JPH11333457A - Production of electrolytic water - Google Patents

Production of electrolytic water

Info

Publication number
JPH11333457A
JPH11333457A JP16293898A JP16293898A JPH11333457A JP H11333457 A JPH11333457 A JP H11333457A JP 16293898 A JP16293898 A JP 16293898A JP 16293898 A JP16293898 A JP 16293898A JP H11333457 A JPH11333457 A JP H11333457A
Authority
JP
Japan
Prior art keywords
water
anode
electrolytic
cathode
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16293898A
Other languages
Japanese (ja)
Inventor
Masashi Tanaka
正志 田中
Masaaki Kato
昌明 加藤
Yoshinori Nishiki
善則 錦
Naoya Hayamizu
直哉 速水
Naoaki Sakurai
直明 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Toshiba Corp filed Critical Permelec Electrode Ltd
Priority to JP16293898A priority Critical patent/JPH11333457A/en
Publication of JPH11333457A publication Critical patent/JPH11333457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic water making method capable of simply washing electrolytic water having washing capacity more excellent than that of electrolytic water made by a conventional electrolizing method. SOLUTION: The anode soln. supplied to a water electrolyzing tank 1 demarcated into two or three chambers by an ion exchange membrane 2 is passed through a cooling jacket 16 before supply to be cooled so as to advance electrolytic reaction at 0-20 V. By performing electrolytic reaction at low temp., a precursor of radicals excellent in washing capacity can be contained in the formed electrolytic water in large quantities and the consumption of electrodes is suppressed to continue stable electrolysis over a long period of time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、洗浄効果が優れたアノ
ード水(酸性水)及び/又はカソード水(アルカリ水)
の製造方法に関し、より詳細には半導体や液晶等の電子
機器の洗浄に使用する洗浄効果の優れたアノード水及び
/又はカソード水を製造するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode water (acidic water) and / or a cathode water (alkali water) having an excellent cleaning effect.
More specifically, the present invention relates to a method for producing anodic water and / or cathodic water having an excellent cleaning effect used for cleaning electronic devices such as semiconductors and liquid crystals.

【0002】[0002]

【従来技術とその問題点】液晶や半導体ウエハー等の高
集積度の電子部品の製造や洗浄には、従来から該用途の
ために特別に調製された硫酸、フッ酸、過酸化水素、塩
酸等が使用されてきた。これらは今後も用途に応じて使
用されるが、それぞれに応じた化学プロセスで製造され
た製品を特別に精製して得られたものであり、製造過程
の触媒等から混入してくる金属成分の除去等を行なうた
めに操作が煩雑で結果的に高価な製品となっている。又
精製操作を丁寧に行なっても電子デバイスの高度化に伴
う許容不純物量の低下に対しては必ずしも十分に対応で
きるものではなく、新たな代替手法が要請されている。
2. Description of the Related Art In the manufacture and cleaning of highly integrated electronic components such as liquid crystals and semiconductor wafers, sulfuric acid, hydrofluoric acid, hydrogen peroxide, hydrochloric acid, etc. conventionally prepared specifically for such applications. Has been used. These will be used in the future depending on the application, but they are obtained by specially refining products manufactured by the corresponding chemical processes, and the metal components mixed in from the catalyst etc. in the manufacturing process The operation is complicated to perform the removal and the like, resulting in an expensive product. Further, even if the refining operation is carefully performed, it is not always possible to sufficiently cope with the decrease in the allowable impurity amount accompanying the advancement of electronic devices, and a new alternative method is required.

【0003】その代替手法の1つとしてオゾン水の使用
があり、特に電気分解により製造した高濃度オゾン水
は、電子デバイスの洗浄用等として極めて有効であるこ
とが知られている。しかしオゾン水単独の使用のみでは
不十分なことがあり、オゾン水の有しない他の機能例え
ば酸化作用及び還元作用を有しかつ金属成分を全く含有
しない処理液の必要性が高まっている。該処理液とし
て、いわゆるアノード水あるいは超酸性水があり、該ア
ノード水は通常pHが2.7 以下で酸化還元電位(OR
P)が1.1 V以上であり、酸化力を有するため、有機物
分解を行ったり金属析出物を溶解して除去する等の効果
を有し、電子デバイスの洗浄用等として僅かではあるが
使用されている。このアノード水製造と同時に前記電解
槽の陰極室ではpHが10以上でORPが0V以下のカソ
ード水が副生する。水の電解という比較的簡単な操作で
製造される酸化性又は還元性を有するいわゆる電解水
(前者を酸性水又はアノード水、後者をカソード水又は
アルカリ水という)を、高純度の酸やアルカリ、又は過
酸化水素等の試薬の代わりに使用すると、該試薬と同等
の洗浄効果が得られかつ格段の経費節減を達成できるこ
とが報告されている。
[0003] One of the alternatives is the use of ozone water. In particular, high-concentration ozone water produced by electrolysis is known to be extremely effective for cleaning electronic devices. However, the use of ozone water alone may not be sufficient, and there is an increasing need for a treatment liquid that has other functions that ozone water does not have, such as an oxidizing action and a reducing action, and that does not contain any metal components. The treatment liquid includes so-called anodic water or superacid water. The anodic water usually has a pH of 2.7 or less and an oxidation-reduction potential (OR
P) is 1.1 V or more and has an oxidizing power, so that it has an effect of decomposing organic substances and dissolving and removing metal precipitates, and is used for cleaning electronic devices, though slightly. I have. Simultaneously with the production of the anode water, cathode water having a pH of 10 or more and an ORP of 0 V or less is produced as a by-product in the cathode chamber of the electrolytic cell. So-called electrolyzed water having oxidizing or reducing properties produced by a relatively simple operation of electrolysis of water (the former is referred to as acidic water or anodic water, and the latter is referred to as cathodic water or alkaline water) is converted into high-purity acid or alkali, Alternatively, it has been reported that when used in place of a reagent such as hydrogen peroxide, a cleaning effect equivalent to that of the reagent can be obtained and a remarkable cost reduction can be achieved.

