JPH0715152B2 - Oxygen cathode protection method - Google Patents

Oxygen cathode protection method

Info

Publication number
JPH0715152B2
JPH0715152B2 JP4088313A JP8831392A JPH0715152B2 JP H0715152 B2 JPH0715152 B2 JP H0715152B2 JP 4088313 A JP4088313 A JP 4088313A JP 8831392 A JP8831392 A JP 8831392A JP H0715152 B2 JPH0715152 B2 JP H0715152B2
Authority
JP
Japan
Prior art keywords
oxygen
cathode
electrolysis
caustic
oxygen cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4088313A
Other languages
Japanese (ja)
Other versions
JPH05255882A (en
Inventor
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Kaneka Corp
Original Assignee
Toagosei Co Ltd
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Kaneka Corp filed Critical Toagosei Co Ltd
Priority to JP4088313A priority Critical patent/JPH0715152B2/en
Publication of JPH05255882A publication Critical patent/JPH05255882A/en
Publication of JPH0715152B2 publication Critical patent/JPH0715152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン交換膜法電解に
使用する酸素陰極の保護方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for protecting an oxygen cathode used in electrolysis using an ion exchange membrane method.

【0002】[0002]

【従来の技術】塩化ナトリウム水溶液をイオン交換膜法
で電解し苛性ソーダを得るに際して、陰極にガス拡散電
極、例えば酸素陰極を使用する提案は種々なされてい
る。このイオン交換膜法電解は、一般に陽イオン膜であ
るイオン交換膜により陽極室と陰極室とに区画された電
解槽で行われ、電解槽の大要は、陽極を有し塩化ナトリ
ウム水溶液を入れた陽極室と、陰極により水または苛性
ソーダ水溶液を入れた電解液室と酸素含有ガスを入れた
ガス供給室とに区画された陰極室と、それらを区画する
イオン交換膜とから構成されている。電解槽の両電極間
に通電して電解する際に、陰極としてガス拡散電極(素
材が多孔質体からなりガス供給室から酸素含有ガスが供
給されるいわゆる酸素陰極)を用いて電解することによ
り、陰極の電解液室に苛性ソーダを得るものであって、
酸素ガス拡散電極を使用によりその陰極で水素−酸素反
応が起こり、陰極電位が低下するため、電解電圧が著し
く低減されるという利点を有する。
2. Description of the Related Art Various proposals have been made to use a gas diffusion electrode, for example, an oxygen cathode, as a cathode when electrolyzing an aqueous sodium chloride solution by an ion exchange membrane method to obtain caustic soda. This ion exchange membrane electrolysis is generally carried out in an electrolytic cell divided into an anode chamber and a cathode chamber by an ion exchange membrane which is a cation membrane, and the outline of the electrolytic cell is that it has an anode and contains an aqueous sodium chloride solution. The cathode chamber is divided into an anode chamber, an electrolyte chamber containing water or a caustic soda aqueous solution by a cathode, a gas supply chamber containing an oxygen-containing gas, and an ion exchange membrane partitioning the cathode chamber. When electrolyzing by energizing between both electrodes of the electrolysis tank, by electrolyzing using a gas diffusion electrode (so-called oxygen cathode in which the oxygen-containing gas is supplied from the gas supply chamber made of a porous material) as the cathode To obtain caustic soda in the electrolyte chamber of the cathode,
The use of an oxygen gas diffusion electrode has the advantage that the hydrogen-oxygen reaction takes place at the cathode and the cathode potential drops, so that the electrolysis voltage is significantly reduced.

【0003】従来、高純度、高濃度の苛性ソーダを得る
ため提案されている酸素陰極を備えた塩化ナトリウム水
溶液のイオン交換膜法電解槽の典型的な構造を図4によ
り説明する。図4に示すごとく、電解槽23を通常の方
法で陽イオン交換膜25により、陽極24を備えた陽極
室26と酸素陰極27を備えた陰極室28とに仕切り、
陰極室28は酸素陰極27により酸素含有ガス供給室2
9と電解液室30とに仕切られる。陽極室26には被電
解液である塩化ナトリウム水溶液を被電解液供給口31
から供給し被電解液流出口32から流出する、流出した
被電解液は新しい被電解液と混合されて再び被電解液供
給口31から陽極室26に供給され循環する。また陽極
室26には生成した塩素ガスを排出する排出口33が設
けられている。電解液室30は生成した苛性ソーダ水溶
液で満たされており、常に一定濃度の苛性ソーダ水溶液
が電解液室30に設けられた流出口34から流出する。
一定濃度の苛性ソーダ水溶液を得ることは、流出口34
から流出した苛性ソーダ水溶液を再び電解液室30中に
還流させて循環し、苛性ソーダ水溶液を循環する配管の
途中で新鮮水を供給することで希釈された一定濃度の苛
性ソーダ水溶液を造り、これを電解処理して実現され
る。酸素陰極27で仕切られた酸素含有ガス供給室29
にはガス供給口34から酸素含有ガスが供給される。
A typical structure of a sodium chloride aqueous solution ion exchange membrane electrolytic cell equipped with an oxygen cathode, which has been conventionally proposed to obtain high-purity and high-concentration caustic soda, will be described with reference to FIG. As shown in FIG. 4, the electrolytic cell 23 is partitioned by a cation exchange membrane 25 into an anode chamber 26 having an anode 24 and a cathode chamber 28 having an oxygen cathode 27 by a conventional method.
The cathode chamber 28 is an oxygen-containing gas supply chamber 2 by the oxygen cathode 27.
9 and the electrolytic solution chamber 30. Into the anode chamber 26, an aqueous solution of sodium chloride, which is an electrolytic solution, is supplied to the electrolytic solution supply port 31
The liquid to be electrolyzed, which has been supplied from the electrolyzed liquid outlet 32 and flows out from the electrolyzed liquid outlet 32, is mixed with a new liquid to be electrolyzed, is supplied again from the liquid to be electrolyzed supply port 31 to the anode chamber 26, and is circulated. Further, the anode chamber 26 is provided with a discharge port 33 for discharging the generated chlorine gas. The electrolytic solution chamber 30 is filled with the generated caustic soda aqueous solution, and the caustic soda aqueous solution having a constant concentration always flows out from the outlet 34 provided in the electrolytic solution chamber 30.
To obtain a constant concentration of caustic soda solution, the outlet 34
The caustic soda aqueous solution flowing out from the tank is circulated again in the electrolytic solution chamber 30 and circulated, and fresh water is supplied in the middle of the piping for circulating the caustic soda aqueous solution to prepare a diluted caustic soda aqueous solution having a constant concentration, which is electrolyzed. Will be realized. Oxygen-containing gas supply chamber 29 partitioned by oxygen cathode 27
An oxygen-containing gas is supplied from the gas supply port 34.

