72) Inventor Kiyoshi Omizo Cabinet Office Kyoto Nakagyo-ku Shinmachidori Shijo Agaru Komusubidana-cho, 429 address, Inc. in the Keihan

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼結返鉱または焼結篩下粉(高炉成品篩
下粉、庫下品)の1種あるいは2種と、これより相対的
に粒度の細かいダストの混合粉に、1〜6重量%の糖蜜
あるいは前記量の糖蜜を含有した希釈液をバインダーと
して添加して混練し、造粒機もしくは成型機にて1mm
以上に塊成化することを特徴とする非焼成塊成鉱の製造
方法。
1. A mixed powder of 1 or 2 kinds of sinter reclaimed or sintered sieving powder (blast furnace product sieving powder, warehousing product) and dust having a finer particle size than 1 to 6 Add 1% by weight of molasses or diluent containing the above amount of molasses as a binder and knead.
A method for producing a non-calcined agglomerated ore, which comprises agglomeration as described above.
【請求項2】 ダストは製鉄所内の環境用集塵装置によ
り回収される0.5mm以下の粒径の鉄成分含有集塵ダ
ストであることを特徴とする請求項1記載の非焼成塊成
鉱の製造方法。
2. The non-calcined agglomerated ore according to claim 1, wherein the dust is dust containing dust containing iron components having a particle size of 0.5 mm or less, which is collected by an environmental dust collector in an iron mill. Manufacturing method.
JP30662393A 1993-12-07 1993-12-07 Production of non-burning agglomerate Pending JPH07157827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30662393A JPH07157827A (en) 1993-12-07 1993-12-07 Production of non-burning agglomerate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30662393A JPH07157827A (en) 1993-12-07 1993-12-07 Production of non-burning agglomerate

Publications (1)

Publication Number Publication Date
JPH07157827A true JPH07157827A (en) 1995-06-20

Family

ID=17959324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30662393A Pending JPH07157827A (en) 1993-12-07 1993-12-07 Production of non-burning agglomerate

Country Status (1)

Country Link
JP (1) JPH07157827A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073804A (en) * 2001-03-16 2002-09-28 허진 Recycling method of dust from steel refining furnace
KR100431838B1 (en) * 1999-06-25 2004-05-20 주식회사 포스코 A Method for Preparing Cold Bonded Pellet
KR100431840B1 (en) * 1999-08-19 2004-05-20 주식회사 포스코 A method for producing a cold bonded pellet
JP2007177214A (en) * 2005-11-30 2007-07-12 Jfe Steel Kk Method for producing ferrocoke
KR100843841B1 (en) * 2001-12-24 2008-07-03 주식회사 포스코 Briquette having superior strength and formability
JP2009007667A (en) * 2007-05-28 2009-01-15 Kobe Steel Ltd Method for production of carbon composite metal oxide briquette
KR101018251B1 (en) * 2003-12-23 2011-03-03 재단법인 포항산업과학연구원 Briquette for steelmaking material using byproducts of steelmaking and method for manufacturing the same
US8206487B2 (en) 2007-07-27 2012-06-26 Kobe Steel, Ltd. Method for producing carbon composite metal oxide briquettes
JP2020063491A (en) * 2018-10-18 2020-04-23 日鉄日新製鋼株式会社 Method for manufacturing agglomerate for steel making
CN111910073A (en) * 2020-08-21 2020-11-10 中南大学 Method for producing low-dust particle emission granules based on high-proportion micro-fine particle materials

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431838B1 (en) * 1999-06-25 2004-05-20 주식회사 포스코 A Method for Preparing Cold Bonded Pellet
KR100431840B1 (en) * 1999-08-19 2004-05-20 주식회사 포스코 A method for producing a cold bonded pellet
KR20020073804A (en) * 2001-03-16 2002-09-28 허진 Recycling method of dust from steel refining furnace
KR100843841B1 (en) * 2001-12-24 2008-07-03 주식회사 포스코 Briquette having superior strength and formability
KR101018251B1 (en) * 2003-12-23 2011-03-03 재단법인 포항산업과학연구원 Briquette for steelmaking material using byproducts of steelmaking and method for manufacturing the same
JP2007177214A (en) * 2005-11-30 2007-07-12 Jfe Steel Kk Method for producing ferrocoke
JP2009007667A (en) * 2007-05-28 2009-01-15 Kobe Steel Ltd Method for production of carbon composite metal oxide briquette
US8206487B2 (en) 2007-07-27 2012-06-26 Kobe Steel, Ltd. Method for producing carbon composite metal oxide briquettes
JP2020063491A (en) * 2018-10-18 2020-04-23 日鉄日新製鋼株式会社 Method for manufacturing agglomerate for steel making
CN111910073A (en) * 2020-08-21 2020-11-10 中南大学 Method for producing low-dust particle emission granules based on high-proportion micro-fine particle materials
CN111910073B (en) * 2020-08-21 2021-07-27 中南大学 Method for producing low-dust particle emission granules based on high-proportion micro-fine particle materials

Similar Documents

Publication Publication Date Title
US5100464A (en) Steel mill by-product material briquettes and pellets
JPH07157827A (en) Production of non-burning agglomerate
JP4927702B2 (en) Process for producing mixed raw materials for sintering
CN111254277A (en) Method for recycling ore blending of pellet waste desulfurization ash through back sintering
JP5081426B2 (en) Method and apparatus for producing granular solid using coal ash as raw material
JPH07224330A (en) Production of non-burning agglomerate
JPH0971824A (en) Production of non-calcined agglomerate
JPH07224329A (en) Production of non-burning agglomerate
JPH01162729A (en) Manufacture of briquette for sintering
JPH07278687A (en) Production of cold bonded briquette
JPH0860262A (en) Production of cold bonded briquette
KR100415005B1 (en) A super-fine cement chain impregnate composition and manufacturing system and method of this
CN111961868A (en) Digestion preparation method of converter waste sludge
JPH07310128A (en) Production of cold bonded briquette
JPH1199372A (en) Molten fly ash solidifying/stabilizing treatment and device therefor
JP2000273553A (en) Method for granulating sintering raw material
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
EP2243844B1 (en) Improved method for recycling steel-plant dust
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JPH01156430A (en) Manufacture of briquetted ore
US20120180598A1 (en) Process using fly ash to create chunks of raw material for iron or steel mill activities.
JPS629653B2 (en)
JPH10176228A (en) Use method for anthracite coal as fuel for sintering