【0004】通常の電解水例えばアノード水は、陽極液
原料として希薄な塩酸を供給し電解することで容易に得
られる。又純水を供給するだけでもオゾンなどが発生す
る場合には高いORPを有する水を得られる。原料の塩
化物イオンを陰極室に供給し膜を介して陽極室に送り、
より経済的に目的の電解水を得ることができることも報
告されている。アノードとカソード水の生成効率は供給
水の種類、電極触媒の種類、電流密度などの運転条件に
より異なる。又効果的なアノードやカソード水は、洗浄
効果を増大させるラジカルを高濃度で含むことが好まし
い。半導体洗浄では、電解セルで発生し混入する不純物
を極力低減させる必要があり、電極に起因する重金属不
純物が発生しないことが要求される。これらの不純物発
生を抑制できる好ましい電極触媒として酸化イリジウム
系触媒があるが、該触媒はラジカルを安定的に発生させ
る塩素ガスやオゾンガスに対する耐性が十分でないた
め、洗浄効果上昇への寄与は大きくない。安定した状態
でラジカルが発生できれば、洗浄効果がに優れた電解水
が得られることになるが、このラジカルの生成効率は触
媒だけでなく、供給水の種類や電流密度などの他の電解
条件にも左右される。
[0004] Ordinary electrolyzed water, for example, anodic water, can be easily obtained by supplying dilute hydrochloric acid as an anolyte solution raw material for electrolysis. In addition, when ozone or the like is generated only by supplying pure water, water having a high ORP can be obtained. The raw material chloride ions are supplied to the cathode chamber and sent to the anode chamber through the membrane,
It is also reported that the desired electrolyzed water can be obtained more economically. The production efficiency of anode and cathode water varies depending on operating conditions such as the type of feed water, the type of electrode catalyst, and the current density. Further, it is preferable that the effective anode and cathode water contain a high concentration of radicals which enhance the cleaning effect. In semiconductor cleaning, it is necessary to reduce impurities generated and mixed in an electrolytic cell as much as possible, and it is required that heavy metal impurities due to electrodes are not generated. An iridium oxide-based catalyst is a preferable electrode catalyst capable of suppressing the generation of these impurities. However, the catalyst does not have sufficient resistance to chlorine gas and ozone gas which stably generate radicals, and thus does not significantly contribute to an increase in the cleaning effect. If radicals can be generated in a stable state, electrolyzed water with an excellent cleaning effect can be obtained.However, the generation efficiency of these radicals depends not only on the catalyst but also on other electrolysis conditions such as the type of supply water and current density. Also depends.

【0005】一般に水の電解では電子を失う陽極側では
水を原料として酸素が発生する(式)。塩酸を添加す
るのは遊離塩素や次亜塩素酸の生成を促進するためであ
る(式)。又触媒の選択によってはオゾンも発生す
る(式)。 2H2 O→O2 +4H+ +4e 2Cl- →Cl2 +2e Cl2 +H2 O→HClO+H+ +Cl- 3H2 O→O3 + +6H+ +6e 式の陽極反応で生成する水素イオンは、一部が陰極で
水素に還元されるものの、残りは陽極中に残り酸性を示
す。又高いORPは遊離塩素や次亜塩素酸のORPに由
来する。平衡論的には酸素発生と塩素発生では前者が優
先するが、多くの電極では後者も進行し、触媒の選択に
より塩素の放電を酸素に先んじて進行させることは容易
である。塩化物イオンの酸化反応の電流効率は濃度やp
Hに依存する。
In general, in water electrolysis, oxygen is generated using water as a raw material on the anode side which loses electrons (formula). Hydrochloric acid is added to promote the production of free chlorine and hypochlorous acid (formula). Ozone is also generated depending on the selection of the catalyst (formula). 2H 2 O → O 2 + 4H + + 4e 2Cl - → Cl 2 + 2e Cl 2 + H 2 O → HClO + H + + Cl - 3H 2 O → O 3 + + 6H + + 6e hydrogen ions produced at the anode reaction formula is partly cathode , But remains in the anode and is acidic. The high ORP is also derived from free chlorine and hypochlorous acid ORP. In terms of equilibrium theory, the former takes precedence in oxygen generation and chlorine generation, but the latter also progresses in many electrodes, and it is easy to advance chlorine discharge ahead of oxygen by selecting a catalyst. The current efficiency of the chloride ion oxidation reaction depends on the concentration and p
H dependent.

【0006】前述のオゾンは一般的に不安定で、水との
反応によって活性なOHラジカルやOラジカルを生成す
ることが知られている。しかしオゾンは清浄な純水中で
はかなり安定であり半減期が数時間にも達することが報
告されている。これはオゾン分解によるラジカル生成に
はある程度の不純物、紫外線などの刺激と触媒が必要で
あることを示唆している。従ってラジカルを発生させる
ためには触媒を微量溶解させるか、セルの配管内にオゾ
ンの分解を促進する物質を固定して電解水と接触させる
ようにする。但し処理対象の汚染物質との接触でオゾン
や活性塩素が分解し、ラジカルが生成する場合はその必
要はない。電極反応の素過程では吸着したイオンや水分
子の放電中間種が生成する。即ち電極表面にはラジカル
に相当する化学種が生成している。これらが溶液分子と
反応しラジカル種を生成していることも考えられる。塩
化物イオンが存在する場合のラジカル生成の反応過程と
しては以下が推測される。式中の括弧は電極表面の化学
種であることを示し、・はラジカルであることを示す。 Cl- →(Cl)+e (Cl)+H2 O→ClOH- +H+ ClOH- →Cl- +・OH
[0006] The above-mentioned ozone is generally unstable, and is known to generate active OH radicals and O radicals by reaction with water. However, ozone has been reported to be fairly stable in clean pure water with a half-life of several hours. This suggests that the generation of radicals by ozonolysis requires a certain amount of stimuli such as impurities and ultraviolet rays and a catalyst. Therefore, in order to generate radicals, a small amount of a catalyst is dissolved, or a substance that promotes the decomposition of ozone is fixed in the piping of the cell and brought into contact with the electrolyzed water. However, when ozone or active chlorine is decomposed by contact with the contaminant to be treated to generate radicals, this is not necessary. In the elementary process of the electrode reaction, adsorbed ions and discharge intermediate species of water molecules are generated. That is, chemical species corresponding to radicals are generated on the electrode surface. It is also conceivable that these react with the solution molecules to generate radical species. The following is presumed as a reaction process of radical generation in the presence of chloride ions. Parentheses in the formula indicate chemical species on the electrode surface, and. Indicates a radical. Cl → (Cl) + e (Cl) + H 2 O → ClOH + H + ClOH → Cl + .OH