【0004】上記、塩化ナトリウム水溶液のイオン交換
膜法電解に使用して電解電圧の低下を可能にした酸素陰
極は種々のものがあるが、その一般的な構造について以
下に説明する。酸素陰極は通気性を有し、かつ電解液が
浸透し得る陰極であり、電極は電解液(苛性ソーダ水溶
液)に接する側面は導体からなる金網などでつくられた
集電体に支持された、ナトリウムイオンおよび酸素の存
在下で水を酸化する触媒を担持した、多孔性の導体を主
体として成形した多孔性の薄層で構成されている。上記
多孔性の導体には活性炭が通常使用され、その微細孔に
は前記触媒(白金などの貴金属系からなる)が担持され
ている。酸素含有ガス供給側面は電解液の漏洩が起こら
ない撥水性の多孔性の薄層で構成されている。上記撥水
性の多孔性の薄層は通常は酸化還元反応に耐性のあるフ
ッ素樹脂系のポリマーの微粒子を主体として成形されて
いる。
There are various oxygen cathodes which can be used for the ion exchange membrane method electrolysis of an aqueous sodium chloride solution to reduce the electrolysis voltage. The general structure of the oxygen cathode will be described below. The oxygen cathode is a cathode that is permeable to air and allows the electrolyte to permeate, and the side surface of the electrode that contacts the electrolyte (caustic soda solution) is supported by a current collector made of a wire mesh made of a conductor such as sodium. It is composed of a porous thin layer formed mainly of a porous conductor carrying a catalyst for oxidizing water in the presence of ions and oxygen. Activated carbon is usually used for the porous conductor, and the catalyst (made of a noble metal such as platinum) is carried in the fine pores. The oxygen-containing gas supply side surface is composed of a water-repellent porous thin layer that prevents leakage of the electrolytic solution. The water-repellent porous thin layer is usually formed mainly of fine particles of a fluororesin-based polymer having resistance to a redox reaction.

【0005】上記触媒活性を有する多孔性の薄層から撥
水性の多孔性の薄層へと段階的あるいは連続的に変わる
ようにカーボン、フッ素樹脂微粒子およびその他の微粒
子樹脂などを混合成形し一体化して製造された多孔性の
酸素陰極は、酸素含有ガス供給側面から電解液に接する
側面へ効率よく酸素含有ガスを供給することができ、ま
た電解液に接する側面からは電解液が電極内に容易に浸
透拡散する。かくして、この酸素陰極内で電解液に接す
る側面から供給されたナトリウムイオンと上記触媒の存
在下で水は酸化され水酸基となり、苛性ソーダが生成す
る。従って以前の塩化ナトリウム水溶液の電解において
陰極で発生した水素はこの酸素陰極内では発生せず、従
って電解電圧の低下が可能となった。
Carbon, fluororesin fine particles and other fine particle resins are mixed and molded and integrated so that the porous thin layer having the above-mentioned catalytic activity is changed stepwise or continuously from the water repellent porous thin layer. The produced porous oxygen cathode can efficiently supply the oxygen-containing gas from the oxygen-containing gas supply side to the side in contact with the electrolytic solution, and the electrolytic solution can be easily introduced into the electrode from the side in contact with the electrolytic solution. Penetrate and diffuse into. Thus, in the presence of the above-mentioned catalyst and sodium ions supplied from the side surface in contact with the electrolytic solution in the oxygen cathode, water is oxidized to form a hydroxyl group and caustic soda is produced. Therefore, hydrogen generated at the cathode in the previous electrolysis of sodium chloride solution was not generated inside the oxygen cathode, and therefore the electrolytic voltage could be lowered.

【0006】上記した通り電解電圧の低下が可能な酸素
陰極を使用し、イオン交換膜法電解によって高純度の苛
性ソーダを得るための方法が種々試行されている中で、
酸素陰極については、酸素含有ガスを効率よく供給する
するための多孔性構造を有し、電解液面から酸素含有ガ
ス供給室へ段階的に導体性面から撥水性面へと変わる複
雑な構造を実現するために従来多くの改良がなされてき
た。
As described above, various methods for obtaining high purity caustic soda by ion exchange membrane electrolysis using an oxygen cathode capable of lowering the electrolysis voltage are being tested.
Regarding the oxygen cathode, it has a porous structure for efficiently supplying the oxygen-containing gas, and has a complicated structure in which the conductive surface is changed to the water-repellent surface stepwise from the electrolyte surface to the oxygen-containing gas supply chamber. Many improvements have been made in the past to achieve this.

【0007】すなわち、特開昭54−97600号およ
び特開昭56−44784号の各公報には電解電圧を効
果的に低下させる得る電極の構造と構成材料が提案され
ている。特公昭58−49639号公報には電極内に触
媒を均一に分散するための考案が、また特公昭60−9
595号公報には電極内への苛性ソーダ水溶液や酸素が
より容易に浸透できるように電極基体中の多孔性を増強
する考案が記載されている。電極の多孔性構造の強度を
改良する方法に関する提案が特開昭57−152479
号および特開昭59−133386号の各公報に記載さ
れている。また特開昭59−133386号公報には撥
水性面の撥水性を強化して電解液の漏れを防止する方法
が記載されている。また、特開昭56−130482号
公報には長期間安定にしかも低い電解電圧で電解するた
め電解槽の温度を70℃以上にして電解を開始しその温
度を維持する方法が記載されている。
That is, JP-A-54-97600 and JP-A-56-44784 propose electrode structures and constituent materials that can effectively lower the electrolytic voltage. JP-B-58-49639 discloses a device for uniformly dispersing a catalyst in an electrode, and JP-B-60-9.
Japanese Patent No. 595 describes a device for enhancing the porosity in the electrode substrate so that the caustic soda aqueous solution and oxygen can more easily penetrate into the electrode. A proposal for a method for improving the strength of the porous structure of an electrode is disclosed in Japanese Patent Application Laid-Open No. 57-152479.
And JP-A-59-133386. Further, Japanese Patent Application Laid-Open No. 59-133386 discloses a method of preventing leakage of an electrolytic solution by enhancing water repellency of a water repellent surface. Further, JP-A-56-130482 describes a method of starting electrolysis by maintaining the temperature of the electrolytic cell at 70 ° C. or higher to maintain the temperature for stable electrolysis for a long period of time and at a low electrolysis voltage.

【0008】その他多くのガス透過性酸素陰極の製造法
や性能の改良に関する提案がなされているが、酸素陰極
の製造法や性能の改良にのみ注意が払われており、酸素
陰極の電解中における性能の劣化に関する提案は全くな
されていない。酸素陰極を長期間高性能で使用するに
は、電解中および電解停止中での酸素陰極の劣化を防止
しなければならないが、従来電解中における劣化防止方
法は知られていなかった。
Although many other proposals have been made regarding the production method and the performance improvement of the gas-permeable oxygen cathode, attention has been paid only to the production method and the performance improvement of the oxygen cathode, and in the electrolysis of the oxygen cathode. No proposal has been made regarding performance degradation. In order to use the oxygen cathode with high performance for a long period of time, it is necessary to prevent the deterioration of the oxygen cathode during electrolysis and during electrolysis stop, but a method for preventing deterioration during electrolysis has not been heretofore known.

