JPH0715086A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH0715086A
JPH0715086A JP18077893A JP18077893A JPH0715086A JP H0715086 A JPH0715086 A JP H0715086A JP 18077893 A JP18077893 A JP 18077893A JP 18077893 A JP18077893 A JP 18077893A JP H0715086 A JPH0715086 A JP H0715086A
Authority
JP
Japan
Prior art keywords
optical fiber
semiconductor laser
active layer
layer
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18077893A
Other languages
Japanese (ja)
Inventor
Masayuki Iwase
正幸 岩瀬
Yoshikazu Ikegami
嘉一 池上
Shu Namiki
周 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18077893A priority Critical patent/JPH0715086A/en
Publication of JPH0715086A publication Critical patent/JPH0715086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enhance workability in the optical coupling work of a semiconductor laser element and an optical fiber by providing a reference surface for positioning on the plane where an active layer is present. CONSTITUTION:An active layer 3 is formed in flush with the top surfaces 21a, 21b on the opposite sides. In other words, the active layer 3 of an optical fiber 22 is positioned in the vertical direction with reference to the top surfaces 21a, 21b on the opposite sides. An emission part is then positioned in X direction by conducting the scanning in parallel with the top surfaces 21a, 21b from a groove 15a to a groove 15b. Subsequently, the optical fiber 22 is shifted perpendicularly to the emission edge 23 of an element thus determining a position where the intensity of light entering the optical fiber 22 increases. Since the optical fiber is positioned by monitoring the output from the optical fiber only in two axial directions in three-dimensional space, workability is enhanced in the optical coupling work of the semiconductor laser element and the optical fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信の光源になる半
導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device which serves as a light source for optical communication.

【0002】[0002]

【従来技術】光通信に用いる半導体レーザ素子は、光フ
ァイバと効率良く結合させるために、発光部を精度良く
位置決めする必要がある。半導体レーザ素子の発光部
は、通常、結晶のへき開面を用いている。従って、光フ
ァイバと半導体レーザ素子の光学的結合を行う際には、
へき開面のどこに活性層が位置しているかの判断を肉眼
ではできないので、次のような方法を用いている。即
ち、 1)先ず、半導体レーザ素子を発振させる。 2)次いで、光ファイバの半導体レーザ素子とは反対側
の端部から出射される光をモニターし、この光強度が最
大になるように半導体レーザ素子と光ファイバの相対位
置を3次元の空間で調整し、各々を固定する。
2. Description of the Related Art In a semiconductor laser device used for optical communication, it is necessary to position a light emitting portion with high precision in order to efficiently couple it with an optical fiber. The light emitting portion of the semiconductor laser element usually uses a cleavage plane of a crystal. Therefore, when performing optical coupling between the optical fiber and the semiconductor laser element,
Since it is not possible to determine with naked eyes where the active layer is located on the cleaved surface, the following method is used. That is, 1) First, the semiconductor laser device is oscillated. 2) Next, monitor the light emitted from the end of the optical fiber opposite to the semiconductor laser device, and adjust the relative position of the semiconductor laser device and the optical fiber in a three-dimensional space to maximize the light intensity. Adjust and fix each.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
方法には次のような問題があった。即ち、 1)特に、シングルモード光ファイバの場合、光ファイ
バの結合位置の許容範囲が数μmと小さい。従って、初
めに光ファイバに少しでも光を入射させる必要がある
が、発光部が肉眼で見えないので、このための位置決め
が困難である。 2)テーパ先球光ファイバの場合には、素子端面と光フ
ァイバ間の距離が10μm以下になるように近づける必
要がある。しかし、素子上面から発光部までの上下方向
の距離があるため、ピントがぼけて、CCDカメラなど
で素子と光ファイバを同時に見ることは難しく、可視光
を照射して素子・光ファイバ間距離を正確に測定するこ
とはできない。 3)光ファイバ出力をモニターする際、光ファイバと素
子の相対的位置ずれが大きい場合、ピークサーチに時間
がかかる。 4)モジュール作製などの目的で、光ファイバを固定す
る際に、光ファイバが最適位置からずれたとき、ずれ方
向が分からないため、修正が困難である。
However, the above method has the following problems. That is, 1) In particular, in the case of a single mode optical fiber, the allowable range of the coupling position of the optical fiber is as small as several μm. Therefore, although it is necessary to first enter a little light into the optical fiber, it is difficult to position the light emitting portion because the light emitting portion is not visible to the naked eye. 2) In the case of a tapered spherical optical fiber, it is necessary to bring them closer to each other so that the distance between the element end face and the optical fiber is 10 μm or less. However, since there is a vertical distance from the top surface of the device to the light emitting part, it is difficult to see the device and the optical fiber at the same time with a CCD camera because the focus is out of focus. It cannot be measured accurately. 3) When the output of the optical fiber is monitored, if the relative displacement between the optical fiber and the element is large, the peak search takes time. 4) When fixing an optical fiber for the purpose of manufacturing a module or the like, when the optical fiber is deviated from the optimum position, it is difficult to correct it because the deviation direction is unknown.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決した半導体レーザ素子を提供するもので、半導体基板
上に活性層を形成した半導体レーザ素子において、活性
層のある平面内に位置決めのための基準面を設けたこと
を特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a semiconductor laser device that solves the above-mentioned problems. In a semiconductor laser device having an active layer formed on a semiconductor substrate, positioning is performed within a plane having the active layer. Is provided with a reference surface for