【0007】更に水の酸化からも以下の反応過程による
ラジカル発生が予想される。 H2 O→(OH)+H+ +e (OH)+Cl- →ClOH- ClOH- →Cl- +・OH 還元能力を有するカソード水は本来水素ガスに由来して
いる。陽イオン交換膜を有するセルの陰極では、陽極側
から移動した水素イオンからあるいは陰極水から水素を
発生させる。電極や電解の条件によっては水素ラジカル
が発生することもある。又酸素を原料として電解により
直接的に又は間接的に発生させることが可能な過酸化水
素はオゾンと同様にラジカルを発生させる原料となり、
洗浄に有効である。このように電解により製造される電
解水は、ラジカル等の活性の高い化学種を多く含むほど
洗浄能力が高く、従来から特に高純度を要求される電子
デバイスの洗浄用を中心にして広く利用され、高い洗浄
能力の電解水の製造技術の確率が模索されている。
Further, the generation of radicals by the following reaction process is expected from the oxidation of water. H 2 O → (OH) + H + + e (OH) + Cl → ClOH ClOH → Cl + OH Cathode water having a reducing ability is originally derived from hydrogen gas. At the cathode of a cell having a cation exchange membrane, hydrogen is generated from hydrogen ions transferred from the anode side or from cathode water. Hydrogen radicals may be generated depending on the electrode and electrolysis conditions. Hydrogen peroxide, which can be generated directly or indirectly by electrolysis using oxygen as a raw material, becomes a raw material that generates radicals like ozone,
Effective for cleaning. The electrolyzed water produced by electrolysis as described above has a higher cleaning ability as it contains more active species such as radicals, and has been widely used especially for cleaning electronic devices that require particularly high purity. The probabilities of producing high-capacity electrolyzed water are being sought.

【0008】[0008]

【発明の目的】本発明は、洗浄効果の優れた電解水、特
に電子産業における液晶や半導体の洗浄に効果的なアノ
ード水やカソード水、つまり特にラジカル濃度が高く、
高ORPのアノード水又は低ORPのカソード水を安定
的にかつ高効率が得ることのできる電解水製造方法を提
供することを目的とする。
An object of the present invention is to provide an electrolytic water having an excellent cleaning effect, particularly an anode water and a cathode water which are effective for cleaning liquid crystals and semiconductors in the electronics industry.
It is an object of the present invention to provide a method for producing electrolyzed water capable of stably and efficiently obtaining high ORP anode water or low ORP cathode water.

【0009】[0009]

【問題点を解決するための手段】本発明は、イオン交換
膜により2室又は3室に区画された水電解槽に通電して
電解水を得る方法において、電解反応を0から20℃で行
うことを特徴とする電解水の製造方法である。
SUMMARY OF THE INVENTION The present invention provides a method for obtaining electrolyzed water by energizing a water electrolyzer partitioned into two or three chambers by an ion exchange membrane, wherein the electrolysis reaction is carried out at 0 to 20 ° C. A method for producing electrolyzed water, characterized in that:

【0007】以下本発明を詳細に説明する。本発明の特
徴は、電解反応の電解液の液温を低く維持することによ
り、生成する電解水の洗浄機能増大に寄与するラジカル
や他の活性で洗浄能力の優れた化学種の発生効率を上昇
させて、洗浄効果を最大にする点にある。この理由は明
確ではないが次のように推測できる。前述した洗浄能力
向上に寄与するラジカル等の活性な化学種は比較的寿命
が短く、その前駆体であるオゾンや遊離塩素等から前記
化学種が一旦生成すると比較的短時間だけ高い洗浄能力
を有し、その後はラジカルが消滅して洗浄能力は大きく
低下する。又生成する前記化学種の濃度は前記前駆体の
濃度に比例する。
Hereinafter, the present invention will be described in detail. The feature of the present invention is that by maintaining the temperature of the electrolytic solution of the electrolytic reaction low, the generation efficiency of radicals and other active chemical species having excellent cleaning ability which contribute to the increase in the cleaning function of the generated electrolytic water is increased. In order to maximize the cleaning effect. The reason for this is not clear, but can be guessed as follows. Active chemical species such as radicals that contribute to the improvement of the cleaning performance described above have a relatively short life, and once the chemical species is generated from the precursors such as ozone and free chlorine, the cleaning performance is high for a relatively short time. After that, the radicals disappear and the cleaning ability is greatly reduced. The concentration of the generated chemical species is proportional to the concentration of the precursor.

【0008】従って水電解によりオゾンや遊離塩素等の
前駆体を含有する電解水を製造する場合、実際の使用時
における洗浄能力を高めるためには単に前記前駆体の濃
度を高めるだけでなく該前駆体が分解せず、実際の洗浄
時にのみ分解して洗浄能力が発揮されることが望まし
い。製造される電解水の温度が高いと生成する前記前駆
体の分解が進行し、更にヘンリーの法則により生成する
前駆体の溶解度が低くなり、大気中に飛散して電解水中
の前記前駆体濃度が低下することになる。又前駆体の種
類によっては低温の方が平衡論的に生成しやすくなる場
合もある。低温で電解を行うとセル電圧の上昇という欠
点は生ずるものの、洗浄能力の優れた電解水を提供でき
るという利点が生まれる。更に電解を低温で行うと電極
物質の溶出が抑制されて電極寿命が延び、かつ生成する
電解水中への不純物の混入を防止できるという効果も生
ずる。
Therefore, when producing electrolyzed water containing a precursor such as ozone or free chlorine by water electrolysis, in order to increase the cleaning ability in actual use, it is necessary to not only increase the concentration of the precursor but also increase the concentration of the precursor. It is desirable that the body does not decompose, but is decomposed only at the time of actual cleaning, and the cleaning ability is exhibited. The decomposition of the precursor generated when the temperature of the produced electrolyzed water is high proceeds, and the solubility of the generated precursor is further reduced according to Henry's law. Will decrease. Further, depending on the type of the precursor, there is a case where it is easier to generate the material at a low temperature in an equilibrium theory. When electrolysis is performed at a low temperature, there is a disadvantage that the cell voltage is increased, but there is an advantage that electrolyzed water having excellent cleaning ability can be provided. Further, when the electrolysis is performed at a low temperature, the elution of the electrode substance is suppressed, the life of the electrode is extended, and the effect of preventing impurities from being mixed into the generated electrolyzed water is also produced.