【0009】一方、電解停止中における酸素陰極の劣化
については下記2件の公報に記載があるに過ぎない。す
なわち、特開昭60−221595号公報には酸素陰極
中の活性炭に吸着している酸素の不均一性によって起こ
る局部電池現象により、電解停止中にカーボンの腐食が
おこるため酸素陰極の劣化するとの記載がある。同公報
ではこの酸素陰極の劣化を防止するために電解停止中電
解槽中の電解液を水で希釈するかあるいは水で置換して
おくことを提案されている。また、特公昭61−323
97号公報には電解停止中酸素陰極内に炭酸ソーダが生
成し、その炭酸ソーダの析出による酸素陰極の破損が酸
素陰極の劣化の原因であるとし、これを防止するため電
解槽中の電解液を被電解液で置換するか、電解液を水で
希釈するかあるいは水で置換しておくことを提案されて
いる。しかしながら、本発明者らの検討によるとこれら
の方法では電解停止中における酸素陰極の劣化防止は不
充分であることが分かった。
On the other hand, the deterioration of the oxygen cathode while the electrolysis is stopped is described only in the following two publications. That is, JP-A-60-221595 discloses that the oxygen cathode is deteriorated due to carbon corrosion during electrolysis stoppage due to a local cell phenomenon caused by non-uniformity of oxygen adsorbed on activated carbon in the oxygen cathode. There is a description. In this publication, in order to prevent the deterioration of the oxygen cathode, it is proposed to dilute the electrolytic solution in the electrolytic cell during electrolysis or replace it with water. In addition, Japanese Patent Publication No. 61-323
No. 97 discloses that sodium carbonate is generated in the oxygen cathode during electrolysis, and the damage of the oxygen cathode due to the precipitation of the sodium carbonate causes deterioration of the oxygen cathode. To prevent this, the electrolytic solution in the electrolytic cell is It has been proposed to replace the electrolyte solution with an electrolyte solution, dilute the electrolyte solution with water, or replace it with water. However, according to the study by the present inventors, it was found that these methods are insufficient to prevent the deterioration of the oxygen cathode while the electrolysis is stopped.

【0010】[0010]

【発明が解決しようとする課題】本発明は酸素陰極を使
用するイオン交換膜法電解において、未だ明らかになっ
ていない電解中および電解停止中での酸素陰極の劣化に
ついて研究し、これを防止する方法を提供することを課
題とするものである。
DISCLOSURE OF THE INVENTION In the present invention, in the ion-exchange membrane method electrolysis using an oxygen cathode, the present invention investigates and prevents the deterioration of the oxygen cathode during electrolysis and during electrolysis termination. The challenge is to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、塩化アルカリ金属水溶液を酸素陰極を使
用するイオン交換膜法で電解する際の陰極の劣化防止の
確立を課題として鋭意研究を重ねた結果本発明を完成す
るに至った。
In order to solve the above-mentioned problems, the inventors of the present invention have earnestly aimed at the establishment of prevention of deterioration of the cathode when electrolyzing an aqueous alkali metal chloride solution by an ion exchange membrane method using an oxygen cathode. As a result of repeated research, the present invention has been completed.

【0012】すなわち、(1)塩化アルカリ金属水溶液
を酸素陰極を使用するイオン交換膜法電解で電解する方
法において、電解中に苛性アルカリ水溶液に含まれる過
酸化水素を分解する化学処理を行うことを特徴とする酸
素陰極の保護方法。 (2)化学処理が活性炭処理であることを特徴とする上
記(1)記載の酸素陰極の保護方法。 (3)化学処理がヒドラジン処理であることを特徴とす
る上記(1)記載の酸素陰極の保護方法。 (4)塩化アルカリ金属水溶液を酸素陰極を使用するイ
オン交換膜法電解で電解する方法において、電解停止中
に水素ガスを飽和した水または苛性アルカリ水溶液を陰
極室に満たすことを特徴とする酸素陰極の保護方法であ
る。
That is, (1) in a method of electrolyzing an aqueous alkali metal chloride solution by ion exchange membrane electrolysis using an oxygen cathode, a chemical treatment for decomposing hydrogen peroxide contained in the aqueous caustic alkali solution during electrolysis is performed. Characteristic method of protecting oxygen cathode. (2) The method for protecting an oxygen cathode according to (1) above, wherein the chemical treatment is activated carbon treatment. (3) The method for protecting an oxygen cathode according to (1) above, wherein the chemical treatment is hydrazine treatment. (4) In the method of electrolyzing an aqueous solution of an alkali metal chloride by ion exchange membrane electrolysis using an oxygen cathode, the cathode chamber is filled with water saturated with hydrogen gas or an aqueous solution of caustic alkali while the electrolysis is stopped. Is a method of protection.

【0013】苛性アルカリ水溶液を化学処理し苛性アル
カリ水溶液中の過酸化水素を分解することは電解中での
劣化防止であり、水素ガスを飽和した水または苛性アル
カリ水溶液を陰極室に満たすことは電解停止中での劣化
防止である。
Chemically treating the caustic aqueous solution to decompose hydrogen peroxide in the caustic aqueous solution is to prevent deterioration during electrolysis, and filling the cathode chamber with hydrogen gas-saturated water or caustic aqueous solution is to prevent electrolysis. Preventing deterioration during stoppage.

【0014】先ず、電解中での劣化防止について説明す
る。塩化アルカリ金属水溶液の酸素陰極を使用するイオ
ン交換膜法電解において、電解中に酸素陰極が劣化して
電圧が上昇するという現象が見られた。酸素陰極の劣化
原因を検討した結果、次の結論に到達した。すなわち、
電解中に酸素陰極で一部生成する過酸化水素が陰極液中
に常時存在し、酸素陰極の構成成分である活性炭や貴金
属系触媒を酸化し、その結果酸素陰極の活性部が劣化す
るということである。そこで、電解中に陰極液中より過
酸化水素を除けばよいと考え、種々検討の結果本発明を
完成するに至った。
First, prevention of deterioration during electrolysis will be described. In the ion exchange membrane method electrolysis using an oxygen cathode of an aqueous alkali metal chloride solution, a phenomenon was observed in which the oxygen cathode deteriorates during electrolysis and the voltage rises. As a result of examining the cause of deterioration of the oxygen cathode, the following conclusion was reached. That is,
The fact that hydrogen peroxide, which is partially generated at the oxygen cathode during electrolysis, is always present in the catholyte and oxidizes the activated carbon and precious metal-based catalysts that are components of the oxygen cathode, resulting in deterioration of the active part of the oxygen cathode. Is. Therefore, it was thought that hydrogen peroxide should be removed from the catholyte during electrolysis, and as a result of various studies, the present invention was completed.

【0015】本発明では、陰極液中の過酸化水素を分解
するために化学処理をするが、化学処理としては活性炭
処理またはヒドラジン処理が好ましい。活性炭処理の方
法としては、活性炭を適切な塔に充填し、そこに陰極液
を通す方法や活性炭と陰極液をスラリー状態で混合しそ
の後適切な分離機で活性炭と陰極液を分ける方法でもよ
い。
In the present invention, a chemical treatment is carried out in order to decompose the hydrogen peroxide in the catholyte, but the activated carbon treatment or hydrazine treatment is preferable as the chemical treatment. The activated carbon treatment method may be a method in which activated carbon is packed in a suitable column and the catholyte is passed therethrough, or a method in which activated carbon and catholyte are mixed in a slurry state and then the activated carbon and catholyte are separated by an appropriate separator.

【0016】使用する活性炭の形状は特に限定されず、
粒状、粉状などいかなる形状のものも使用できる。活性
炭の種類、製法により酸素陰極の活性を劣化させる重金
属などの不純物を含むことがある。その場合は酸洗浄な
ど適切な前処理をし不純物の問題のない程度まで除いて
から使用するのがよい。
The shape of the activated carbon used is not particularly limited,
Any shape such as granular or powdery can be used. Depending on the type of activated carbon and the manufacturing method, it may contain impurities such as heavy metals that deteriorate the activity of the oxygen cathode. In that case, it is preferable to use an appropriate pretreatment such as acid washing to remove impurities to the extent that there is no problem.