【0005】[0005]

【作用】上述のように、活性層のある平面内に位置決め
のための基準面を設けると、光ファイバを結合する際
に、光ファイバをこの基準面に沿って移動させることに
より、活性層の発光部に光ファイバを位置決めできる。
従って、相対位置を2次元の空間で調整すればよいの
で、従来の方法に比較して1次元少なくなり、光ファイ
バの位置決めを効率よく行うことができる。
As described above, when the reference plane for positioning is provided in the plane in which the active layer is located, the optical fiber is moved along this reference plane when the optical fiber is coupled, whereby the active layer of the active layer is moved. The optical fiber can be positioned in the light emitting part.
Therefore, since the relative position can be adjusted in a two-dimensional space, the number of positions can be reduced by one dimension compared with the conventional method, and the optical fiber can be positioned efficiently.

【0006】[0006]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。図1(a)、(b)および(c)
は、それぞれ本発明にかかる半導体レーザ素子の一実施
例の上面図、正面図および側面図である。本実施例の素
子は、図2に示すように、以下のような工程で製作し
た。即ち、 1)先ず、p−InP基板1上に、p−InPクラッド
層2、InGaAsP活性層3、n−InPクラッド層
4を成長させる。次いで、誘電体マスク5を形成した
後、幅2μmのメサストライプを残すように20μm幅
の溝をエッチングにより形成する(図2(a))。 2)次いで、選択成長により、電流狭窄層となるp−I
nP層6、n−InP層7、p−InP層8を成長させ
る(図2(b))。 3)次いで、誘電体マスク5を除去し、さらにn−In
Pクラッド層9、n+ −InGaAsPキャップ層10
を順次積層する(図2(c))。 4)次いで、幅20μmの誘電体マスク11を形成した
後、点線のよう選択エッチングを行う。HCl系のエッ
チング液を用いると、四元層であるInGaAsP活性
層3はエッチングされず、InP層のみがエッチングさ
れ、図示のような形状になる(図2(d))。 5)次いで、表面に誘電体層12を全面に形成し、活性
層3上の部分にストライプ状の窓を開け、n電極13を
形成する。最後に、p電極14を形成する(図2
(e))。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. 1 (a), (b) and (c)
FIG. 3A is a top view, a front view and a side view, respectively, of an embodiment of a semiconductor laser device according to the present invention. As shown in FIG. 2, the device of this example was manufactured by the following steps. That is, 1) First, the p-InP clad layer 2, the InGaAsP active layer 3, and the n-InP clad layer 4 are grown on the p-InP substrate 1. Next, after forming the dielectric mask 5, a groove having a width of 20 μm is formed by etching so as to leave a mesa stripe having a width of 2 μm (FIG. 2A). 2) Next, p-I which becomes a current confinement layer by selective growth
The nP layer 6, the n-InP layer 7, and the p-InP layer 8 are grown (FIG. 2B). 3) Next, the dielectric mask 5 is removed, and n-In is further removed.
P clad layer 9, n + -InGaAsP cap layer 10
Are sequentially laminated (FIG. 2C). 4) Next, after forming the dielectric mask 11 having a width of 20 μm, selective etching is performed as indicated by the dotted line. When an HCl-based etching solution is used, the InGaAsP active layer 3 that is a quaternary layer is not etched, and only the InP layer is etched, resulting in the shape shown in FIG. 2 (d). 5) Next, a dielectric layer 12 is formed on the entire surface, a stripe-shaped window is opened in a portion above the active layer 3, and an n-electrode 13 is formed. Finally, the p-electrode 14 is formed (see FIG. 2).
(E)).

【0007】図3により、本実施例の半導体レーザ素子
と光ファイバとの結合方法を説明する。活性層3は両側
の上面21a、21bと同一平面上にある。従って、光
ファイバ22の活性層3の高さ方向(Z方向)の設定
は、両側の上面21a、21bを位置決めのための基準
面として容易に行うことができる。次に、上面21a、
21bと平行な方向(X方向)に溝15aから溝15b
へ走査することで、発光部のX方向の位置を決める。次
いで、素子の発光端面23に直角な方向(Y方向)に光
ファイバ22を動かして、光ファイバ22中に入る光強
度が強くなる位置を決定する。このようにして、Z方向
はカメラなどを用いて肉眼で容易に位置決めでき、Yお
よびX方向の位置決めのみを、光ファイバ出力をモニタ
ーすることにより行う。なお、本発明の位置決め基準面
は、上記実施例のように活性層の両側に配置されたもの
と限定されるものではない。
A method of coupling the semiconductor laser device and the optical fiber of this embodiment will be described with reference to FIG. The active layer 3 is flush with the upper surfaces 21a and 21b on both sides. Therefore, the height direction (Z direction) of the active layer 3 of the optical fiber 22 can be easily set by using the upper surfaces 21a and 21b on both sides as reference planes for positioning. Next, the upper surface 21a,
21b to the groove 15b in the direction parallel to 21b (X direction).
By scanning to, the position of the light emitting portion in the X direction is determined. Next, the optical fiber 22 is moved in a direction (Y direction) perpendicular to the light emitting end face 23 of the device to determine the position where the intensity of light entering the optical fiber 22 is increased. In this way, the Z direction can be easily positioned with the naked eye using a camera or the like, and only the Y and X directions are positioned by monitoring the optical fiber output. The positioning reference plane of the present invention is not limited to the one arranged on both sides of the active layer as in the above-mentioned embodiment.