【0009】本発明者らは電解水製造における電解反応
の好ましい温度つまり前述したような洗浄能力の高い化
学種を生成させる前駆体が生ずる電解液の液温を幅広く
検討し本発明に到達したものである。従来の電解水製造
は冷却せずに行われ、従って電解反応の温度は25〜50℃
程度であった。本発明者らの検討によるとこれらの温度
での電解により生成する電解水中にはラジカルが殆ど検
出されず、従って洗浄能力も不十分である。一方本発明
のように電解反応を0〜20℃で行うと生成する電解水中
にラジカルの発生が観察され、更に電極物質の溶出も従
来の電解反応の場合により少なく電極寿命の長期化が期
待できる。本発明の電解反応における0〜20℃は電解液
の温度であり、電解反応の間に電解槽自体を冷却した
り、電解槽に供給される供給される電解液を冷却して電
解反応中の電解液の温度が0〜20℃に維持されるように
する。電解反応を20℃を越える温度で行うと反応自体が
従来の電解反応に近く又は同一となりラジカルが殆どあ
るいは全く存在しなくなり、電極物質の溶出も顕著とな
る。更に得られるアノード水のORPが低くなる。なお
反応温度の下限は水の凝固点である0℃とする。
The present inventors have studied a wide range of preferred temperatures for the electrolytic reaction in the production of electrolyzed water, that is, the temperature of the electrolytic solution in which a precursor for generating a chemical species having a high cleaning ability as described above has reached the present invention. It is. Conventional electrolyzed water production is performed without cooling, so the temperature of the electrolysis reaction is 25-50 ° C
It was about. According to the study of the present inventors, radicals are hardly detected in electrolyzed water generated by electrolysis at these temperatures, and thus the cleaning ability is insufficient. On the other hand, the generation of radicals is observed in the electrolytic water generated when the electrolytic reaction is carried out at 0 to 20 ° C. as in the present invention, and the elution of the electrode material is further reduced, and a longer electrode life can be expected than in the conventional electrolytic reaction. . In the electrolytic reaction of the present invention, 0 to 20 ° C. is the temperature of the electrolytic solution, and the electrolytic bath itself is cooled during the electrolytic reaction, or the electrolytic solution supplied to the electrolytic bath is cooled to perform the electrolytic reaction. The temperature of the electrolyte is maintained at 0 to 20 ° C. When the electrolysis reaction is carried out at a temperature exceeding 20 ° C., the reaction itself is close to or the same as the conventional electrolysis reaction, there is little or no radical, and the elution of the electrode substance becomes remarkable. Further, the obtained anode water ORP is reduced. The lower limit of the reaction temperature is 0 ° C., which is the freezing point of water.

【0010】本発明方法はイオン交換膜により2室又は
3室に区画された電解槽を使用して行い、他の要件に関
しては特に限定されない。前記イオン交換膜は耐食性の
良好なパーフルオロカーボン系イオン交換膜であること
が好ましく(例えばデュポン社のNAFION、旭硝子株式会
社のFLEMION 、旭化成株式会社のACIPLEX)、該イオン交
換膜は従来の中性隔膜と異なり、液透過性がほぼ零であ
るため陽極液と陰極液が混合することが殆どなく、従っ
て生成した陽極液(アノード水)と陰極液(カソード
水)の一部混合に起因する効率低下を回避でき、かつ高
電流密度下での運転が可能になり、短時間で所望量の洗
浄水を得ることができる。本発明では陽極側で酸化性の
高い次亜塩素酸イオン(ClO- )が生成することが多く、
前記イオン交換膜は前記イオンに対する耐性が極めて高
く安定した運転ができる。
The method of the present invention is carried out using an electrolytic cell partitioned into two or three chambers by an ion exchange membrane, and other requirements are not particularly limited. The ion exchange membrane is preferably a perfluorocarbon ion exchange membrane having good corrosion resistance (for example, NAFION of DuPont, FLEMION of Asahi Glass Co., Ltd., ACIPLEX of Asahi Kasei Corporation), and the ion exchange membrane is a conventional neutral membrane. Unlike the case, the anolyte and the catholyte hardly mix because the liquid permeability is almost zero. Therefore, the efficiency decreases due to the partial mixing of the generated anolyte (anode water) and the catholyte (cathode water). Can be avoided, and operation under a high current density becomes possible, and a desired amount of washing water can be obtained in a short time. In the present invention, highly oxidizable hypochlorite ion (ClO ) is often generated on the anode side,
The ion exchange membrane has extremely high resistance to the ions and can be operated stably.

【0011】前記イオン交換膜は1枚で使用しても良い
が、対極で生成するイオンやガスの混入を防止する目的
で、イオン交換膜の少なくとも1枚に貴金属層を形成
し、該貴金属層が前記電極と接触しないように配置する
ことが好ましい。この場合には前記貴金属層で膜を透過
した水素と酸素が再結合し水となって対極への影響をな
くし、又は前記貴金属層が物理的な遮蔽板となって電解
液の混合が防止される。完全に対極の影響を無くすため
には、複数枚のイオン交換膜の間に中間室を設けて3室
構造とすることも可能であるが、より簡便な方法として
少なくとも1枚の水素原子透過性水素吸蔵合金あるいは
金属箔を挟んで電解セルを構成することもできる。前記
箔の材料としては、Pd、Pd−Au、Pd−Ag等がある。この
場合箔はバイポーラ電極板として機能する。即ち透過し
てくるプロトンを原子状態の水素と電子に分離し、両者
を反対面に導いた後はそれらの再結合でプロトンに再生
され、結果として電気が流れるが、このとき箔はプロト
ン以外の物質に対して優れた遮蔽効果を発揮する。
The above-mentioned ion exchange membrane may be used alone, but in order to prevent contamination of ions or gas generated at the counter electrode, a noble metal layer is formed on at least one of the ion exchange membranes. Are preferably arranged so as not to contact the electrodes. In this case, hydrogen and oxygen that have permeated the membrane at the noble metal layer are recombined to form water and eliminate the effect on the counter electrode, or the noble metal layer acts as a physical shield plate to prevent mixing of the electrolyte. You. In order to completely eliminate the influence of the counter electrode, it is possible to provide an intermediate chamber between a plurality of ion exchange membranes to form a three-chamber structure. However, as a simpler method, at least one hydrogen atom permeable membrane is required. The electrolytic cell may be configured with a hydrogen storage alloy or metal foil interposed. Examples of the material of the foil include Pd, Pd-Au, and Pd-Ag. In this case, the foil functions as a bipolar electrode plate. That is, the permeating protons are separated into hydrogen and electrons in the atomic state, and after they are led to the opposite surface, they are regenerated into protons by their recombination, resulting in the flow of electricity. Exhibits an excellent shielding effect on substances.

【0012】1枚のイオン交換膜を使用し該イオン交換
膜を樹脂繊維支持体で構成し、又は複数のイオン交換膜
の1枚を樹脂繊維支持体で構成し、又は2枚以上のイオ
ン交換膜の間に1枚の樹脂繊維支持体を挟んで隔膜を構
成することができ、この場合にはイオン交換膜及び電極
の電流分布が不均一化し、低い電流密度でもラジカル発
生率が安定的に増加する効果が生ずる。繊維の厚さは0.
01から5mm、繊維の太さは0.001 〜1mm、空隙率は20〜
95%であることが好ましい。その材料は化学的に安定な
絶縁材料、例えばポリプロピレンやポリエチレン等の炭
化水素系樹脂、PVDF、PTFE、FEP等のフッ素
樹脂、セラミックス焼結繊維構造体等であることが好ま
しい。
[0012] One ion exchange membrane is used and the ion exchange membrane is composed of a resin fiber support, or one of a plurality of ion exchange membranes is composed of a resin fiber support, or two or more ion exchange membranes are used. A membrane can be formed by sandwiching one resin fiber support between the membranes. In this case, the current distribution of the ion exchange membrane and the electrodes becomes non-uniform, and the radical generation rate stably even at a low current density. An increasing effect occurs. Fiber thickness is 0.
01 to 5 mm, fiber thickness 0.001 to 1 mm, porosity 20 to
Preferably it is 95%. The material is preferably a chemically stable insulating material, for example, a hydrocarbon resin such as polypropylene or polyethylene, a fluororesin such as PVDF, PTFE, or FEP, or a sintered ceramic fiber structure.

【0013】使用する陽極は生成するアノード水の純度
を維持するために、酸化に対して安定な貴金属、チタ
ン、タンタルなどの金属、カーボン、炭化珪素などの導
電性セラミックス等を基材として用い、この基材表面に
触媒として、白金、ルテニウム、イリジウム等の貴金属
や導電性セラミックス又はダイアモンドを担持して作製
することが好ましい。触媒量としては基材表面に1〜50
μmの触媒層が形成される程度が良く、又触媒としては
導電性ダイアモンドが水の電解反応に対する活性が乏し
く過電圧が高いためラジカルを発生しやすく、その使用
が好ましい。使用する陰極は生成するカソード水の純度
を維持するために、還元に対して安定な貴金属、チタ
ン、ジルコニウム、タンタルなどの金属、カーボン、炭
化珪素などの導電性セラミックス等を基材として用い、
この基材表面に触媒として、白金、ルテニウム、イリジ
ウム等の貴金属や導電性セラミックス又はダイアモンド
を担持して作製することが好ましい。触媒量としては基
材表面に1〜50μmの触媒層が形成される程度が良く、
又触媒としては導電性ダイアモンドが水の電解反応に対
する活性が乏しく過電圧が高いためラジカルを発生しや
すく、その使用が好ましい。なお2室法電解槽のイオン
交換膜を固体電解質としその両側に、又は3室法電解槽
の2枚のイオン交換膜の1枚の陽極側及び他のイオン交
換膜の陰極側に気液透過性の陽極物質と陰極物質を密着
させた構造としても良い。又板状の陽極及び陰極をイオ
ン交換膜の両面に密着させたゼロギャップ型電解槽とし
ても良い。
In order to maintain the purity of the generated anode water, the anode to be used is made of a metal such as noble metal, titanium, tantalum or the like which is stable against oxidation, or a conductive ceramic such as carbon or silicon carbide as a base material. It is preferable that the substrate is formed by supporting a noble metal such as platinum, ruthenium, and iridium, a conductive ceramic or diamond as a catalyst on the surface of the substrate. The amount of catalyst is 1 to 50 on the substrate surface.
The degree of formation of a catalyst layer having a thickness of μm is good, and the use of a conductive diamond as a catalyst is easy because radicals are easily generated due to poor activity in the electrolytic reaction of water and high overvoltage. The cathode used uses noble metals stable against reduction, metals such as titanium, zirconium and tantalum, carbon and conductive ceramics such as silicon carbide as base materials to maintain the purity of the generated cathode water.
It is preferable that the substrate is formed by supporting a noble metal such as platinum, ruthenium, and iridium, a conductive ceramic or diamond as a catalyst on the surface of the substrate. As the amount of the catalyst, a degree of forming a catalyst layer of 1 to 50 μm on the substrate surface is good,
Further, as a catalyst, the conductive diamond is poor in activity for the electrolytic reaction of water and has a high overvoltage, so that radicals are easily generated, and its use is preferred. Gas-liquid permeation on both sides of the ion exchange membrane of the two-chamber electrolytic cell as a solid electrolyte, or one anode side of two ion exchange membranes and the cathode side of another ion exchange membrane in the three-chamber electrolytic cell It is also possible to adopt a structure in which a anodic material and a cathodic material are adhered to each other. Further, a zero-gap type electrolytic cell in which plate-shaped anodes and cathodes are closely attached to both surfaces of the ion exchange membrane may be used.

【0014】前記陽極及び陰極の形状は特に限定されな
いが、反応を円滑に進行させるために40〜80%の開口率
を有する板状の部材の使用が好ましく、又セルの各部材
には石英やPTFE樹脂等から成る安定な皮膜を表面に
形成しても良い。アノード水製造の目的では、上述した
電解槽の陽極室に純水及び/又は塩酸を供給し、陽極及
び陰極間に通電する。純水のみを供給すると前記陽イオ
ン交換膜が電解質として機能し水電解による酸素発生
(オゾンを含むことがある)が生じ、該酸素が陽極液中
に溶解してアノード水が生成する。又塩酸を陽極室に供
給すると、塩素イオンが塩素ガスに更に次亜塩素イオン
に電解酸化されて、低pHで酸化力の強いアノード水が
生ずる。
The shapes of the anode and the cathode are not particularly limited, but a plate-like member having an aperture ratio of 40 to 80% is preferably used in order for the reaction to proceed smoothly. A stable film made of PTFE resin or the like may be formed on the surface. For the purpose of producing anode water, pure water and / or hydrochloric acid are supplied to the anode chamber of the above-mentioned electrolytic cell, and electricity is supplied between the anode and the cathode. When only pure water is supplied, the cation exchange membrane functions as an electrolyte to generate oxygen (which may contain ozone) by water electrolysis, and the oxygen dissolves in the anolyte to generate anodic water. Further, when hydrochloric acid is supplied to the anode chamber, chlorine ions are electrolytically oxidized to chlorine gas and further to hypochlorite ions, thereby producing anode water having a low pH and strong oxidizing power.