【0017】また、ヒドラジン処理はヒドラジンまたは
ヒドラジン水溶液を適当量ポンプなどを使用して、苛性
アルカリ水溶液中に注入する方法がよい。使用するヒド
ラジンは硫酸ヒドラジン、塩酸ヒドラジンなどの塩も使
用できるが、それらを使用すると苛性アルカリ製品中の
陰イオン性不純物が増えるので、塩でないものの方が好
ましい。使用するヒドラジンまたはヒドラジン水溶液は
酸素陰極の活性を低下させる重金属のような不純物を含
まないものがよい。
The hydrazine treatment is preferably carried out by injecting hydrazine or an aqueous hydrazine solution into an aqueous caustic alkali solution using an appropriate amount of a pump or the like. As the hydrazine to be used, salts such as hydrazine sulfate and hydrazine hydrochloride can also be used. However, since the use of these increases the anionic impurities in the caustic product, those not salts are preferred. The hydrazine or hydrazine aqueous solution used should be free of impurities such as heavy metals that reduce the activity of the oxygen cathode.

【0018】苛性アルカリ水溶液中に添加するヒドラジ
ンの量は、陰極で生成する過酸化水素と当量か当量より
若干多くすることが好ましい。ヒドラジンの添加量が少
ないと酸素陰極の劣化防止が不充分になるので好ましく
ない。
The amount of hydrazine added to the caustic aqueous solution is preferably equivalent to or slightly larger than the equivalent amount of hydrogen peroxide produced at the cathode. If the amount of hydrazine added is small, the deterioration of the oxygen cathode cannot be sufficiently prevented, which is not preferable.

【0019】活性炭処理とヒドラジン処理を併用しても
差し支えないのは勿論である。この場合は、活性炭処理
で完全に分解できなかった過酸化水素を後でヒドラジン
で仕上げ処理する方法とか、ヒドラジンを過酸化水素の
当量よりやや少なめに一定量添加し、後で活性炭で仕上
げ処理するとか種々の方法が考えられる。
It goes without saying that the activated carbon treatment and the hydrazine treatment may be used in combination. In this case, hydrogen peroxide that could not be completely decomposed by activated carbon treatment is later treated with hydrazine, or a certain amount of hydrazine is added a little less than the equivalent amount of hydrogen peroxide, and then treated with activated carbon. Various methods are conceivable.

【0020】苛性アルカリ中の過酸化水素を分解する方
法としては本発明以外の各種還元剤を添加することが考
えられるが、それらの方法は苛性アルカリ製品の品質低
下を招いたり、酸素陰極の活性を低下させたりするので
好ましくない。本発明において、化学処理する苛性ソー
ダ水溶液の温度はとくに限定されないが、温度が高い程
過酸化水素の分解速度が上昇するので50℃以上100
℃以下が好ましい。
As a method of decomposing hydrogen peroxide in caustic alkali, it is possible to add various reducing agents other than those of the present invention, but those methods lead to deterioration of the quality of caustic products and the activity of oxygen cathode. Is lowered, which is not preferable. In the present invention, the temperature of the caustic soda aqueous solution to be chemically treated is not particularly limited, but the higher the temperature, the higher the decomposition rate of hydrogen peroxide.
C. or less is preferable.

【0021】次に、電解停止中の劣化防止方法を説明す
る。酸素陰極を使用するイオン交換膜法電解において、
電解停止中に酸素陰極が劣化して電圧が上昇するという
現象が見られた。酸素陰極が電解停止中になぜ劣化する
かは未だ十分に分かっていない。上記したように、特開
昭60−221595号公報には酸素陰極中の触媒層中
の活性炭に吸着している酸素の不均一性によって起こる
局部電池現象による活性炭カーボンの腐食が原因である
と述べているが、本発明者らは次のような機構によるも
のであろうと考えている。すなわち、電解停止時、酸素
陰極には酸素をいろいろな程度吸着している部分が存在
し、酸素の多い部分と酸素の少ない部分との間で電池を
形成し、この局部電池現象により酸素陰極の活性点(触
媒層中の活性炭のみならず触媒の活性点も含めて)が酸
化され、その結果として酸素陰極が劣化するというもの
である。
Next, a method of preventing deterioration while electrolysis is stopped will be described. In the ion exchange membrane method electrolysis using an oxygen cathode,
A phenomenon was observed in which the oxygen cathode deteriorated and the voltage increased while the electrolysis was stopped. It is not yet fully understood why the oxygen cathode deteriorates during electrolysis. As mentioned above, JP-A-60-221595 describes that the cause is the corrosion of activated carbon due to the local cell phenomenon caused by the non-uniformity of oxygen adsorbed on the activated carbon in the catalyst layer in the oxygen cathode. However, the present inventors believe that the mechanism is as follows. That is, when electrolysis is stopped, the oxygen cathode has a portion that adsorbs oxygen to various extents, and a battery is formed between a portion having a large amount of oxygen and a portion having a small amount of oxygen. The active sites (including the active sites of the catalyst as well as the active carbon in the catalyst layer) are oxidized, resulting in deterioration of the oxygen cathode.

【0022】酸素陰極の電解停止時の劣化機構より、劣
化を防止する方法は電解停止中も酸素陰極が局部電池現
象により酸化されないようにすることであると考え、本
発明を完成することができた。すなわち、電解停止中に
陰極室を水素ガスを飽和した水または苛性アルカリ水溶
液を満たすことにより、酸素陰極の劣化を防止すること
ができる。陰極室を水素ガスを飽和した水または苛性ア
ルカリ水溶液を満たす方法としては、陰極室を水または
苛性アルカリ水溶液で満たし、その中に水素ガスを吹き
込む方法でもよいし、予め水素ガスを飽和した水または
苛性アルカリ水溶液を外部で調製し、その液を電解槽の
陰極室に連続的または間歇的に加える方法でもよい。
According to the deterioration mechanism of the oxygen cathode when the electrolysis is stopped, the method of preventing the deterioration can be considered to prevent the oxygen cathode from being oxidized by the local cell phenomenon even during the electrolysis stop, and the present invention can be completed. It was That is, the deterioration of the oxygen cathode can be prevented by filling the cathode chamber with water saturated with hydrogen gas or a caustic aqueous solution while the electrolysis is stopped. As a method of filling the cathode chamber with water or a caustic aqueous solution saturated with hydrogen gas, a method of filling the cathode chamber with water or a caustic aqueous solution, and blowing hydrogen gas into it, or water saturated with hydrogen gas in advance or A method in which a caustic aqueous solution is prepared externally and the solution is continuously or intermittently added to the cathode chamber of the electrolytic cell may be used.

【0023】水素ガスを飽和した水または苛性アルカリ
水溶液を電解停止中の陰極室に入れておくと、なぜ酸素
陰極の劣化を防止できるかは未だ十分に解明されていな
いが、本発明者らは次のような機構であろうと考えてい
る。すなわち、液に溶けている水素ガスは減極剤として
作用し、局部電池反応で酸化されて消費されるが、一方
水素が酸化されるので酸素陰極の活性点の酸化は防止さ
れ、結果として酸素陰極の劣化を防ぐことができるとい
うものである。
It has not been sufficiently clarified why the deterioration of the oxygen cathode can be prevented by putting water saturated with hydrogen gas or aqueous caustic solution in the cathode chamber while the electrolysis is stopped. I think that the mechanism is as follows. That is, the hydrogen gas dissolved in the liquid acts as a depolarizer and is oxidized and consumed in the local cell reaction, but on the other hand, since hydrogen is oxidized, the oxidation of the active site of the oxygen cathode is prevented, and as a result, the oxygen is The deterioration of the cathode can be prevented.