【0008】[0008]

【発明の効果】以上説明したように本発明によれば、半
導体基板上に平面状の活性層を形成した半導体レーザ素
子において、活性層のある平面内に位置決めのための基
準面を設けるため、光ファイバとの光学的結合を行う際
に、3次元空間の2軸方向のみを、光ファイバ出力をモ
ニターすることで光ファイバの位置決めすればよく、半
導体レーザ素子と光ファイバの光学的結合作業の作業性
を向上させることができるという優れた効果がある。
As described above, according to the present invention, in a semiconductor laser device in which a planar active layer is formed on a semiconductor substrate, a reference plane for positioning is provided in the plane in which the active layer is formed. When performing optical coupling with the optical fiber, it is sufficient to position the optical fiber by monitoring the optical fiber output in only two axial directions of the three-dimensional space. There is an excellent effect that workability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)および(c)は、それぞれ本発
明にかかる半導体レーザ素子の一実施例の上面図、正面
図および側面図である。
1A, 1B, and 1C are a top view, a front view, and a side view, respectively, of an embodiment of a semiconductor laser device according to the present invention.

【図2】(a)〜(e)は、上記実施例の製作工程の説
明図である。
2 (a) to 2 (e) are explanatory views of a manufacturing process of the above embodiment.

【図3】上記実施例の素子と光ファイバとの光学的結合
作業の説明図である。
FIG. 3 is an explanatory diagram of an optical coupling work between the element of the above embodiment and an optical fiber.

【符号の説明】[Explanation of symbols]

1 p−InP基板1 2 p−InPクラッド層 3 活性層 4 n−InPクラッド層 5、11 誘電体マスク 6、8 p−InP層 7 n−InP層 9 n−InPクラッド層 10 キャップ層 12 誘電体層 13 n電極 14 p電極 15a、15b 溝 21a、21b 上面 22 光ファイバ 23 発光端面 1 p-InP substrate 1 2 p-InP clad layer 3 active layer 4 n-InP clad layer 5, 11 dielectric mask 6, 8 p-InP layer 7 n-InP layer 9 n-InP clad layer 10 cap layer 12 dielectric Body layer 13 n electrode 14 p electrode 15a, 15b Grooves 21a, 21b Upper surface 22 Optical fiber 23 Light emitting end surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に活性層を形成した半導体
レーザ素子において、活性層のある平面内に位置決めの
ための基準面を設けたことを特徴とする半導体レーザ素
子。
1. A semiconductor laser device having an active layer formed on a semiconductor substrate, wherein a reference plane for positioning is provided in a plane having the active layer.
JP18077893A 1993-06-25 1993-06-25 Semiconductor laser element Pending JPH0715086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18077893A JPH0715086A (en) 1993-06-25 1993-06-25 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18077893A JPH0715086A (en) 1993-06-25 1993-06-25 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0715086A true JPH0715086A (en) 1995-01-17

Family

ID=16089169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18077893A Pending JPH0715086A (en) 1993-06-25 1993-06-25 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0715086A (en)

Similar Documents

Publication Publication Date Title
US5684902A (en) Semiconductor laser module
US5790737A (en) Optical semiconductor device
US6360048B1 (en) Waveguide optical semiconductor device, method of fabricating the same and optical device module
JP3732551B2 (en) Manufacturing method of semiconductor device
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
US5617439A (en) Semiconductor laser device and semiconductor laser array device
EP1446841B1 (en) A method of manufacturing a semiconductor device
JPH0846292A (en) Semiconductor laser element and manufacture thereof
JPH0750449A (en) Semiconductor laser element
JPH0715086A (en) Semiconductor laser element
JPH09205255A (en) Optical semiconductor device and its manufacture
JP2995521B2 (en) Method for manufacturing semiconductor laser module
JPH0339706A (en) Optical module
JPS61272987A (en) Semiconductor laser element
JPH04199133A (en) Optical amplifier and optical integrated circuit
CN111082311B (en) Monolithic manufacturing structure of monolithic photonic integrated device
JPS61174791A (en) Semiconductor laser diode device
JPH0697599A (en) Semiconductor laser array and packaging thereof
JP2779176B2 (en) Semiconductor laser manufacturing method
JPH0750451A (en) Semiconductor laser element
JPH10256664A (en) Method for forming marker of optical semiconductor device
JPS61168282A (en) Semiconductor device
JP2005164799A (en) Optical module
JPH0283990A (en) Manufacture of semiconductor light emitting device
JPS63271981A (en) Edge emission type light emitting diode