【0015】一方カソード水製造の目的では、上述した
電解槽の陰極室に純水及び/又は水酸化アンモニウムを
供給し、陽極及び陰極間に通電する。純水のみを供給す
ると前記陽イオン交換膜が電解質として機能し水電解に
よる水酸イオンが発生し、カソード水が生成する。又水
酸化アンモニウムを陰極室に供給すると、水酸イオンが
濃度が高くなり、更に強いカソード水が生成する。なお
このようにして製造されたアノード水又はカソード水中
には僅少量のカチオン又はアニオンが混入している場合
があり、本発明方法では得られたアノード水又はカソー
ド水を電解槽外に設置したカチオン又はアニオン樹脂充
填塔に導きかつ該充填塔を通してカチオン性又はアニオ
ン性の不純物除去を行ない、更に純度の高いアノード水
又はカソード水を得ることもできる。又本発明は陰極室
に酸素を供給して過酸化水素水を合成しながら、陽極室
でアノード水を製造する電解にも適用できる。
On the other hand, for the purpose of producing cathode water, pure water and / or ammonium hydroxide are supplied to the cathode chamber of the above-mentioned electrolytic cell, and electricity is supplied between the anode and the cathode. When only pure water is supplied, the cation exchange membrane functions as an electrolyte, hydroxyl ions are generated by water electrolysis, and cathode water is generated. Also, when ammonium hydroxide is supplied to the cathode compartment, the concentration of hydroxyl ions increases, and stronger cathode water is generated. The anode water or cathode water thus produced may contain a small amount of cations or anions, and in the method of the present invention, the obtained anode water or cathode water is placed in a cation provided outside the electrolytic cell. Alternatively, cationic or anionic impurities can be removed through an anion resin packed tower and through the packed tower to obtain more pure anode water or cathode water. The present invention can also be applied to electrolysis in which anode water is produced in the anode chamber while hydrogen peroxide is synthesized by supplying oxygen to the cathode chamber.

【0016】図1は本発明方法に使用できる電解槽を例
示する概略縦断面図である。電解槽本体1は、パーフル
オロカーボン系陽イオン交換膜2の周囲を挟持する額縁
状の陽極室ガスケット3及び陰極室ガスケット4、及び
各ガスケット3、4の前記陽イオン交換膜2とは反対面
に設置された電解液流通機能を有しかつ少なくとも内側
の電解液と接触する部分をフッ素樹脂製とした陽極室壁
板5及び陰極室壁板6により構成されている。前記陽イ
オン交換膜2の陽極面には、白金族金属又はそれらの酸
化物の粉末から成る多孔性陽極7が密着状態で設けら
れ、前記陽イオン交換膜2の陰極面には、白金やカーボ
ンから成る多孔体シート状陰極8が密着状態で設けられ
ている。前記陽極7及び陰極8には、それぞれ陽極集電
体9及び陰極集電体10が接続され、該集電体を通して通
電が行なわれる。
FIG. 1 is a schematic longitudinal sectional view illustrating an electrolytic cell that can be used in the method of the present invention. The electrolytic cell main body 1 has a frame-shaped anode chamber gasket 3 and a cathode chamber gasket 4 sandwiching a perfluorocarbon-based cation exchange membrane 2, and each gasket 3, 4 on a surface opposite to the cation exchange membrane 2. It is provided with an anode chamber wall plate 5 and a cathode chamber wall plate 6 having a function of flowing an electrolytic solution and having at least a portion in contact with the inner electrolytic solution made of a fluororesin. A porous anode 7 made of a powder of a platinum group metal or an oxide thereof is provided in close contact with the anode surface of the cation exchange membrane 2, and platinum or carbon is provided on the cathode surface of the cation exchange membrane 2. The porous sheet-shaped cathode 8 made of is provided in close contact. An anode current collector 9 and a cathode current collector 10 are connected to the anode 7 and the cathode 8, respectively, and electricity is supplied through the current collector.

【0017】前記陽極室壁板5の内部には陽極液流通路
11が形成され、陽極液入口12から供給される塩酸等を溶
解した陽極液が陽極室開口部13から陽極室に進入して陽
極7と接触して次亜塩素酸等の酸化力の強い高酸化還元
電位の化合物に酸化され、アノード水として陽極液出口
14から取り出される。前記陽極液入口12より先端側の延
長パイプ15の周囲には冷却ジャケット16が設置され、冷
媒入口17から液体窒素やエチレングリコール等の冷媒を
導入して前記延長パイプ15内の陽極液を所望温度に冷却
してから前記陽極室へ供給するようにしている。一方前
記陰極室壁板6の内部には陰極液流通路18が形成され、
陰極液入口19から必要に応じて供給される超純水が陰極
室開口部20から陰極室に進入しイオンを含む陽極からの
移行水とともに陰極8と接触して還元され、カソード水
として陰極液出口21から取り出される。図示した電解槽
を使用する洗浄水製造では、陽極室へ供給さる前の陽極
液が延長パイプ15内で冷媒により冷却されるため、陽極
室での電解反応を0〜20℃の低温で行うことができ、洗
浄能力向上に必要なラジカルの前駆体を多く含むアノー
ド水が提供され、更に電極物質溶出が防止されるため、
長期間安定した電解反応を継続できる。
An anolyte flow passage is provided inside the anode chamber wall plate 5.
An anolyte dissolved in hydrochloric acid or the like supplied from an anolyte inlet 12 enters the anode chamber through the anode chamber opening 13 and comes into contact with the anode 7 to form a high oxidizing power such as hypochlorous acid. Oxidized to a compound with redox potential and converted to anolyte as anolyte outlet
Retrieved from 14. A cooling jacket 16 is provided around the extension pipe 15 on the tip side from the anolyte inlet 12, and a refrigerant such as liquid nitrogen or ethylene glycol is introduced from the refrigerant inlet 17 to bring the anolyte in the extension pipe 15 to a desired temperature. And then supply it to the anode chamber. On the other hand, a catholyte flow passage 18 is formed inside the cathode chamber wall plate 6,
Ultrapure water supplied as necessary from the catholyte inlet 19 enters the cathode compartment through the cathode compartment opening 20 and is brought into contact with the cathode 8 together with the migration water from the anode containing ions, and is reduced. It is taken out from the exit 21. In the production of washing water using the illustrated electrolytic cell, since the anolyte before being supplied to the anode chamber is cooled by the refrigerant in the extension pipe 15, the electrolytic reaction in the anode chamber is performed at a low temperature of 0 to 20 ° C. Can be provided, the anode water containing a large amount of radical precursors necessary for improving the cleaning ability is provided, furthermore elution of the electrode substance is prevented,
A stable electrolytic reaction can be continued for a long time.

【0018】[0018]

【実施例】次に本発明に係わる電解水製造方法による電
解水製造の実施例を記載するが、該実施例は本発明を限
定するものではない。
EXAMPLES Next, examples of the production of electrolyzed water by the method for producing electrolyzed water according to the present invention will be described, but the examples do not limit the present invention.

【0019】[0019]

【実施例1】陽イオン交換膜としてナフィオン117 (デ
ュポン社製)3枚を重ね中央の1枚には白金被覆を無電
解めっきにより形成した膜を使用した。該陽イオン交換
膜の陽極室側には、電極面積10cm2 で熱分解により生成
させた酸化イリジウム触媒を被覆したチタン製メッシュ
を陽極として密着させ、陰極室側には白金触媒を被覆し
たカーボンシートを陰極として密着させ、陰極集電体と
して銀繊維の焼結板(厚さ2mm)を接続した。これらの
部材をボルト及びナットで締着し2室型電解槽を構成し
た。この電解槽の陽極室側に塩酸によりpHを2.5 とし
た超純水(18Mオームcm)を10cc/分で供給しながら1
Aの電流を流し、このときのセル温度が20℃以下になる
ように供給水タンク、セル及び配管を冷却した。生成し
た出口のアノード水にDMPO(ラジカル安定化剤)を
10mM添加し、ESR装置によりラジカルの検出を行っ
たところ、OHラジカルに相当するピークが検出され
た。陽極ガスには、オゾンが500ppm、又陽極液には溶解
している塩素100ppmが確認された。出口のORPは1100
mVであり、重金属の総濃度は50ppt であった。
Example 1 Three films of Nafion 117 (manufactured by DuPont) were stacked as a cation exchange film, and a film having a platinum coating formed by electroless plating was used on one of the central films. On the anode chamber side of the cation exchange membrane, a titanium mesh coated with an iridium oxide catalyst generated by thermal decomposition with an electrode area of 10 cm 2 was adhered as an anode, and a carbon sheet coated with a platinum catalyst was formed on the cathode chamber side. As a cathode, and a silver fiber sintered plate (2 mm thick) was connected as a cathode current collector. These members were fastened with bolts and nuts to form a two-chamber electrolytic cell. Ultrapure water (18 M ohm cm) whose pH was adjusted to 2.5 with hydrochloric acid was supplied to the anode chamber side of the electrolytic cell at a rate of 10 cc / min.
A current was passed, and the supply water tank, cell, and piping were cooled such that the cell temperature at this time was 20 ° C. or less. Add DMPO (radical stabilizer) to the generated anode water at the outlet
When 10 mM was added and radicals were detected by the ESR apparatus, a peak corresponding to OH radicals was detected. It was confirmed that the anode gas contained 500 ppm of ozone and the anolyte contained 100 ppm of dissolved chlorine. Exit ORP is 1100
mV and the total concentration of heavy metals was 50 ppt.

【0020】[0020]

【実施例2】実施例1の電解系でセル温度を変化させた
際の電解性能つまり温度が10、20、30又は40℃であると
きの、電圧、生成オゾン濃度、ラジカルの有無、ORP
及び重金属不純物量を表1に纏めた。表1から温度を低
くするとセル電圧は上昇するが、特に10又は20℃では生
成するラジカル量及びオゾン濃度が増加したことが判
る。
Example 2 Electrolysis performance when the cell temperature was changed in the electrolytic system of Example 1, that is, when the temperature was 10, 20, 30, or 40 ° C., the voltage, the generated ozone concentration, the presence or absence of radicals, the ORP
And the amounts of heavy metal impurities are summarized in Table 1. As can be seen from Table 1, when the temperature is lowered, the cell voltage increases, but particularly at 10 or 20 ° C., the amount of generated radicals and the ozone concentration increase.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【実施例3】陽極側に塩酸を添加しなかったこと以外
は、実施例1と同様にして2室型電解槽を構成し、電解
を行った。生成した出口のアノード水にDMPOを10m
M添加し、ESR装置によりラジカルの検出を行ったと
ころ、OHラジカルに相当するピークが検出された。陽
極ガスには、オゾンが500ppm検出され、出口のORPは
1100mVであり、重金属の総濃度は5ppt であった。
Example 3 A two-chamber electrolytic cell was constructed and electrolyzed in the same manner as in Example 1 except that hydrochloric acid was not added to the anode side. 10m of DMPO in the generated anode water at the outlet
When M was added and radicals were detected by an ESR apparatus, a peak corresponding to OH radicals was detected. 500 ppm of ozone is detected in the anode gas, and the ORP at the outlet is
1100 mV and the total concentration of heavy metals was 5 ppt.

【0023】[0023]

【実施例4】実施例3の電解系でセル温度を変化させた
際の電解性能を表2に纏めた。表2から温度を低くする
とセル電圧は上昇するが、特に10又は20℃では生成する
ラジカル量及びオゾン濃度が増加したことが判る。
Embodiment 4 Table 2 summarizes the electrolytic performance of the electrolytic system of Example 3 when the cell temperature was changed. As can be seen from Table 2, when the temperature is lowered, the cell voltage increases, but particularly at 10 or 20 ° C., the amount of generated radicals and the ozone concentration increase.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明は、イオン交換膜により2室又は
3室に区画された水電解槽に通電して電解水を得る方法
において、電解反応を0から20℃で行うことを特徴とす
る電解水の製造方法である。本発明方法では、電解水製
造の際の電解反応を0〜20℃の比較的低温で行うため、
洗浄能力の優れたラジカル発生の前駆体となるオゾンや
遊離塩素が製造された電解水中に分解されずに残り、実
際の洗浄の際に分解させて寿命の短いラジカルを効率良
くかつ必要な量だけ発生させることを可能にする。従っ
て本発明方法によると、従来より洗浄能力の優れた電解
水(アノード水及びカソード水)を製造できる。又本発
明方法では、電解を低温で行うため、電極物質の溶出を
少なくすることができ、生成する電解水中の不純物濃度
を低下できるとともに、電極及び電解槽の長寿命化を達
成できる。
According to the present invention, there is provided a method for obtaining electrolyzed water by energizing a water electrolysis tank partitioned into two or three chambers by an ion exchange membrane, wherein the electrolysis reaction is carried out at 0 to 20 ° C. This is a method for producing electrolyzed water. In the method of the present invention, the electrolytic reaction during the production of electrolyzed water is performed at a relatively low temperature of 0 to 20 ° C.
Ozone and free chlorine, which are the precursors of radical generation with excellent cleaning ability, remain in the produced electrolytic water without being decomposed and are decomposed during actual cleaning to efficiently produce short-lived radicals in the required amount. To be able to generate. Therefore, according to the method of the present invention, it is possible to produce electrolyzed water (anode water and cathodic water) having better washing ability than before. In addition, in the method of the present invention, since the electrolysis is performed at a low temperature, elution of the electrode substance can be reduced, the impurity concentration in the generated electrolytic water can be reduced, and the life of the electrode and the electrolytic cell can be prolonged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に使用できる電解槽を例示する概略
縦断面図。
FIG. 1 is a schematic longitudinal sectional view illustrating an electrolytic cell that can be used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1・・・電解槽本体 2・・・陽イオン交換膜2 3・
・・陽極室ガスケット 4・・・陰極室ガスケット 5・・・陽極室壁板 6・
・・陰極室壁板 7・・・陽極 8・・・陰極 9・・
・陽極集電体 10・・・陰極集電体 11・・・陽極液流
通路 12・・・陽極液入口 13・・・陽極室開口部 14
・・・陽極液出口 15・・・延長パイプ 16・・・冷却
ジャケット 17・・・冷媒入口 18・・・陰極液流通路
19・・・陰極液入口 20・・・陰極室開口部 21・・
・陰極液出口
1 ・ ・ ・ Electrolyzer main body 2 ・ ・ ・ Cation exchange membrane 2 3 ・
..Anode compartment gasket 4 ・ ・ ・ Cathode compartment gasket 5 ・ ・ ・ Anode compartment wall plate 6 ・
..Cathode room wall plate 7 ・ ・ ・ Anode 8 ・ ・ ・ Cathode 9 ・ ・
・ Anode current collector 10 ・ ・ ・ Cathode current collector 11 ・ ・ ・ Anolyte flow passage 12 ・ ・ ・ Anolyte inlet 13 ・ ・ ・ Anode chamber opening 14
・ ・ ・ Anolyte outlet 15 ・ ・ ・ Extension pipe 16 ・ ・ ・ Cooling jacket 17 ・ ・ ・ Coolant inlet 18 ・ ・ ・ Cathode flow passage
19 ・ ・ ・ Cathode liquid inlet 20 ・ ・ ・ Cathode chamber opening 21 ・ ・
・ Cathode solution outlet

フロントページの続き (72)発明者 錦 善則 神奈川県藤沢市藤沢1丁目1番の23の304 (72)発明者 速水 直哉 神奈川県横浜市磯子区新磯子町33 株式会 社東芝生産技術研究所内 (72)発明者 桜井 直明 神奈川県横浜市磯子区新磯子町33 株式会 社東芝生産技術研究所内Continued on the front page (72) Inventor Yoshinori Nishiki 1-3-1304, Fujisawa 1-chome, Fujisawa-shi, Kanagawa Prefecture (72) Inventor Naoya Hayami 33 Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Production Technology Research Institute ( 72) Inventor Naoaki Sakurai 33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜により2室又は3室に区画
された水電解槽に通電して電解水を得る方法において、
電解反応を0から20℃で行うことを特徴とする電解水の
製造方法。
1. A method for obtaining electrolyzed water by energizing a water electrolysis tank partitioned into two or three chambers by an ion exchange membrane,
A method for producing electrolyzed water, wherein the electrolysis reaction is performed at 0 to 20 ° C.
JP16293898A 1998-05-26 1998-05-26 Production of electrolytic water Pending JPH11333457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16293898A JPH11333457A (en) 1998-05-26 1998-05-26 Production of electrolytic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16293898A JPH11333457A (en) 1998-05-26 1998-05-26 Production of electrolytic water

Publications (1)

Publication Number Publication Date
JPH11333457A true JPH11333457A (en) 1999-12-07

Family

ID=15764109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16293898A Pending JPH11333457A (en) 1998-05-26 1998-05-26 Production of electrolytic water

Country Status (1)

Country Link
JP (1) JPH11333457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160126010A (en) * 2014-02-25 2016-11-01 콘디아스 게엠베하 Electrode arrangement for electrochemically treating a liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160126010A (en) * 2014-02-25 2016-11-01 콘디아스 게엠베하 Electrode arrangement for electrochemically treating a liquid

Similar Documents

Publication Publication Date Title
JP3859358B2 (en) Electrolyzed water production equipment
US5460705A (en) Method and apparatus for electrochemical production of ozone
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
US5980703A (en) Electrolytic cell for producing acidic water and alkaline water
US6547947B1 (en) Method and apparatus for water treatment
EP0949205B1 (en) Use of an anode having an electroconductive diamond structure for producing acidic water containing dissolved hydrogen peroxide
KR100712389B1 (en) The process and the apparatus for cleansing the electronic part using functional water
JP3689541B2 (en) Seawater electrolyzer
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
JP2007197740A (en) Electrolytic cell for synthesizing perchloric acid compound and electrolytic synthesis method
KR101286426B1 (en) Sulfuric acid electrolysis process
JP2002275671A (en) Method for producing hydrogen peroxide aqueous solution
JPH101794A (en) Electrolytic cell and electrolyzing method
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JPH11333457A (en) Production of electrolytic water
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP3673000B2 (en) Electrolyzer for electrolyzed water production
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JP2004099914A (en) Method for producing peroxodisulfate
JPH05255882A (en) Method for protecting oxygen cathode
US20240174533A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
JP2000107760A (en) Washing electrolytic water making apparatus and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050526

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20051124

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070820

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071019

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A02