【0024】本発明において、陽極室は電解停止中は空
にしておくか、または純水をフラッシングしておくこと
が好ましい。殊に陰極室に水素ガスを飽和した苛性アル
カリ水溶液を満たしている場合は、陰極室からイオン交
換膜を通って拡散してくる苛性アルカリによる陽極コー
ティングの劣化を防ぐため純水をフラッシングするのが
よい。
In the present invention, the anode chamber is preferably emptied while the electrolysis is stopped or is flushed with pure water. In particular, when the cathode chamber is filled with a caustic aqueous solution saturated with hydrogen gas, it is necessary to flush pure water to prevent deterioration of the anode coating due to caustic alkali diffusing from the cathode chamber through the ion exchange membrane. Good.

【0025】本発明において、電解停止中の液の温度は
特に限定されないが、温度が下がり過ぎることにより酸
素陰極が熱収縮などで劣化を受ける危険がある場合は、
液を加温することが好ましい。
In the present invention, the temperature of the liquid while the electrolysis is stopped is not particularly limited, but if there is a risk that the oxygen cathode will be deteriorated due to thermal contraction or the like due to too low temperature,
It is preferable to heat the liquid.

【0026】本発明で使用されるイオン交換膜はパーフ
ルオロ系のスルホン酸単独、カルボン酸単独、スルホン
酸とカルボン酸の2層膜のどれでも使用でき特に限定さ
れない。
The ion exchange membrane used in the present invention is not particularly limited, and any of perfluoro sulfonic acid alone, carboxylic acid alone, and a two-layer membrane of sulfonic acid and carboxylic acid can be used.

【0027】本発明において、使用する陽極、塩化アル
カリ金属水溶液は従来の水素発生型イオン交換膜法電解
で使用されているものと同等のものがよい。また、本発
明は現在公知のあらゆる酸素陰極に適用できるが、活性
部が金または白金系の貴金属系の触媒を担持した活性炭
で構成されている酸素陰極が特に有効である。
In the present invention, the anode and the aqueous solution of alkali metal chloride used are preferably the same as those used in the conventional hydrogen generating ion exchange membrane method electrolysis. Further, the present invention can be applied to all currently known oxygen cathodes, but an oxygen cathode whose active portion is composed of activated carbon carrying a gold or platinum-based noble metal catalyst is particularly effective.

【0028】本発明を図面に基づいて説明する。図1は
塩化アルカリ金属水溶液を酸素陰極を備えたイオン交換
膜法電解による電解により、苛性アルカリ水溶液を製造
するにあたり、電解中における酸素陰極の劣化を本発明
の一つである酸素陰極を設けた陰極室を通る苛性アルカ
リ水溶液を活性炭処理して劣化を防止する例を示すもの
である。図1において、電解槽1は陽イオン交換膜3に
より陽極2を備えた陽極室4と酸素陰極5を備えた陰極
室6とに仕切られ、また陰極室6は酸素陰極5により苛
性アルカリ水溶液で満たされた電解液室7と酸素含有ガ
ス供給室8とに仕切られる。
The present invention will be described with reference to the drawings. FIG. 1 shows the deterioration of the oxygen cathode during electrolysis by the electrolysis of the aqueous solution of alkali metal chloride by the ion exchange membrane method electrolysis equipped with the oxygen cathode. It shows an example in which the caustic aqueous solution passing through the cathode chamber is treated with activated carbon to prevent deterioration. In FIG. 1, an electrolytic cell 1 is partitioned by a cation exchange membrane 3 into an anode chamber 4 having an anode 2 and a cathode chamber 6 having an oxygen cathode 5, and the cathode chamber 6 is made of a caustic aqueous solution by an oxygen cathode 5. It is partitioned into a filled electrolyte chamber 7 and an oxygen-containing gas supply chamber 8.

【0029】陽極室4には被電解液である塩化アルカリ
金属水溶液を被電解液供給口9から供給し被電解液流出
口10から流出する、流出した被電解液は被電解液貯留
槽20に貯留され、ここで新しい被電解液と混合されて
再び被電解液供給口9から陽極室4に供給され循環す
る。また陽極室4には生成した塩素ガスを排出する塩素
ガス排出口11が設けられている。電解液室7は生成し
た苛性アルカリ水溶液で満たされており、常に一定濃度
の苛性アルカリ水溶液が電解液室7に設けられた苛性ア
ルカリ水流出口12から流出し、送液配管13と通って
苛性アルカリ受槽15に送られる。
An alkali metal chloride aqueous solution as an electrolyzed solution is supplied to the anode chamber 4 from the electrolyzed solution supply port 9 and flows out from the electrolyzed solution outlet 10. The outflowed electrolyzed solution is stored in the electrolyzed solution storage tank 20. It is stored, mixed there with a new electrolyzed solution, supplied again from the electrolyzed solution supply port 9 to the anode chamber 4, and circulated. Further, the anode chamber 4 is provided with a chlorine gas discharge port 11 for discharging the generated chlorine gas. The electrolytic solution chamber 7 is filled with the generated caustic alkaline aqueous solution, and the caustic alkaline aqueous solution having a constant concentration always flows out from the caustic alkaline water outlet 12 provided in the electrolytic solution chamber 7, passes through the liquid sending pipe 13, and is caustic alkaline. It is sent to the receiving tank 15.

【0030】送液配管13の途中の苛性アルカリ受槽1
5の手前に活性炭充填塔16を設け、送液配管13を通
って送られてきた苛性アルカリ水溶液は、この塔を通過
する時に活性炭処理され苛性アルカリ水溶液中に含まれ
る過酸化水素が活性炭に吸着除去される。過酸化水素を
除去した苛性アルカリ水溶液は製品として苛性アルカリ
受槽15にはいる。製品苛性アルカリ水溶液は苛性アル
カリ受槽15から製品流出口を通って系外に排出され
る。製品苛性アルカリ水溶液の一部は還流管14を通っ
て再び電解液室7に還流されるが、途中注加水注入口1
7から注加水を注入して適当な濃度とする。なお18は
(酸素含有)ガス供給口、19は(酸素含有)ガス排出
口である。
Caustic alkali receiving tank 1 in the middle of the liquid sending pipe 13
5 is provided with an activated carbon packed tower 16 and the caustic aqueous solution sent through the liquid supply pipe 13 is treated with activated carbon when passing through this tower, and hydrogen peroxide contained in the caustic aqueous solution is adsorbed on the activated carbon. To be removed. The caustic aqueous solution from which hydrogen peroxide has been removed enters the caustic receiving tank 15 as a product. The product caustic aqueous solution is discharged from the caustic receiving tank 15 to the outside of the system through the product outlet. A part of the product caustic aqueous solution is returned to the electrolytic solution chamber 7 again through the reflux pipe 14, and the water injection port 1
Inject water from 7 to give an appropriate concentration. Reference numeral 18 is a (oxygen-containing) gas supply port, and 19 is a (oxygen-containing) gas discharge port.

【0031】図2は図1に示したと同様の酸素陰極を備
えたイオン交換膜法電解槽により塩化アルカリ金属水溶
液を電解して苛性アルカリ水溶液を製造する工程を示し
た図である。図2に示した工程は本発明の別の劣化防止
法で電解中における酸素陰極の劣化を防止する例であ
る。すなわち、陰極室を通る苛性アルカリ水溶液をヒド
ラジン処理して酸素陰極の劣化防止をする例を示すもの
である。
FIG. 2 is a diagram showing a step of producing an aqueous caustic alkali solution by electrolyzing an aqueous alkali metal chloride solution in an ion-exchange membrane electrolytic cell equipped with an oxygen cathode similar to that shown in FIG. The process shown in FIG. 2 is an example of preventing deterioration of the oxygen cathode during electrolysis by another deterioration prevention method of the present invention. That is, it shows an example in which the caustic aqueous solution passing through the cathode chamber is treated with hydrazine to prevent deterioration of the oxygen cathode.

【0032】図2において、電解槽1および付属設備は
図1で説明したものと苛性アルカリ水溶液をヒドラジン
処理を行う付属設備を除いて同じであり、設備の要部の
符号は図1の場合と同じ符号を用いた。
In FIG. 2, the electrolytic cell 1 and the auxiliary equipment are the same as those described in FIG. 1 except the auxiliary equipment for treating the caustic aqueous solution with hydrazine, and the reference numerals of the main parts of the equipment are the same as those in FIG. The same code was used.

【0033】図2において、苛性アルカリ水溶液をヒド
ラジン処理は、電解液室7に設けられた製品流出口12
から流出した苛性ソーダ水溶液は送液配管13と通って
苛性アルカリ受槽15に送られるが、送液配管13の途
中の苛性アルカリ受槽15の手前にヒドラジン注入口2
1を設けヒドラジンを注入する。ヒドラジンを加えた苛
性ソーダ水溶液は苛性ソーダ受槽15中で保存される間
に含まれた過酸化水素が分解される。過酸化水素がなく
なった製品苛性ソーダ水溶液は苛性アルカリ受槽15の
製品流出口から系外に排出される。製品苛性アルカリ水
溶液の一部は還流管14を通って再び電解液室7に還流
されるが、途中注加水注入口17から注加水を注入して
適当な濃度とする。
In FIG. 2, the hydrazine treatment of the caustic aqueous solution is performed by the product outlet 12 provided in the electrolyte chamber 7.
The caustic soda aqueous solution flowing out of the tank is sent to the caustic alkali receiving tank 15 through the liquid sending pipe 13, but before the caustic alkali receiving tank 15 in the middle of the liquid sending pipe 13, the hydrazine injection port 2
Place 1 and inject hydrazine. Hydrogen peroxide contained in the caustic soda aqueous solution containing hydrazine is decomposed while being stored in the caustic soda receiving tank 15. The product caustic soda aqueous solution free of hydrogen peroxide is discharged from the product outlet of the caustic alkali receiving tank 15 to the outside of the system. A part of the product caustic aqueous solution is returned to the electrolyte chamber 7 through the reflux pipe 14 again, and pouring water is injected from the pouring water injection port 17 to an appropriate concentration.

【0034】図3は電解停止中の酸素陰極の劣化防止を
説明するための説明図である。図3において、電解槽1
および付属設備は図1で説明したものと活性炭塔で行う
過酸化水素除去処理のための付属設備を除いて同じであ
り、設備の要部の符号は図1の場合と同じ符号を用い
た。図3において、電解停止中の酸素陰極の劣化防止の
ために行う方法は、予め苛性アルカリ受槽15で水素ガ
ス吹込み口22から水素ガスを吹込んで水素ガスを飽和
した水または苛性アルカリ水溶液を造り、この水または
苛性アルカリ水溶液をポンプで陰極室6に送液して電解
停止中陰極室6この水素ガスを飽和した液で満たして置
く方法である。停止に当たって陰極室6の苛性アルカリ
は苛性アルカリ受槽10に戻しておく。
FIG. 3 is an explanatory view for explaining the prevention of deterioration of the oxygen cathode while the electrolysis is stopped. In FIG. 3, the electrolytic cell 1
The auxiliary equipment is the same as that described in FIG. 1 except for the auxiliary equipment for the hydrogen peroxide removal treatment performed in the activated carbon tower, and the reference numerals of the main parts of the equipment are the same as those in FIG. In FIG. 3, the method for preventing the deterioration of the oxygen cathode while the electrolysis is stopped is as follows. In the caustic receiving tank 15, hydrogen gas is blown from the hydrogen gas blowing port 22 to prepare water saturated with hydrogen gas or a caustic alkaline aqueous solution. This water or caustic aqueous solution is sent to the cathode chamber 6 by a pump, and the cathode chamber 6 is filled with the saturated hydrogen gas while the electrolysis is stopped. When stopping, the caustic alkali in the cathode chamber 6 is returned to the caustic alkali receiving tank 10.

【0035】[0035]

【実施例】イオン交換膜として、デュポン社のナフィオ
ン膜を使用し、図1に示した電解槽を使用し、次の条件
で電解した。 通電量 : 30A 電流密度 : 30A/dm2 酸素陰極 : ガス拡散電極(Pt 0.56
mg/cm2 ) 陽極 : DSA (RuO2 +Ti
2 ) 極間距離 : 15mm 平均苛性濃度 : 32% 平均温度 : 90℃ NaCl/陽極液 : 200g/リットル 酸素含有ガス : 酸素(理論量の1.2倍) 上記条件表からわかるように、酸素陰極のガス拡散電極
は酸化触媒としては白金触媒を用い、陽極には括弧内に
示した酸化金属製電極を用い、被電解液としては200
g/リットルの濃度の塩化ナトリウム水溶液を用いた。
EXAMPLE A Nafion membrane manufactured by DuPont was used as an ion exchange membrane, and the electrolytic cell shown in FIG. 1 was used to perform electrolysis under the following conditions. Energization amount: 30 A Current density: 30 A / dm 2 Oxygen cathode: Gas diffusion electrode (Pt 0.56
mg / cm 2 ) Anode: DSA (RuO 2 + Ti
O 2 ) Distance between electrodes: 15 mm Average caustic concentration: 32% Average temperature: 90 ° C. NaCl / Anolyte: 200 g / liter Oxygen-containing gas: Oxygen (1.2 times the theoretical amount) Oxygen The cathode gas diffusion electrode uses a platinum catalyst as the oxidation catalyst, the anode uses the metal oxide electrode shown in parentheses, and the electrolyte solution is 200
An aqueous solution of sodium chloride having a concentration of g / liter was used.

【0036】(実施例1)図1に示したイオン交換膜法
電解槽1に付属設備として送液配管13の途中に活性炭
充填塔16を設ける方法で、循環苛性ソーダ水溶液を処
理して苛性ソーダ水溶液中の過酸化水素を分解除去し
た。使用した活性炭は粒状活性炭(武田薬品工業株式会
社製商品名白鷺W)を塩酸で予め洗浄し金属類を除去し
たものである。粒状活性炭301を内径300mmのP
TEF製処理槽に充填して活性炭充填塔16とし、この
活性炭充填塔16に32%苛性ソーダ水溶液を400リ
ットル/時間の流量で通した。この処理により循環苛性
ソーダ水溶液中の過酸化水素は0.1ppm以下に維持
できた。この処理方法で1ヶ月間電解を続けたところ電
解電圧の上昇は見られなかった。
(Example 1) A circulating caustic soda solution was treated in a caustic soda solution by a method of installing an activated carbon packed tower 16 in the middle of a liquid sending pipe 13 as an auxiliary equipment in the ion exchange membrane electrolytic cell 1 shown in FIG. Hydrogen peroxide was decomposed and removed. The activated carbon used was granular activated carbon (Shirasagi W, trade name, manufactured by Takeda Pharmaceutical Co., Ltd.) that was previously washed with hydrochloric acid to remove metals. Granular activated carbon 301 with P of 300 mm inside diameter
A TEF treatment tank was filled with the activated carbon packed tower 16, and a 32% caustic soda aqueous solution was passed through the activated carbon packed tower 16 at a flow rate of 400 liters / hour. By this treatment, hydrogen peroxide in the circulating caustic soda aqueous solution could be maintained at 0.1 ppm or less. When electrolysis was continued for 1 month by this treatment method, no increase in electrolysis voltage was observed.

【0037】(実施例2)図2に示したイオン交換膜法
電解槽1に付属設備として送液配管13の途中に設けた
ヒドラジン注入口19からヒドラジンを注入する方法に
より循環苛性ソーダ水溶液中の過酸化水素を分解除去し
た。使用したヒドラジンは試薬特級の水加ヒドラジンで
あり、ヒドラジンを注加水に溶解して循環苛性ソーダ水
溶液中に加えた。ヒドラジンの添加量は0.02mmo
l/時間とした。この処理により循環苛性ソーダ水溶液
中の過酸化水素は0.1ppm以下に維持できた。この
処理方法で1ヶ月間電解を続けたところ電解電圧の上昇
は見られなかった。
(Example 2) A method for injecting hydrazine from a hydrazine injection port 19 provided in the middle of a liquid sending pipe 13 as an auxiliary equipment to the ion exchange membrane electrolytic cell 1 shown in FIG. Hydrogen oxide was decomposed and removed. The hydrazine used was a reagent grade hydrated hydrazine, and the hydrazine was dissolved by pouring and added to the circulating caustic soda aqueous solution. Addition amount of hydrazine is 0.02mmo
1 / hour. By this treatment, hydrogen peroxide in the circulating caustic soda aqueous solution could be maintained at 0.1 ppm or less. When electrolysis was continued for 1 month by this treatment method, no increase in electrolysis voltage was observed.

【0038】(比較例1)図1に示したイオン交換膜法
電解槽1において活性炭処理を行わないで電解を行った
ところ、循環苛性ソーダ水溶液中の過酸化水素濃度は1
0mg/リットルとなった。この条件で1ヶ月間電解を
続けたところ電解電圧が15mV上昇した。
(Comparative Example 1) When electrolysis was carried out in the electrolytic cell 1 for ion exchange membrane method shown in FIG. 1 without treatment with activated carbon, the hydrogen peroxide concentration in the circulating caustic soda solution was 1
It became 0 mg / liter. When electrolysis was continued for 1 month under these conditions, the electrolysis voltage increased by 15 mV.

【0039】次に電解を停止し、以下の実施例3、実施
例4および比較例2に示す条件で電解槽を保管し、電解
を再開した場合の電解電圧変化を表1に示す。 表1 電解停止条件例 電解停止前の電圧 電解停止後の電圧 −−−−−−− −−−−−−−− −−−−−−−− 実施例3 2.285V 2.284V 実施例4 2.294V 2.290V 比較例2 2,279V 2.397V
Next, Table 1 shows the change in electrolysis voltage when the electrolysis was stopped, the electrolytic cell was stored under the conditions shown in the following Examples 3, 4 and Comparative Example 2, and the electrolysis was restarted. Table 1 Examples of electrolysis stopping conditions Voltage before electrolysis is stopped Voltage after electrolysis is stopped ------------------------- Example 3 2.285V 2.284V Example 4 2.294V 2.290V Comparative Example 2 2,279V 2.397V

【0040】(実施例3)図3に示した電解設備で苛性
ソーダ受槽15で水素ガスを純水に吹き込んで飽和し、
その水素を飽和した純水をポンプで陰極室6に送液し、
陰極室6を満水とした状態で2日間電解停止を行った。
陽極室は純水をフラッシングし、電解槽1は80℃に維
持した。
(Example 3) In the electrolytic equipment shown in FIG. 3, hydrogen gas was blown into pure water in the caustic soda receiving tank 15 to saturate it.
The pure water saturated with hydrogen was pumped to the cathode chamber 6,
Electrolysis was stopped for 2 days while the cathode chamber 6 was filled with water.
The anode chamber was flushed with pure water, and the electrolytic cell 1 was maintained at 80 ° C.

【0041】(実施例4)図3に示した電解設備で苛性
ソーダ受槽15で水素ガスを32%濃度の苛性ソーダ水
溶液に飽和し、その苛性ソーダ水溶液をポンプで陰極室
6に送液して陰極室6をこの水素ガスを飽和した液で満
たして置く方法で2日間電解停止を行った。陽極室は純
水をフラッシングし、電解槽1は80℃に維持した。
(Embodiment 4) In the electrolysis equipment shown in FIG. 3, hydrogen gas is saturated in a caustic soda aqueous solution having a concentration of 32% in the caustic soda receiving tank 15, and the caustic soda aqueous solution is pumped to the cathode chamber 6 to feed the cathode chamber 6. Electrolysis was stopped for 2 days by a method in which the hydrogen gas was filled with a saturated liquid. The anode chamber was flushed with pure water, and the electrolytic cell 1 was maintained at 80 ° C.

【0042】(比較例2)図3に示した電解設備で陰極
室6に純水を満たして置く方法で2日間電解停止を行っ
た。陽極室は純水をフラッシングし、電解槽1は80℃
に維持した。
(Comparative Example 2) Electrolysis was stopped for 2 days by a method in which the cathode chamber 6 was filled with pure water in the electrolytic equipment shown in FIG. The anode chamber is flushed with pure water, and the electrolytic cell 1 is at 80 ° C.
Maintained at.

【0043】表1から実施例3および実施例4の条件で
酸素電極を保存する方法では再開時の電解電圧は停止前
に比べてむしろ低いことが分かる。これに対して比較例
2の条件では再開時の電解電圧は停止前に比べ上昇が認
められる。
From Table 1, it can be seen that in the method of storing the oxygen electrode under the conditions of Example 3 and Example 4, the electrolytic voltage at the time of restart is rather lower than that before the stop. On the other hand, under the conditions of Comparative Example 2, the electrolytic voltage at the time of restart is higher than that before the stop.

【0044】[0044]

【発明の効果】本発明の方法により電解中および電解停
止中での酸素陰極の劣化が防止され、長期間にわたり低
い電解電圧が維持できるので、塩化ナトリウム水溶液か
ら経済的な苛性アルカリ水溶液の製造ができる。
The method of the present invention prevents deterioration of the oxygen cathode during electrolysis and during electrolysis, and can maintain a low electrolysis voltage for a long period of time. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解中に苛性アルカリ水溶液を活性炭処理する
本発明の方法を示す工程図
FIG. 1 is a process diagram showing the method of the present invention in which a caustic aqueous solution is treated with activated carbon during electrolysis.

【図2】電解中に苛性アルカリ水溶液をヒドラジン処理
する本発明の方法を示す工程図
FIG. 2 is a process chart showing the method of the present invention in which a caustic aqueous solution is treated with hydrazine during electrolysis.

【図3】電解停止中に処理槽の陰極室に水素を飽和した
苛性アルカリ水溶液を供給する本発明の方法を示す工程
FIG. 3 is a process diagram showing the method of the present invention for supplying a hydrogen-saturated aqueous caustic alkali solution to the cathode chamber of the treatment tank while the electrolysis is stopped.

【図4】塩化アルカリ金属水溶液を酸素陰極を使用する
イオン交換膜法電解で電解する従来の方法を示す工程図
FIG. 4 is a process diagram showing a conventional method of electrolyzing an aqueous alkali metal chloride solution by ion exchange membrane electrolysis using an oxygen cathode.

【符号の説明】[Explanation of symbols]

1 電解槽 21 ヒドラジン注入
口 2 陽極 22 水素ガス吹込み
口 3 陽イオン交換膜 23 電解槽 4 陽極室 24 陽極 5 酸素陰極 25 陽イオン交換膜 6 陰極室 26 陽極室 7 電解液室 27 酸素陰極 8 ガス供給室 28 陰極室 9 被電解液供給口 29 ガス供給室 10 被電解液流出口 30 電解液室 11 塩素ガス排出口 31 被電解液供給
口 12 苛性アルカリ水流出口 32 被電解液流出
口 13 送液配管 33 塩素ガス排出
口 14 還流管 34 流出口 15 苛性アルカリ受槽 35 供給口 16 活性炭充填塔 36 ガス供給口 17 注加水供給口 18 酸素含有ガス供給口 19 酸素含有ガス流出口 20 被電解液貯留槽
1 Electrolyzer 21 Hydrazine inlet 2 Anode 22 Hydrogen gas inlet 3 Cation exchange membrane 23 Electrolyzer 4 Anode chamber 24 Anode 5 Oxygen cathode 25 Cation exchange membrane 6 Cathode chamber 26 Anode chamber 7 Electrolyte chamber 27 Oxygen cathode 8 Gas supply chamber 28 Cathode chamber 9 Electrolyte solution supply port 29 Gas supply chamber 10 Electrolyte solution outlet 30 Electrolyte chamber 11 Chlorine gas outlet 31 Electrolyte solution supply port 12 Caustic alkaline water outlet 32 Electrolyte solution outlet 13 Sending Liquid pipe 33 Chlorine gas discharge port 14 Reflux pipe 34 Outlet port 15 Caustic alkali receiving tank 35 Supply port 16 Activated carbon filling tower 36 Gas supply port 17 Pouring supply port 18 Oxygen-containing gas supply port 19 Oxygen-containing gas outlet 20 Electrolyte storage Tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩化アルカリ金属水溶液を酸素陰極を使
用するイオン交換膜法電解で電解する方法において、電
解中に苛性アルカリ水溶液に含まれる過酸化水素を分解
する化学処理を行うことを特徴とする酸素陰極の保護方
法。
1. A method of electrolyzing an aqueous alkali metal chloride solution by ion exchange membrane electrolysis using an oxygen cathode, characterized in that a chemical treatment for decomposing hydrogen peroxide contained in the aqueous caustic alkali solution is performed during the electrolysis. Oxygen cathode protection method.
【請求項2】 化学処理が活性炭処理であることを特徴
とする請求項1記載の酸素陰極の保護方法。
2. The method for protecting an oxygen cathode according to claim 1, wherein the chemical treatment is activated carbon treatment.
【請求項3】 化学処理がヒドラジン処理であることを
特徴とする請求項1記載の酸素陰極の保護方法。
3. The method for protecting an oxygen cathode according to claim 1, wherein the chemical treatment is hydrazine treatment.
【請求項4】 塩化アルカリ金属水溶液を酸素陰極を使
用するイオン交換膜法電解で電解する方法において、電
解停止中に水素ガスを飽和した水または苛性アルカリ水
溶液を陰極室に満たすことを特徴とする酸素陰極の保護
方法。
4. A method of electrolyzing an aqueous solution of an alkali metal chloride by ion exchange membrane electrolysis using an oxygen cathode, characterized in that the cathode chamber is filled with water saturated with hydrogen gas or an aqueous solution of caustic alkali while the electrolysis is stopped. Oxygen cathode protection method.
JP4088313A 1992-03-13 1992-03-13 Oxygen cathode protection method Expired - Fee Related JPH0715152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4088313A JPH0715152B2 (en) 1992-03-13 1992-03-13 Oxygen cathode protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4088313A JPH0715152B2 (en) 1992-03-13 1992-03-13 Oxygen cathode protection method

Publications (2)

Publication Number Publication Date
JPH05255882A JPH05255882A (en) 1993-10-05
JPH0715152B2 true JPH0715152B2 (en) 1995-02-22

Family

ID=13939447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4088313A Expired - Fee Related JPH0715152B2 (en) 1992-03-13 1992-03-13 Oxygen cathode protection method

Country Status (1)

Country Link
JP (1) JPH0715152B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536054B2 (en) * 2001-02-22 2004-06-07 三井化学株式会社 How to start operation of electrolytic cell
DE102012204040A1 (en) * 2012-03-15 2013-09-19 Bayer Materialscience Aktiengesellschaft Process for the electrolysis of alkali chlorides with oxygen-consuming electrodes
DE102012204042A1 (en) * 2012-03-15 2013-09-19 Bayer Materialscience Aktiengesellschaft Process for the electrolysis of alkali chlorides with oxygen-consuming electrodes in micro-gap arrangement
CN103014748B (en) * 2012-12-25 2015-12-23 北京化工大学 Nearly zero pole span oxygen cathode ion membrane electrolysis device and application thereof
CN103614740B (en) * 2013-12-13 2016-05-25 攀枝花钢企欣宇化工有限公司 Electrolytic cell stable-pressure device

Also Published As

Publication number Publication date
JPH05255882A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
JP2525553B2 (en) Electrodialysis tank and electrodialysis method
US6235186B1 (en) Apparatus for producing electrolytic water
JP3689541B2 (en) Seawater electrolyzer
JPH0813356B2 (en) Water treatment method and apparatus using electrolytic ozone
JPH07214063A (en) Production of electrolytic acidic water and producting device therefor
JP3421021B2 (en) Electrolysis method of alkali chloride
JP3875922B2 (en) Electrolysis cell for hydrogen peroxide production
JPH0715152B2 (en) Oxygen cathode protection method
JP3140743B2 (en) Method of shutting down membrane electrolyzer with oxygen reduction cathode
JP2004300510A (en) Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode
JP3875808B2 (en) Electrode for producing hydrogen peroxide and method for producing the same
JPH08296076A (en) Production of aqueous solution of hydrogen peroxide and device therefor
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
JPH10286573A (en) Electrolytic cell for acidic water and alkaline water preparation
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JP3408462B2 (en) Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell
JP3304481B2 (en) Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide
JP2024000171A (en) Electrolytic device
HU180463B (en) Process for producing halogenes and alkali-metal-hydrocides with elektrolysis of alkali-metal-halogenides
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell
JPH10324988A (en) Apparatus for production of ozone-and hydrogen peroxide-containing water and production therefor
JP4387734B2 (en) Method for producing hydrogen peroxide
JPH09217185A (en) Three-chamber based electrolytic cell
JPH11333457A (en) Production of electrolytic water
JPH08165589A (en) Removing method of chlorate in alkali chloride aqueous solution

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees