JPH07157537A - Epoxy resin composition for sealing semiconductor - Google Patents

Epoxy resin composition for sealing semiconductor

Info

Publication number
JPH07157537A
JPH07157537A JP5308395A JP30839593A JPH07157537A JP H07157537 A JPH07157537 A JP H07157537A JP 5308395 A JP5308395 A JP 5308395A JP 30839593 A JP30839593 A JP 30839593A JP H07157537 A JPH07157537 A JP H07157537A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
inorganic filler
content
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5308395A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
丈士 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP5308395A priority Critical patent/JPH07157537A/en
Publication of JPH07157537A publication Critical patent/JPH07157537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain an epoxy resin composition extremely reduced in the content of a volatile substance generated in a molding process targeting the sealing of semiconductors, substantially not generating pin holes and voids in the molded product package, improved in the wettability of its interface between a lead frame and a semiconductor chip, increased in the adhesivity of the interface, and improved in package crack resistance and moisture-resistant reliability on dipping in a solder, because the content of an alcohol is reduced to a remarkably low level. CONSTITUTION:This epoxy resin composition comprises an epoxy resin, a phenolic resin-curing agent, a curing-accelerating agent, and an inorganic filled having a coupling layer produced by coating the surface of the inorganic filler with a silane coupling agent and subsequently thermally treating the coated inorganic filler under an atmosphere of 100-300 deg.C, wherein the content of an alcohol component left in the whole epoxy resin composition is <=500ppm by a weight ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形性、半田耐熱性、耐
湿信頼性に優れた半導体封止用エポキシ樹脂組成物に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in moldability, solder heat resistance and moisture resistance reliability.

【0002】[0002]

【従来の技術】IC、LSI等の半導体素子の封止方法
としてエポキシ樹脂のトランスファー成形による方法が
低コスト、大量生産に適した方法として採用され、信頼
性の面でもエポキシ樹脂や硬化剤であるフェノール樹脂
の改良により向上が図られてきた。しかし、近年の電子
機器の小型化、軽量化、高性能化の市場動向において、
半導体の高集積化も年々進み、また半導体パッケージの
表面実装化が促進されるなかで、半導体封止材料への要
求は益々厳しいものとなってきている。このため、従来
の封止材料では解決できない問題点もでてきている。第
1の問題点としては、パッケージの薄型化に伴い、パッ
ケージ中に占める半導体封止材料の厚みが一段と薄くな
ってきたことであり、例えば1mm厚のTSOPの場合
など、チップの上面及びアイランド下面に形成される封
止材料の厚みは0.2〜0.3mm程度となる。このた
めに、半導体封止材料中にピンホールやボイド(空洞)
が存在すると電気絶縁性が著しく低下してしまう耐湿信
頼性の問題がある。
2. Description of the Related Art As a sealing method for semiconductor elements such as IC and LSI, a transfer molding method of epoxy resin is adopted as a method suitable for low cost and mass production, and epoxy resin and curing agent are also used in terms of reliability. Improvements have been made by improving phenolic resins. However, in recent market trends of miniaturization, weight reduction, and high performance of electronic devices,
The demand for semiconductor encapsulation materials is becoming more and more stringent as the integration of semiconductors is increasing year by year and the surface mounting of semiconductor packages is being promoted. Therefore, there are problems that cannot be solved by the conventional sealing material. The first problem is that as the package becomes thinner, the thickness of the semiconductor encapsulating material in the package has become much thinner. For example, in the case of 1 mm thick TSOP, the top surface of the chip and the bottom surface of the island are reduced. The thickness of the sealing material formed in the above is about 0.2 to 0.3 mm. Because of this, pinholes and voids in the semiconductor encapsulation material
If present, there is a problem of moisture resistance reliability in which the electrical insulation property is significantly reduced.

【0003】従来より、 ピンホールやボイドに関して
は、タブレット変形や流動樹脂の乱流による成形時のエ
アーの巻き込み、あるいはタブレット中に含まれる水分
が原因として考えられてきた(特開昭63−23791
0号公報、特開昭64−61028号公報、特開平1−
129424号公報等)。しかし、エアーの巻き込み防
止やタブレット吸湿の防止等の従来の手法では、確かに
ピンホールやボイドを低減できる効果はあるが、皆無に
はできず、特に薄型パッケージで問題となる0.2mm
以下のピンホール、ボイドを発生させないための更なる
改良が望まれている。第2の問題点として、半導体パッ
ケージの表面実装の採用によりパッケージが半田浸漬、
ベーパーフェースソルダリング、あるいはリフロー工程
で急激に200℃以上の高温にさらされ、このためにパ
ッケージが割れたり、チップ封止樹脂との界面剥離が生
じて耐湿性が低下したりするという半田耐熱性がある。
この半田耐熱性の向上に関しては耐熱エポキシの使用、
半田浸漬時の応力低減やリードフレーム、チップとの接
着性向上のための可撓性樹脂の使用、接着性付与成分の
添加、熱膨張係数を小さくするための無機質充填材の配
合量の増量、あるいはシリカへのシランカップリング剤
の処理条件の改良等数多くの提案がなされてきている。
しかし、パッケージクラックやチップと封止樹脂との界
面剥離はいずれも封止樹脂とリードフレーム、または封
止樹脂とチップとの接着力の低いことが原因であり、し
かもこの接着力の低さは成形時の封止樹脂のチップ、リ
ードフレーム界面への濡れ性の低下も要因の一つと考え
られる。根本的に濡れ性の低下を改良しなければ、上記
諸提案の効果が十分に得ることができない。
Conventionally, pinholes and voids have been considered to be caused by tablet deformation, air entrainment during molding due to turbulent flow of flowing resin, or water contained in tablets (Japanese Patent Laid-Open No. 63-23791).
No. 0, JP-A-64-61028, JP-A-1-
129424, etc.). However, although the conventional methods such as the prevention of air entrapment and the prevention of tablet moisture absorption have the effect of reducing pinholes and voids, it is not possible to eliminate them at all.
Further improvements for preventing the following pinholes and voids are desired. The second problem is that the surface mounting of a semiconductor package causes the package to be dipped in solder.
Solder heat resistance that vapor face soldering or reflow process suddenly exposes it to a high temperature of 200 ° C or higher, which may lead to cracking of the package or delamination of the interface with the chip encapsulation resin, resulting in reduced moisture resistance. There is.
Regarding the improvement of solder heat resistance, use of heat resistant epoxy,
Use of flexible resin to reduce stress during solder immersion, lead frame, and improvement of adhesion to chips, addition of adhesiveness-imparting component, increase of blending amount of inorganic filler to reduce thermal expansion coefficient, Alternatively, many proposals have been made such as improvement of treatment conditions of a silane coupling agent on silica.
However, package cracks and interfacial peeling between the chip and the encapsulation resin are all due to the low adhesion between the encapsulation resin and the lead frame or the encapsulation resin and the chip. It is considered that one of the factors is a decrease in wettability of the sealing resin at the interface between the chip and the lead frame during molding. The effects of the above proposals cannot be sufficiently obtained unless the decrease in wettability is fundamentally improved.

【0004】[0004]

【発明が解決しようとする課題】半導体パッケージ成形
時のピンホール、ボイドの発生及びチップ・リードフレ
ーム界面での接着力の低下の原因につき種々の検討を行
った結果、これらが封止樹脂組成物中に含まているアル
コール成分に起因していることを明らかにし、このアル
コール成分をある一定量以下にすることで、飛躍的に特
性が向上することを見いだした。即ち本発明は、ピンホ
ールやボイドの発生及び表面実装化における半田処理工
程での信頼性低下の両者のいずれをも防止することがで
きる半導体封止用エポキシ樹脂組成物を提供するもので
ある。
As a result of various studies on causes of pinholes and voids during molding of a semiconductor package and a decrease in adhesive strength at a chip / leadframe interface, these are found to be encapsulating resin compositions. It was clarified that it was caused by the alcohol component contained therein, and it was found that the characteristics were dramatically improved by reducing the amount of the alcohol component to a certain level or less. That is, the present invention provides an epoxy resin composition for semiconductor encapsulation which can prevent both the occurrence of pinholes and voids and the decrease in reliability in the soldering process in surface mounting.

【0005】[0005]

【課題を解決するための手段】本発明は、(A)エポキ
シ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進
剤および(D)表面を予めシラン系カップリング剤で被
覆した後、100〜300℃の雰囲気下で加熱処理され
てなるカップリング層を有する無機質充填材からなるエ
ポキシ樹脂組成物において、全エポキシ樹脂組成物中の
残存アルコール成分の含有量が、重量比で500ppm
以下である半導体封止用エポキシ樹脂組成物である。
According to the present invention, after (A) epoxy resin, (B) phenolic resin curing agent, (C) curing accelerator and (D) surface are coated with a silane coupling agent in advance, In an epoxy resin composition comprising an inorganic filler having a coupling layer formed by heat treatment in an atmosphere of 100 to 300 ° C., the content of the residual alcohol component in the total epoxy resin composition is 500 ppm by weight.
It is the following epoxy resin composition for semiconductor encapsulation.

【0006】以下に本発明を詳細に説明する。本発明に
用いられるエポキシ樹脂はエポキシ基を有するモノマ
ー、オリゴマー、ポリマー全般をいい、例えばビスフェ
ノールA型エポキシ樹脂、ビフェノール型エポキシ樹
脂、オルソクレゾール型エポキシ樹脂、ナフタレン型エ
ポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ハ
イドロキノン型エポキシ樹脂等が挙げられるが、これら
に限定されるものではない。また、これらのエポキシ樹
脂は単独でも混合して用いても差し支えない。フェノー
ル樹脂硬化剤は前記エポキシ樹脂と硬化反応を行い架橋
構造を形成することができるフェノール性水酸基を有す
るモノマー、オリゴマー、ポリマー全般をいい、例えば
フェノールノボラック樹脂、パラキシリレン変性フェノ
ール樹脂、テルペン変性フェノール樹脂、ジシクロペン
タジエン変性フェノール樹脂、ビスフェノールA、トリ
フェノールメタンなどが例示されるが、これらに限定さ
れるものではない。これらのフェノール樹脂硬化剤は単
独でも混合して用いても差し支えない。硬化促進剤とし
ては前記エポキシ樹脂とフェノール樹脂硬化剤との架橋
反応の触媒となりうるものいい、例えば1,8−ジアザ
ビシクロウンデセン等のアミン系化合物、トリフェニル
ホスフィン等の有機ホスフィン化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できる。これ
らの硬化促進剤は単独でも混合して用いても差し支えな
い。
The present invention will be described in detail below. The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having an epoxy group, for example, bisphenol A type epoxy resin, biphenol type epoxy resin, orthocresol type epoxy resin, naphthalene type epoxy resin, triphenolmethane type epoxy resin. , A hydroquinone type epoxy resin and the like, but not limited to these. Further, these epoxy resins may be used alone or in combination. Phenol resin curing agent is a monomer having a phenolic hydroxyl group capable of forming a crosslinked structure by performing a curing reaction with the epoxy resin, an oligomer, a polymer in general, for example, phenol novolac resin, para-xylylene-modified phenol resin, terpene-modified phenol resin, Examples thereof include dicyclopentadiene-modified phenol resin, bisphenol A, triphenol methane and the like, but the invention is not limited thereto. These phenol resin curing agents may be used alone or in combination. The curing accelerator is one that can serve as a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin curing agent, and examples thereof include amine compounds such as 1,8-diazabicycloundecene and organic phosphine compounds such as triphenylphosphine. Examples thereof include imidazole compounds such as methylimidazole. These curing accelerators may be used alone or in combination.

【0007】シラン系カップリング剤で被覆される無機
質充填材は、溶融シリカ粉末、結晶シリカ粉末、アルミ
ナ、窒化珪素等が挙げられる。この被覆された無機質充
填材の配合量は成形性と信頼性とのバランスから全総エ
ポキシ樹脂組成物中に70〜90重量%であることが好
ましい。特に充填材量の多い配合では、球状の溶融シリ
カを用いるのが一般的である。被覆に用いるシランカッ
プリング剤は、具体的にはγ−グリシドキシプロピルト
リメトキシシラン、γ−アミノプロピルトリメトキシシ
ラン、γ−メルカプトプロピルメトキシシラン、ビニル
トリエトキシシラン等が挙げられるが、これに限定する
ものでなく、またこれらは単独でも混合して用いても差
し支えない。
Examples of the inorganic filler coated with the silane coupling agent include fused silica powder, crystalline silica powder, alumina and silicon nitride. The content of the coated inorganic filler is preferably 70 to 90% by weight in the total epoxy resin composition from the viewpoint of balance between moldability and reliability. Particularly in the case of a compound having a large amount of filler, spherical fused silica is generally used. Examples of the silane coupling agent used for coating include γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-mercaptopropylmethoxysilane, vinyltriethoxysilane, and the like. It is not limited, and these may be used alone or in combination.

【0008】本発明の最も重要な点は、表面を予めシラ
ン系カップリング剤で被覆した後、100〜300℃の
雰囲気下で加熱処理されてなるカップリング剤層を有す
る無機質充填材を用いてなるエポキシ樹脂組成物におい
て、全エポキシ樹脂組成物中の残存アルコール成分の含
有量が、重量比で500ppm以下、更に250ppm
以下に抑えることである。一般に半導体封止用エポキシ
樹脂組成物の原料となるエポキシ樹脂、フェノール樹脂
硬化剤、シランカップリング剤等は、その製造工程、保
管工程で空気中の水分を吸湿しており、更にこれら原料
と無機質充填材等とを加熱混練して製造されるエポキシ
樹脂組成物においても、その製造工程、保管工程におい
て水分を吸湿する。この吸湿水分が成形性や半田耐熱性
の低下の原因となることは既に多くの報告がある。そし
てその対策として、露点−10℃以下の乾燥空気中で乾
燥させる方法、密閉された保管場所で減圧処理を施し水
分を気化、乾燥させる方法、あるいはシリカゲル、五酸
化燐等の乾燥剤を用いて水分を乾燥剤に吸着させる方法
等の多くの提案がなされている。確かにこれらの方法に
より封止剤組成物中に残存する水分の量は実質的に殆ど
零とすることが可能であり、これにより成形時の揮発成
分が顕著に減少するため、成形品中のピンホール、ボイ
ドの数を減少させたり、あるいは揮発ガスの発生による
樹脂組成物とチップ・リードフレームとの界面の濡れ性
が低下することに起因する密着性低下を改善するのに効
果は認められる。しかしながら、先に述べたように最近
の半導体パッケージの薄型化及び苛酷な半田処理条件に
おいてはこれだけでは不十分となってきていることも事
実である。
The most important point of the present invention is to use an inorganic filler having a coupling agent layer obtained by coating the surface with a silane coupling agent in advance and then heat-treating it in an atmosphere of 100 to 300 ° C. In the epoxy resin composition, the content of the residual alcohol component in the total epoxy resin composition is 500 ppm or less, further 250 ppm by weight ratio.
It should be kept below. Epoxy resins, phenolic resin curing agents, silane coupling agents, etc., which are the raw materials for epoxy resin compositions for semiconductor encapsulation, absorb moisture in the air during the manufacturing process and storage process, and these raw materials and inorganic substances are generally used. An epoxy resin composition produced by heating and kneading a filler and the like also absorbs moisture in the production process and storage process. There have been many reports that this moisture absorption causes deterioration of moldability and solder heat resistance. Then, as a countermeasure, a method of drying in dry air having a dew point of -10 ° C or less, a method of vaporizing and drying water by applying a reduced pressure treatment in a closed storage place, or a desiccant such as silica gel or phosphorus pentoxide is used. Many proposals such as a method of adsorbing moisture to a desiccant have been made. Certainly, the amount of water remaining in the encapsulant composition can be made substantially zero by these methods, and the volatile component at the time of molding is remarkably reduced by this, so that Effective to reduce the number of pinholes and voids, or to improve the decrease in adhesion caused by the decrease in the wettability of the interface between the resin composition and the chip / lead frame due to the generation of volatile gas. . However, as described above, it is a fact that this alone is not sufficient under the recent thinning of semiconductor packages and severe solder processing conditions.

【0009】この原因としてはエポキシ樹脂組成物中に
残存しているアルコール成分が、先に述べたような水分
除去の方法では殆ど除去できないためであり、このため
成形時の熱によって気化、揮発するアルコール成分によ
りボイド、ピンホールの生成やチップやリードフレーム
と封止材料界面の濡れ性の低下、延いては接着力の低下
を起こしている。これらアルコール成分は以下の理由に
よりエポキシ樹脂組成物中に残存すると考えられる。 エポキシ樹脂組成物の製造工程中及び保管中に無機
質充填材の水酸基とシラン系カップリング剤のアルコキ
シ基とが反応することにより生成するアルコール成分。
具体的には、メタノール、エタノール、プロパノールが
代表的な例として挙げられる。これらアルコール成分を
低減する方法としては、以下の方法が工業的には重要で
ある。
The reason for this is that the alcohol component remaining in the epoxy resin composition can hardly be removed by the method of removing water as described above, and therefore, it is vaporized and volatilized by the heat during molding. The alcohol component causes generation of voids and pinholes, deterioration of wettability of the interface between the chip or the lead frame and the sealing material, and eventually deterioration of adhesive strength. It is considered that these alcohol components remain in the epoxy resin composition for the following reasons. An alcohol component produced by the reaction between the hydroxyl group of the inorganic filler and the alkoxy group of the silane coupling agent during the production process and storage of the epoxy resin composition.
Specific examples include methanol, ethanol, and propanol. The following methods are industrially important as methods for reducing these alcohol components.

【0010】無機質充填材を予めシラン系カップリング
剤で被覆処理した後、加熱することで両者の反応を完結
させると共に、反応生成物であるアルコールを除去し、
このカップリング剤層を有する無機質充填材とエポキシ
樹脂、フェノール樹脂硬化剤、硬化促進剤等を加熱混練
することでエポキシ樹脂組成物を得る。従来より、シリ
カに代表される無機質充填材の表面を、シラン系カップ
リング剤で予め被覆、反応させる方法は提案されている
が、この場合重要なのはその反応させるための温度と時
間である。本発明の、表面を予めシラン系カップリング
剤で被覆した後、100〜300℃の雰囲気下で加熱処
理されてなるカップリング剤層を有する無機質充填材を
用いてなるエポキシ樹脂組成物において、全エポキシ樹
脂組成物中の残存アルコール成分の含有量を、重量比で
500ppm以下に抑える必要があり、そのためにはシ
ラン系カップリング剤で被覆された無機質充填材の加熱
処理条件を、100℃では24時間以上、150℃では
8時間以上、200℃では2時間以上、300℃では3
0分以上がよく、特に好ましくは、100℃〜200℃
で処理するのが望ましい。
After coating the inorganic filler with a silane coupling agent in advance, the reaction between the two is completed by heating and alcohol as a reaction product is removed,
An epoxy resin composition is obtained by heating and kneading the inorganic filler having the coupling agent layer, an epoxy resin, a phenol resin curing agent, a curing accelerator, and the like. Conventionally, a method has been proposed in which the surface of an inorganic filler typified by silica is previously coated with a silane coupling agent and reacted, but in this case, what is important is the temperature and time for the reaction. In the epoxy resin composition of the present invention, the inorganic filler having a coupling agent layer obtained by coating the surface with a silane coupling agent in advance and then heat-treating it in an atmosphere of 100 to 300 ° C. The content of the residual alcohol component in the epoxy resin composition needs to be suppressed to 500 ppm or less by weight ratio. For that purpose, the heat treatment condition of the inorganic filler coated with the silane coupling agent is 24 at 100 ° C. More than 8 hours at 150 ° C, more than 2 hours at 200 ° C, 3 at 300 ° C
0 minutes or more is preferable, and particularly preferably 100 ° C to 200 ° C.
It is desirable to process in.

【0011】無機質充填材に添加するシラン系カップリ
ング剤の量は、0.1〜2.0重量%とする。全組成物
中に残存するアルコール成分が500ppmを越える
と、成形品中にピンホールや内部ボイドが多数発生し、
耐湿信頼性が低下する。カップリング剤層を有する無機
質充填材は、全エポキシ樹脂組成物中に70〜90重量
%含有することが好ましい。また、成形材料化に際して
行う加熱混練工程において、ニーダー等の混練機を真空
ポンプにより脱気し、減圧状態とすることでアルコール
成分を除去する方法を組み合わせても、より大きな効果
を得ることができる。この場合、通常、加熱混練時の温
度は80℃から150℃の範囲とし、その際の脱気によ
る減圧度は200mmHg以下とすることが望ましい。
全エポキシ樹脂組成物中に残存するアルコール物質の定
量は、種々の方法があるが、比較的簡便なものとしては
ガスクローマススペクトル法、熱重量天秤−マススペク
トル法が挙げられる。これらはエポキシ樹脂組成物の試
料を60〜250℃に加熱し、発生するアルコール成分
をマススペクトルにて同定、定量する測定方法である。
The amount of the silane coupling agent added to the inorganic filler is 0.1 to 2.0% by weight. When the alcohol component remaining in the entire composition exceeds 500 ppm, many pinholes and internal voids are generated in the molded product,
Moisture resistance reliability decreases. The inorganic filler having the coupling agent layer is preferably contained in the total epoxy resin composition in an amount of 70 to 90% by weight. Further, in the heating and kneading step performed when forming a molding material, a greater effect can be obtained even by combining a method of removing alcohol components by deaerating a kneader such as a kneader with a vacuum pump and reducing the pressure. . In this case, it is usually desirable that the temperature during heating and kneading be in the range of 80 ° C. to 150 ° C., and the degree of pressure reduction due to degassing at that time is 200 mmHg or less.
There are various methods for quantitatively determining the alcohol substance remaining in the total epoxy resin composition, and relatively simple ones include a gas claw mass spectrum method and a thermogravimetric balance-mass spectrum method. These are measurement methods in which a sample of the epoxy resin composition is heated to 60 to 250 ° C., and the alcohol component generated is identified and quantified by a mass spectrum.

【0012】本発明のエポキシ樹脂組成物はエポキシ樹
脂、フェノール樹脂硬化剤、硬化促進剤及びカップリン
グ剤層を有する無機質充填材を必須成分とするが、これ
以外にも必要に応じて臭素化エポキシ樹脂、三酸化アン
チモン等の難燃剤、カーボンブラックに代表される着色
剤、天然ワックス及び合成ワックス等の離型剤、シリコ
ーンオイル、シリコーンゴム、合成ゴム等の低応力添加
剤を適宜配合しても差し支えない。成形材料化するに際
しては、加熱ニーダーや熱ロールにより全組成物を加熱
混練し、続いて冷却、粉砕することで目的とする半導体
封止用エポキシ樹脂組成物が得られる。
The epoxy resin composition of the present invention contains an epoxy resin, a phenol resin curing agent, a curing accelerator, and an inorganic filler having a coupling agent layer as essential components. Resins, flame retardants such as antimony trioxide, colorants typified by carbon black, release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil, silicone rubber, and synthetic rubber may be appropriately mixed. It doesn't matter. When forming a molding material, the desired composition for epoxy resin for semiconductor encapsulation is obtained by heating and kneading the entire composition with a heating kneader or a heating roll, followed by cooling and pulverizing.

【0013】以下本発明を実施例で具体的に説明する。 実施例1 3,3,5,5−テトラメチルビフェノールジグリシジルエーテル (融点103℃、エポキシ当量195) 9.1重量部 パラキシリレン変性フェノール樹脂 (軟化温度70℃、水酸基当量175) 3.8重量部 フェノールノボラック(軟化温度85℃、水酸基当量104)3.0重量部 トリフェニルホスフィン 0.3重量部 溶融シリカ粉末 80.0重量部 γ−アミノプロピルトリエトキシシラン 0.5重量部 三酸化アンチモン 1.0重量部 臭素化ビスフェノールA型エポキシ樹脂 1.5重量部 カルナバワックス 0.5重量部 カーボンブラック 0.3重量部 上記配合でエポキシ樹脂組成物を製造するにあたって、
予めミキサーで溶融シリカ粉末とγ−アミノプロピルト
リエトキシシランとを充分混合し被覆した後、これを1
50℃で8時間加熱処理を行った。このカップリング剤
層を有するシリカと他の配合原料とをミキサーで混合し
た後、バレル温度100℃の2軸ニーダーにて加熱混練
した。混練物をシーティングロールで2mm厚のシート
状にし、さらに冷却後粉砕して封止材料を得た。
The present invention will be specifically described below with reference to examples. Example 1 3,3,5,5-tetramethylbiphenol diglycidyl ether (melting point 103 ° C, epoxy equivalent 195) 9.1 parts by weight Paraxylylene-modified phenol resin (softening temperature 70 ° C, hydroxyl equivalent 175) 3.8 parts by weight Phenol novolac (softening temperature 85 ° C., hydroxyl equivalent 104) 3.0 parts by weight triphenylphosphine 0.3 parts by weight fused silica powder 80.0 parts by weight γ-aminopropyltriethoxysilane 0.5 parts by weight antimony trioxide 1. 0 parts by weight Brominated bisphenol A type epoxy resin 1.5 parts by weight Carnauba wax 0.5 parts by weight Carbon black 0.3 parts by weight In producing an epoxy resin composition with the above composition,
The fused silica powder and γ-aminopropyltriethoxysilane were thoroughly mixed and coated in advance with a mixer, and then 1
Heat treatment was performed at 50 ° C. for 8 hours. The silica having the coupling agent layer and other blended raw materials were mixed by a mixer, and then kneaded by heating with a biaxial kneader having a barrel temperature of 100 ° C. The kneaded product was formed into a sheet having a thickness of 2 mm with a sheeting roll, further cooled and pulverized to obtain a sealing material.

【0014】上記成形材料を、200℃で30分間熱処
理した際に発生するアルコール成分の同定と定量をガス
スペクトル−質量分析装置を用いて行った。エタノール
が重量比で50ppmであった。また、上記各成形材料
を用いて80pQFPパッケージ(パッケージサイズは
14×20mm、厚み1.5mm、チップサイズは9×
9mm)を金型温度175℃、成形圧力75kgf/c
2、成形時間2分間成形し、更に175℃で8時間の
後硬化を行った。この成形品パッケージを超音波探傷装
置を用いて観察し、0.1mmφ以上の内部のボイドの
数(個数/パッケージ)をボイド数で表現した。また、
この成形品パッケージを85℃、85%RHの環境下に
168時間放置し、その後260℃の半田槽に10秒間
浸漬した。顕微鏡でパッケージを観察し、外部クラック
数(クラック発生パッケージ数/全パッケージ数)を半
田クラック数で表現した。同様に80pQFPの成形品
パッケージを85℃、85%RHの環境下で24時間放
置し、その後240℃のリフロー処理を10秒間実施し
た。次にこのパッケージを125℃、2.3気圧のPC
T処理を行い、不良率が50%となる迄のPCT処理時
間を耐湿信頼性として表現した。これらの結果を表1に
示す。
The alcohol component generated when the above molding material was heat-treated at 200 ° C. for 30 minutes was identified and quantified using a gas spectrum-mass spectrometer. The weight ratio of ethanol was 50 ppm. Also, using each of the above molding materials, an 80 pQFP package (package size 14 × 20 mm, thickness 1.5 mm, chip size 9 ×)
9 mm) with a mold temperature of 175 ° C. and a molding pressure of 75 kgf / c
m 2 , molding time was 2 minutes, and further post-curing was performed at 175 ° C. for 8 hours. The molded product package was observed using an ultrasonic flaw detector, and the number of internal voids of 0.1 mmφ or more (number / package) was expressed by the number of voids. Also,
This molded product package was left in an environment of 85 ° C. and 85% RH for 168 hours, and then immersed in a solder bath at 260 ° C. for 10 seconds. The packages were observed with a microscope, and the number of external cracks (the number of cracked packages / the total number of packages) was expressed by the number of solder cracks. Similarly, the 80 pQFP molded product package was left in an environment of 85 ° C. and 85% RH for 24 hours, and then reflowed at 240 ° C. for 10 seconds. Next, use this package with a PC at 125 ° C and 2.3 atmospheres.
The PCT treatment time until the defect rate reaches 50% after T treatment is expressed as moisture resistance reliability. The results are shown in Table 1.

【0015】実施例2 実施例1の配合において、予めミキサーで溶融シリカ粉
末とγ−アミノプロピルトリエトキシシランとを充分混
合し被覆した後、これを100℃で24時間加熱処理を
行った。このカップリング剤層を有するシリカを実施例
1と同様にして混練し、封止材料を得た。実施例1と同
様に評価した。評価結果を表1に示す。 実施例3 実施例1の配合において、予めミキサーで溶融シリカ粉
末とγ−アミノプロピルトリエトキシシランとを充分混
合し被覆した後、これを120℃で16時間加熱処理を
行った。このカップリング剤層を有するシリカを実施例
1と同様にして混練し、封止材料を得た。実施例1と同
様に評価した。評価結果を表1に示す。
Example 2 In the formulation of Example 1, the fused silica powder and γ-aminopropyltriethoxysilane were thoroughly mixed and coated in advance with a mixer, and then heat-treated at 100 ° C. for 24 hours. Silica having this coupling agent layer was kneaded in the same manner as in Example 1 to obtain a sealing material. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 1. Example 3 In the formulation of Example 1, the fused silica powder and γ-aminopropyltriethoxysilane were thoroughly mixed and coated in advance with a mixer, and then heat-treated at 120 ° C. for 16 hours. Silica having this coupling agent layer was kneaded in the same manner as in Example 1 to obtain a sealing material. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 1.

【0016】比較例1 実施例1において、溶融シリカ粉末とγ−アミノプロピ
ルトリエトキシシランとを充分に混合し被覆した後、熱
処理条件を120℃、1時間に変更した以外は実施例1
と全く同様の方法で成形材料を製造した。実施例1と同
様に評価した。評価結果を表1に示す。 比較例2 比較例1において、2軸ニーダーでの加熱混練を200
mmHgの減圧条件で行った以外は、比較例1と全く同
様の条件で成形材料を製造した。実施例1と同様に評価
した。評価結果を表1に示す。 比較例3 実施例1の全配合原料をミキサーで混合した後、バレル
温度100℃の2軸ニーダーにて加熱混練し、実施例1
と同様の方法で成形材料を得た。評価結果を表1に示
す。
Comparative Example 1 Example 1 was repeated except that the fused silica powder and γ-aminopropyltriethoxysilane were thoroughly mixed and coated, and then the heat treatment conditions were changed to 120 ° C. for 1 hour.
A molding material was produced in the same manner as in. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 1. Comparative Example 2 In Comparative Example 1, heating and kneading with a twin-screw kneader was performed for 200 times.
A molding material was produced under exactly the same conditions as in Comparative Example 1 except that the pressure was reduced to mmHg. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 1. Comparative Example 3 After mixing all the compounded raw materials of Example 1 with a mixer, the mixture was heated and kneaded with a twin-screw kneader having a barrel temperature of 100 ° C. to obtain Example 1.
A molding material was obtained in the same manner as in. The evaluation results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明に従うと、エポキシ樹脂組成物中
に含まれるアルコールの量が非常に少ないレベルにある
ため、半導体封止を目的とする成形の際に発生する揮発
分が極めて少なく、成形品パッケージ中にピンホールや
ボイドが殆ど発生せず、更にリードフレームやチップと
封止材料との界面の濡れ性が向上することにより、これ
ら界面の接着力が大きくなり、半田浸漬時の耐パッケー
ジクラック性や耐湿信頼性を向上する。
According to the present invention, since the amount of alcohol contained in the epoxy resin composition is at a very low level, the volatile matter generated during molding for semiconductor encapsulation is extremely small, and Almost no pinholes or voids are generated in the product package, and the wettability of the interface between the lead frame or chip and the encapsulation material is improved. Improves crack resistance and moisture resistance reliability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 23/31

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂硬化剤、(C)硬化促進剤および(D)表面を予め
シラン系カップリング剤で被覆した後、100〜300
℃の雰囲気下で加熱処理されてなるカップリング層を有
する無機質充填材からなるエポキシ樹脂組成物におい
て、全エポキシ樹脂組成物中の残存アルコール成分の含
有量が、重量比で500ppm以下であることを特徴と
する半導体封止用エポキシ樹脂組成物。
1. An epoxy resin (A), a phenolic resin curing agent (B), a curing accelerator (C) and a surface (D) are coated with a silane coupling agent in advance, and then 100-300.
In an epoxy resin composition composed of an inorganic filler having a coupling layer formed by heat treatment in an atmosphere of ° C, the content of the residual alcohol component in the total epoxy resin composition is 500 ppm or less by weight. A characteristic epoxy resin composition for semiconductor encapsulation.
JP5308395A 1993-12-08 1993-12-08 Epoxy resin composition for sealing semiconductor Pending JPH07157537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5308395A JPH07157537A (en) 1993-12-08 1993-12-08 Epoxy resin composition for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5308395A JPH07157537A (en) 1993-12-08 1993-12-08 Epoxy resin composition for sealing semiconductor

Publications (1)

Publication Number Publication Date
JPH07157537A true JPH07157537A (en) 1995-06-20

Family

ID=17980552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5308395A Pending JPH07157537A (en) 1993-12-08 1993-12-08 Epoxy resin composition for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPH07157537A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081284A (en) * 1999-09-14 2001-03-27 Nitto Denko Corp Preparation of semiconductor sealing epoxy resin composition and semiconductor sealing epoxy resin composition obtained thereby, and semiconductor device sealed therewith
JP2002155130A (en) * 2000-11-20 2002-05-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US6856064B2 (en) 2000-02-21 2005-02-15 Mitsubishi Denki Kabushiki Kaisha Stator iron core of electric motor, manufacturing method thereof, electric motor, and compressor
JP2006045393A (en) * 2004-08-06 2006-02-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN1299985C (en) * 2005-01-20 2007-02-14 辽宁大学 Method for modifying surface of manometer
JP2007084832A (en) * 2000-05-09 2007-04-05 Daikin Ind Ltd Cross-linkable fluorine elastomer composition containing clean filler incorporated therein
JP2011213716A (en) * 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for producing polyallyloxy compound and method for producing polyglycidyloxy compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081284A (en) * 1999-09-14 2001-03-27 Nitto Denko Corp Preparation of semiconductor sealing epoxy resin composition and semiconductor sealing epoxy resin composition obtained thereby, and semiconductor device sealed therewith
US6856064B2 (en) 2000-02-21 2005-02-15 Mitsubishi Denki Kabushiki Kaisha Stator iron core of electric motor, manufacturing method thereof, electric motor, and compressor
JP2007084832A (en) * 2000-05-09 2007-04-05 Daikin Ind Ltd Cross-linkable fluorine elastomer composition containing clean filler incorporated therein
JP2002155130A (en) * 2000-11-20 2002-05-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006045393A (en) * 2004-08-06 2006-02-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN1299985C (en) * 2005-01-20 2007-02-14 辽宁大学 Method for modifying surface of manometer
JP2011213716A (en) * 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for producing polyallyloxy compound and method for producing polyglycidyloxy compound

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JPH07157537A (en) Epoxy resin composition for sealing semiconductor
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
EP1137708A1 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JPH07122683A (en) Epoxy resin composition for sealing semiconductor
JP2000281751A (en) Epoxy resin composition and semiconductor device
JP3004463B2 (en) Epoxy resin composition
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JPH07242731A (en) Epoxy resin composition for semiconductor sealing
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2991850B2 (en) Epoxy resin composition
JP2951092B2 (en) Epoxy resin composition
JP2002212393A (en) Epoxy resin composition and semi-conductor device
JP2892343B2 (en) Epoxy resin composition
JP2000273154A (en) Epoxy resin composition and semiconductor device
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP3192255B2 (en) Resin composition for semiconductor encapsulation
JP3093051B2 (en) Epoxy resin composition
JP4379977B2 (en) Epoxy resin composition and semiconductor device
JP2954413B2 (en) Epoxy resin composition
JP3005328B2 (en) Epoxy resin composition for sealing
JP2000031344A (en) Ball grid array semiconductor device
JPH11130938A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040922

A601 Written request for extension of time

Effective date: 20041220

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Effective date: 20041224

Free format text: JAPANESE INTERMEDIATE CODE: A602

A521 Written amendment

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050427

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20050825

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20051005

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070629

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees