JP2005164799A - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
JP2005164799A
JP2005164799A JP2003401249A JP2003401249A JP2005164799A JP 2005164799 A JP2005164799 A JP 2005164799A JP 2003401249 A JP2003401249 A JP 2003401249A JP 2003401249 A JP2003401249 A JP 2003401249A JP 2005164799 A JP2005164799 A JP 2005164799A
Authority
JP
Japan
Prior art keywords
semiconductor laser
protrusion
optical
optical module
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003401249A
Other languages
Japanese (ja)
Inventor
Hideo Yasumoto
英雄 安本
Satoshi Furusawa
佐登志 古澤
Masaru Fuse
優 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003401249A priority Critical patent/JP2005164799A/en
Publication of JP2005164799A publication Critical patent/JP2005164799A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical module having a simple configuration capable of improving a packaging precision. <P>SOLUTION: The optical module is equipped with a semiconductor optical element 10 characterized in having a protrusion 11 nearly parallel to an optical axis on the surface on the side of a light-emission area and an electrode part 12 on the upper-end surface of the protrusion 11 so that the electrode part 12, the protrusion 11, and an active area are on the same axis and a mounting substrate 30 characterized in having a recessed groove 31 which is nearly parallel to the optical axis and having its groove opening width wider than its bottom surface width and a groove 32 where an optical fiber 20 is fixed, the semiconductor optical element 10 being mounted and positioned using irregular shapes by fitting the protrusion 11 of the semiconductor optical element 10 in the recessed groove 31 of the mounting substrate 30. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信分野等に用いられる半導体レーザと光ファイバとを同一の実装基板に実装する光モジュールに関するものである。   The present invention relates to an optical module in which a semiconductor laser and an optical fiber used in the field of optical communication and the like are mounted on the same mounting substrate.

インターネットの爆発的な普及に伴い、FTTH等のアクセス系光伝送システムにおいては、加入者宅に設置される光端末に格段の低コスト化が望まれている。この光端末のコスト要因としては、レーザモジュールやフォトダイオードモジュールなど光モジュールに関連するデバイス及び光学実装コストが大きな割合を占めている。このうち、光学実装については、半導体レーザと光ファイバの光軸合わせにパッシブアライメント法を用い、コスト削減が図られている。   Along with the explosive spread of the Internet, in an optical transmission system for access such as FTTH, a significant reduction in cost is desired for optical terminals installed in subscriber homes. As a cost factor of the optical terminal, devices related to the optical module such as a laser module and a photodiode module and optical mounting costs occupy a large proportion. Among these, for optical mounting, a passive alignment method is used to align the optical axes of the semiconductor laser and the optical fiber, thereby reducing costs.

パッシブアライメント法を用いた従来の光モジュールとしては、マーカパターンを利用するものがある。例えば、図6において、光モジュールは、マーカパターン611を有する半導体レーザ610と、光ファイバ620と、光ファイバ620を実装するV溝632とマーカパターン631を有する実装基板630を備えている。光ファイバ620は、フォトリソグラフィと異方性エッチングによって作成されたV溝632に機械的に位置決め固定されるため、高精度な位置決めが可能である。一方、半導体レーザ610は、マーカパターン611とマーカパターン631とを赤外線透過光を用いて位置合わせを行う。   Some conventional optical modules using the passive alignment method use a marker pattern. For example, in FIG. 6, the optical module includes a semiconductor laser 610 having a marker pattern 611, an optical fiber 620, a V-groove 632 for mounting the optical fiber 620, and a mounting substrate 630 having a marker pattern 631. Since the optical fiber 620 is mechanically positioned and fixed in a V-shaped groove 632 formed by photolithography and anisotropic etching, highly accurate positioning is possible. On the other hand, the semiconductor laser 610 aligns the marker pattern 611 and the marker pattern 631 using infrared transmitted light.

また、パッシブアライメント法を用いた従来の光モジュールとしては、マーカパターンの変わりに凹凸の勘合を利用するものもある。例えば、図7において、光モジュールは、凸部711を有する半導体レーザ710と、光ファイバ720と、光ファイバ720を実装するV溝732と凹部731及び凹部732を有する実装基板730を備えており、凸部711を凹部731へ勘合することで半導体レーザの位置合わせを行う。なお、光素子の位置合わせに凹凸の勘合を利用する従来方法としては、例えば、特許文献1に記載された光モジュール等が挙げられる。
特開2001−194559号公報
In addition, some conventional optical modules using the passive alignment method utilize concavity and convexity fitting instead of the marker pattern. For example, in FIG. 7, the optical module includes a semiconductor laser 710 having a convex portion 711, an optical fiber 720, a V-groove 732 for mounting the optical fiber 720, a concave portion 731, and a mounting substrate 730 having a concave portion 732. The semiconductor laser is aligned by fitting the convex portion 711 to the concave portion 731. In addition, as a conventional method using the concavity and convexity fitting for the alignment of the optical element, for example, an optical module described in Patent Document 1 can be cited.
JP 2001-194559 A

しかしながら、半導体レーザの位置合わせにマーカパターン或いは凹凸の勘合のみを利用する従来の方法では、マーカパターン或いは凹凸の作製位置の製造精度により、マーカパターン或いは凹凸の位置と、半導体レーザの発光領域との相対的距離D1或いはD2に誤差が生じる。その結果、半導体レーザと光ファイバの光軸ずれにばらつきが生じ、光モジュールにおける光の出力効率の歩留りが低下する等の課題を有していた。   However, in the conventional method that uses only the marker pattern or the concavity and convexity fitting for the alignment of the semiconductor laser, the marker pattern or the concavity and convexity position and the emission region of the semiconductor laser depend on the manufacturing accuracy of the marker pattern or concavity and convexity production position. An error occurs in the relative distance D1 or D2. As a result, the optical axis deviation between the semiconductor laser and the optical fiber varies, and there is a problem that the yield of light output efficiency in the optical module is lowered.

本発明は、前記従来の課題を解決するもので、半導体光素子と光ファイバの光軸合わせにパッシブアライメント法を用いる光モジュールにおいて、アライメントマーカ或いは凹凸の勘合を利用する従来方式に比べ、実装精度を改善できる簡易な構成の光モジュールの実現を目的とする。   The present invention solves the above-mentioned conventional problems, and in an optical module using a passive alignment method for optical axis alignment of a semiconductor optical device and an optical fiber, the mounting accuracy is higher than that of a conventional method using alignment markers or concavity and convexity fitting. It aims at realization of the optical module of the simple composition which can improve.

第1の発明は、同一の実装基板上で半導体レーザと光ファイバとを対向させて光学結合する光モジュールであって、半導体レーザは、発光領域側の表面に出力光の光軸と略平行な凸部を有し、かつ前記凸部の突起上端面に電極窓部を備え、実装基板は、半導体レーザの出力光の光軸に略平行な溝構造で光ファイバが実装されるファイバ固定部と、半導体レーザの出力光の光軸と略平行な凹型溝部を備え、半導体レーザの凸部と実装基板の凹型溝部とを勘合することにより半導体レーザと光ファイバの光軸位置合わせを行う。   A first invention is an optical module in which a semiconductor laser and an optical fiber are optically coupled to each other on the same mounting substrate, and the semiconductor laser is substantially parallel to the optical axis of the output light on the surface of the light emitting region. The mounting substrate has an electrode window on the protrusion upper end surface of the protrusion, and the mounting substrate has a fiber fixing portion on which the optical fiber is mounted in a groove structure substantially parallel to the optical axis of the output light of the semiconductor laser. The semiconductor laser is provided with a concave groove portion substantially parallel to the optical axis of the output light of the semiconductor laser, and the optical axis alignment between the semiconductor laser and the optical fiber is performed by fitting the convex portion of the semiconductor laser with the concave groove portion of the mounting substrate.

第2の発明は、前記第1の発明の光モジュールにおいて、半導体レーザの出力光の光軸に垂直な断面における、半導体レーザの凸部の突起上端面の幅がすくなくとも凸部の突起下端面の幅よりも広い。   According to a second aspect of the present invention, in the optical module of the first aspect, the width of the protrusion upper end surface of the semiconductor laser in the cross section perpendicular to the optical axis of the output light of the semiconductor laser is at least the width of the protrusion lower end surface of the protrusion. It is wider than the width.

第3の発明は、前記第1または前記第2の発明の光モジュールにおいて、半導体レーザの出力光の光軸に垂直な断面における、凹型溝部の開口幅が当該底面幅及び半導体レーザの凸部の突起上端面の幅よりも広く、凹溝部の溝の深さが凸部の突起の高さよりも深く、凸部の突起の高さと略一致する深さにおける溝幅が凸部の突起上端面の幅よりも広い。   According to a third aspect of the present invention, in the optical module of the first or second aspect of the invention, the opening width of the concave groove in the cross section perpendicular to the optical axis of the output light of the semiconductor laser is the bottom width and the convex portion of the semiconductor laser. It is wider than the width of the upper end surface of the protrusion, the groove depth of the concave groove portion is deeper than the height of the protrusion of the convex portion, and the groove width at a depth substantially equal to the height of the protrusion of the convex portion is It is wider than the width.

第4の発明は、前記第1、前記第または前記第3の発明の光モジュールにおいて、半導体レーザの凸部及び実装基板の凹型溝部は、異方性エッチングにより形成される。   According to a fourth invention, in the optical module of the first, the third or the third invention, the convex portion of the semiconductor laser and the concave groove portion of the mounting substrate are formed by anisotropic etching.

第5の発明は、前記第1から第4のいずれかの発明の光モジュールにおいて、半導体レーザは、リッジ導波路型構造を有する。   According to a fifth invention, in the optical module according to any one of the first to fourth inventions, the semiconductor laser has a ridge waveguide structure.

半導体レーザと光ファイバの光軸合わせにパッシブアライメント法を用いる光モジュールにおいて、実装基板上に位置する溝の開口幅が当該底面幅よりも広い凹型溝部へ、半導体レーザに位置する突起上端面に電極窓を有する凸部を勘合し、凸部突起上端面の幅と、当該突起上端が凹型溝へ接する深さでの溝幅との差を利用して位置決めを行うことにより、従来方式に比べ、凸部作製時のマスク精度に関わらず、簡易な構成で実装精度を改善できる光モジュールを実現することができる。   In an optical module that uses the passive alignment method for aligning the optical axis of a semiconductor laser and an optical fiber, an electrode is formed on the upper surface of the protrusion located on the semiconductor laser to the concave groove where the opening width of the groove located on the mounting substrate is wider than the bottom surface width. By fitting the convex part having a window and positioning using the difference between the width of the upper end surface of the convex protrusion and the groove width at the depth at which the upper end of the protrusion is in contact with the concave groove, compared to the conventional method, It is possible to realize an optical module capable of improving the mounting accuracy with a simple configuration regardless of the mask accuracy at the time of producing the convex portion.

(実施の形態1)
図1は、本発明の実施の形態1における光モジュールの斜視模式図、図2は、半導体レーザの出力光の光軸に垂直な面での断面模式図である。
(Embodiment 1)
FIG. 1 is a schematic perspective view of an optical module according to Embodiment 1 of the present invention, and FIG. 2 is a schematic cross-sectional view taken along a plane perpendicular to the optical axis of output light from a semiconductor laser.

図1において、10は半導体レーザ、20は光ファイバ、30は半導体レーザ10と光ファイバ20とが実装される実装基板、11は半導体レーザ10の発光領域側の表面に位置し半導体レーザ10の出力光の光軸と長手方向が略平行な凸部、12は凸部11の突起上端面に位置する電極窓部、31は半導体レーザ10の出力光の光軸と溝の長手方向が略平行な凹型溝部、32は光ファイバが実装されるファイバ固定部である。半導体レーザ10は、凸部11を凹型溝部31へ勘合することにより実装基板30へ実装される。   In FIG. 1, 10 is a semiconductor laser, 20 is an optical fiber, 30 is a mounting substrate on which the semiconductor laser 10 and the optical fiber 20 are mounted, and 11 is an output of the semiconductor laser 10 located on the light emitting region side of the semiconductor laser 10. A convex portion whose longitudinal direction is substantially parallel to the optical axis of the light, 12 is an electrode window portion located on the upper end surface of the projection of the convex portion 11, and 31 is an optical axis of the output light of the semiconductor laser 10 and the longitudinal direction of the groove is substantially parallel. The concave groove 32 is a fiber fixing part on which the optical fiber is mounted. The semiconductor laser 10 is mounted on the mounting substrate 30 by fitting the convex portion 11 to the concave groove portion 31.

以下、図2を用いて、本発明の実施の形態1における光モジュールの動作を説明する。図2において、13は半導体レーザ10の活性層、14は活性層13の一部で光を出力する発光領域である。半導体レーザ10の電極窓部12を介して印加されたバイアス電流は、電極窓部12から凸部11、凸部11から活性層13へ注入される。ここで、活性層13の全てが発光する訳ではなく、活性層13においてバイアス電流が注入された領域のみが発光するため、発光領域14は、電極窓部12の直上に位置することになる。この注入電流により発光領域14から凸部11と略平行な光が出射される。この出射光は、ファイバ固定部32へ実装された光ファイバ20へ入射される。   Hereinafter, the operation of the optical module according to Embodiment 1 of the present invention will be described with reference to FIG. In FIG. 2, reference numeral 13 denotes an active layer of the semiconductor laser 10, and reference numeral 14 denotes a light emitting region that outputs light from a part of the active layer 13. A bias current applied via the electrode window 12 of the semiconductor laser 10 is injected from the electrode window 12 to the convex portion 11 and from the convex portion 11 to the active layer 13. Here, not all of the active layer 13 emits light, but only the region where the bias current is injected in the active layer 13 emits light, so that the light emitting region 14 is located immediately above the electrode window 12. By this injected current, light substantially parallel to the convex portion 11 is emitted from the light emitting region 14. This emitted light is incident on the optical fiber 20 mounted on the fiber fixing portion 32.

このように本構成によれば、凸部11の突起上端面に電極窓部12が位置するため、凸部11の作製位置の誤差に関わらず、凸部11の直上の領域が発光領域14となり、位置合わせに用いる凸部11と発光領域14とが略同一軸上に位置する。   As described above, according to the present configuration, the electrode window portion 12 is located on the upper end surface of the protrusion of the protrusion 11, so that the region immediately above the protrusion 11 becomes the light emitting region 14 regardless of the manufacturing position error of the protrusion 11. The convex portion 11 and the light emitting region 14 used for alignment are positioned on substantially the same axis.

従って、位置決めに用いる凸部の位置と半導体レーザの発光領域との相対距離の作製誤差を抑圧することができ、半導体レーザと光ファイバの光軸ずれのばらつきを抑え、ひいては歩留りの向上を実現できるという効果が得られる。   Therefore, it is possible to suppress the production error of the relative distance between the position of the convex portion used for positioning and the light emitting region of the semiconductor laser, and to suppress the variation in the optical axis deviation between the semiconductor laser and the optical fiber, and thus to improve the yield. The effect is obtained.

なお、ファイバ固定部32は、実装基板30上にフォトリソグラフィ法等により描画されたパターンをマスクとし、異方性エッチングにより形成されたV溝構造であり、その溝の深さは、溝の幅に応じて高精度に決定される。なお、ファイバ固定部32と凹型溝部31とは、例えばフォトリソグラフィ法等を用い同時にそれぞれのマスクを作製し、そのマスクを用いてエッチングを行うと、凹型溝部31とファイバ固定部32との位置ずれを抑えることができる。   The fiber fixing portion 32 has a V-groove structure formed by anisotropic etching using a pattern drawn on the mounting substrate 30 by a photolithography method or the like, and the depth of the groove is the width of the groove. It is determined with high accuracy according to. The fiber fixing portion 32 and the concave groove portion 31 are misaligned between the concave groove portion 31 and the fiber fixing portion 32 when, for example, photolithography is used to prepare respective masks simultaneously and etching is performed using the mask. Can be suppressed.

なお、光ファイバ20は、ファイバ固定部32に置かれ樹脂等で固定されてもよい。   The optical fiber 20 may be placed on the fiber fixing portion 32 and fixed with resin or the like.

(実施の形態2)
図3は、本発明の実施の形態2における光モジュールの半導体レーザ出力光の光軸に垂直な面での断面模式図である。
(Embodiment 2)
FIG. 3 is a schematic cross-sectional view taken along a plane perpendicular to the optical axis of the semiconductor laser output light of the optical module according to Embodiment 2 of the present invention.

図3において、10は半導体レーザ、12は電極窓部、13は活性層、14は発光領域、15は凸部、30は実装基板、31は凹型溝部である。なお、実施の形態1と同様にして、実装基板30上に半導体レーザ10と光ファイバ20が実装されているため、ここでは各動作説明の記載を省略する。   In FIG. 3, 10 is a semiconductor laser, 12 is an electrode window portion, 13 is an active layer, 14 is a light emitting region, 15 is a convex portion, 30 is a mounting substrate, and 31 is a concave groove portion. Since the semiconductor laser 10 and the optical fiber 20 are mounted on the mounting substrate 30 in the same manner as in the first embodiment, description of each operation is omitted here.

ここで、実施の形態2では、凸部15の形状が実施の形態1とは異なり、凸部15の突起上端面の幅W1が、凸部15の突起下端面の幅W0よりも広くなるように形成されている。そのため、実施の形態2では、実施の形態1に記載した効果に加え、活性層13へ注入される電流が突起下端面の幅W0で狭窄されバイアス電流を低減する効果と、その狭窄されたバイアス電流により発光領域14が狭窄され、半導体レーザ10の垂直横モードの安定性が向上するという効果とが得られる。   Here, in the second embodiment, the shape of the convex portion 15 is different from that of the first embodiment, so that the width W1 of the protrusion upper end surface of the convex portion 15 is larger than the width W0 of the protrusion lower end surface of the convex portion 15. Is formed. Therefore, in the second embodiment, in addition to the effects described in the first embodiment, the current injected into the active layer 13 is narrowed by the width W0 of the lower end surface of the protrusion, and the bias current is reduced. The light emitting region 14 is narrowed by the current, and the effect of improving the stability of the vertical transverse mode of the semiconductor laser 10 is obtained.

(実施の形態3)
図4は、本発明の実施の形態3における光モジュールの半導体レーザ出力光の光軸に垂直な面での断面模式図である。なお、実施の形態1及び実施の形態2と同様にして、実装基板上に半導体レーザと光ファイバが実装されているため、ここでは各動作説明の記載を省略する。
(Embodiment 3)
FIG. 4 is a schematic cross-sectional view taken along a plane perpendicular to the optical axis of the semiconductor laser output light of the optical module according to Embodiment 3 of the present invention. Since the semiconductor laser and the optical fiber are mounted on the mounting substrate in the same manner as in the first and second embodiments, description of each operation is omitted here.

図4において、10は半導体レーザ、12は電極窓部、13は活性層、14は発光領域、15は凸部、30は実装基板、33は凹型溝部である。   In FIG. 4, 10 is a semiconductor laser, 12 is an electrode window part, 13 is an active layer, 14 is a light emitting region, 15 is a convex part, 30 is a mounting substrate, and 33 is a concave groove part.

ここで、実施の形態2とは、凹型溝部33の形状が異なり、凹型溝部33の側面は、凹型溝部33の開口幅W3が凹型溝部33の底面幅W2よりも広くなるように傾斜しており、凹型溝部33の開口幅W3は、凸部15の突起上端面の幅W1よりも広く、かつ、凹型溝部33の溝の深さは、凸部15の突起の高さH1よりも深く、凸部15の高さH1と略一致する深さでの溝幅W2が、凸部15の突起上端面の幅W1よりも広くなるように、凹型溝部33が形成されている。そのため、実施の形態3では、実施の形態1及び実施の形態2で記載した効果に加え、凹型溝部33の開口幅W3が凸部15の突起上端面の幅W1よりも広いことにより、凸部15を凹型溝部33に勘合する際の実装精度を緩和する効果と、半導体レーザ10と実装基板30とのX軸方向の位置決め誤差を±(W2−W1)/2以内に抑える効果が得られる。   Here, the shape of the concave groove portion 33 is different from that of the second embodiment, and the side surface of the concave groove portion 33 is inclined so that the opening width W3 of the concave groove portion 33 is wider than the bottom surface width W2 of the concave groove portion 33. The opening width W3 of the concave groove 33 is wider than the width W1 of the upper end surface of the protrusion 15 and the depth of the groove of the concave groove 33 is deeper than the height H1 of the protrusion of the convex 15. The concave groove portion 33 is formed such that the groove width W2 at a depth substantially coincident with the height H1 of the portion 15 is wider than the width W1 of the protrusion upper end surface of the convex portion 15. Therefore, in the third embodiment, in addition to the effects described in the first and second embodiments, the opening width W3 of the concave groove 33 is wider than the width W1 of the upper end surface of the protrusion 15 so that the protrusion The effect of reducing the mounting accuracy when fitting 15 into the concave groove 33 and the effect of suppressing the positioning error in the X-axis direction between the semiconductor laser 10 and the mounting substrate 30 within ± (W2−W1) / 2 are obtained.

なお、アライメントマーカのみを用いる従来方式では、高精度な実装装置(実装精度±1μm)が必要となるが、例えばフォトリソグラフィ法を用いてW1、W2を加工すると、サブミクロンメートルの精度が実現できるため、高精度な実装装置を用いなくても従来方式と同等以上の実装精度を実現することができる。   Note that the conventional method using only the alignment marker requires a highly accurate mounting device (mounting accuracy ± 1 μm). For example, when W1 and W2 are processed using a photolithography method, submicron accuracy can be realized. Therefore, mounting accuracy equal to or higher than that of the conventional method can be realized without using a high-accuracy mounting device.

(実施の形態4)
図5は、本発明の実施の形態1、実施の形態2及び実施の形態3における光モジュールの半導体レーザ10の製造工程を示す断面模式図である。図5の(a)に示すように、まず、MO−CVD法等により、半導体基板100上に下クラッド層110、活性層120、上クラッド層130、エッチストップ層140、上クラッド層150を結晶成長させる。次いで、上クラッド層150上に熱CVD法等でSiO2層を形成し、フォトリソグラフィ法等により凸部上端面パターンをSiO2上に描画し、エッチングにより前記SiO2層上にパターン転写を行い、SiO2マスク160を作製する。次いで、SiO2マスク160をマスクとして、エッチングにより、図5の(b)に示すような凸部170を作製する。なお、エッチング溶液としては、エッチストップ層140はエッチングせず上クラッド層150のみをエッチングする水溶液を利用してウエットエッチングを行う。例えば、クラッド層がInP、エッチストップ層がInGaAsPからなる場合、臭化水素と燐酸との混合水溶液等によるウエットエッチングを行うとよい。次いで、凸部170側の表面にSiO2等の絶縁膜層を形成し、フォトリソグラフィ法等により電極窓パターンを凸部上端面の絶縁膜層上に描画し、エッチングによりパターン転写を行い、電極窓部190を作製する。なお、電極窓部190を含む面に電極部を作製し、電極窓部190を介して活性層120へ電流注入を行う。なお、上記製造工程は、リッジ導波路型半導体レーザの製造工程の一例であり、上記以外の製造工程を用いても構わない。
(Embodiment 4)
FIG. 5 is a schematic cross-sectional view showing a manufacturing process of the semiconductor laser 10 of the optical module according to the first, second and third embodiments of the present invention. As shown in FIG. 5A, first, the lower cladding layer 110, the active layer 120, the upper cladding layer 130, the etch stop layer 140, and the upper cladding layer 150 are crystallized on the semiconductor substrate 100 by MO-CVD or the like. Grow. Next, a SiO2 layer is formed on the upper clad layer 150 by a thermal CVD method, etc., a convex upper end surface pattern is drawn on the SiO2 by photolithography, etc., and pattern transfer is performed on the SiO2 layer by etching, and an SiO2 mask 160 is produced. Next, by using the SiO 2 mask 160 as a mask, a convex portion 170 as shown in FIG. 5B is produced by etching. As an etching solution, wet etching is performed using an aqueous solution that etches only the upper cladding layer 150 without etching the etch stop layer 140. For example, when the cladding layer is made of InP and the etch stop layer is made of InGaAsP, wet etching with a mixed aqueous solution of hydrogen bromide and phosphoric acid or the like may be performed. Next, an insulating film layer such as SiO2 is formed on the surface on the convex portion 170 side, an electrode window pattern is drawn on the insulating film layer on the upper end surface of the convex portion by photolithography, etc., pattern transfer is performed by etching, and the electrode window The part 190 is produced. An electrode part is formed on the surface including the electrode window part 190, and current is injected into the active layer 120 through the electrode window part 190. In addition, the said manufacturing process is an example of the manufacturing process of a ridge waveguide type semiconductor laser, You may use manufacturing processes other than the above.

本発明にかかる光モジュールは、高精度な実装装置を用いなくても従来方式と同等以上の実装精度を実現することができるという効果を有し、光通信に用いられる光送信器等の光源などとして有用である。   The optical module according to the present invention has an effect that a mounting accuracy equal to or higher than that of the conventional method can be realized without using a high-accuracy mounting device, such as a light source such as an optical transmitter used for optical communication, etc. Useful as.

本発明の実施形態1における光モジュールの斜視模式図The perspective schematic diagram of the optical module in Embodiment 1 of this invention 本発明の実施の形態1における光モジュールの出力光光軸に垂直な面での断面模式図Sectional schematic diagram in a plane perpendicular to the output optical axis of the optical module according to Embodiment 1 of the present invention. 本発明の実施の形態2における光モジュールの出力光光軸に垂直な面での断面模式図Sectional schematic diagram in a plane perpendicular to the output optical axis of the optical module in Embodiment 2 of the present invention 本発明の実施の形態3における光モジュールの出力光光軸に垂直な面での断面模式図Sectional schematic diagram in a plane perpendicular to the output optical axis of the optical module in Embodiment 3 of the present invention 本発明の実施の形態1における光モジュールの半導体レーザの製造工程を示す断面模式図Sectional schematic diagram which shows the manufacturing process of the semiconductor laser of the optical module in Embodiment 1 of this invention マーカパターンを利用した従来の光モジュールの斜視模式図Perspective schematic diagram of a conventional optical module using a marker pattern 凹凸の勘合を利用した従来の光モジュールの斜視模式図Perspective schematic diagram of a conventional optical module that uses indentation fitting

符号の説明Explanation of symbols

10 半導体レーザ
11,15 凸部
12 電極窓部
20 光ファイバ
30 実装基板
31,33 凹型溝部
32 ファイバ固定部
DESCRIPTION OF SYMBOLS 10 Semiconductor laser 11,15 Convex part 12 Electrode window part 20 Optical fiber 30 Mounting board 31,33 Concave groove part 32 Fiber fixing part

Claims (5)

同一の実装基板上で半導体レーザと光ファイバとを対向させて光学結合する光モジュールであって、
前記半導体レーザは、発光領域側の表面に出力光の光軸と略平行な凸部を有し、かつ前記凸部の突起上端面に電極窓部を備え、
前記実装基板は、前記半導体レーザの出力光の光軸に略平行な溝構造で前記光ファイバが実装されるファイバ固定部と、前記半導体レーザの出力光の光軸と略平行な凹型溝部を備え、
前記半導体レーザの凸部と前記実装基板の凹型溝部とを勘合することにより前記半導体レーザと前期光ファイバの光軸位置合わせを行うこと
を特徴とする光モジュール。
An optical module that optically couples a semiconductor laser and an optical fiber facing each other on the same mounting substrate,
The semiconductor laser has a convex portion substantially parallel to the optical axis of the output light on the surface on the light emitting region side, and an electrode window on the upper end surface of the projection of the convex portion,
The mounting substrate includes a fiber fixing portion on which the optical fiber is mounted with a groove structure substantially parallel to the optical axis of the output light of the semiconductor laser, and a concave groove portion substantially parallel to the optical axis of the output light of the semiconductor laser. ,
An optical module characterized in that the optical axis alignment of the semiconductor laser and the previous optical fiber is performed by fitting the convex part of the semiconductor laser and the concave groove part of the mounting substrate.
前記半導体レーザの出力光の光軸に垂直な断面において、
前記半導体レーザの凸部の突起上端面の幅がすくなくとも前記半導体レーザの凸部の突起下端面の幅よりも広いこと
を特徴とする請求項1記載の光モジュール。
In a cross section perpendicular to the optical axis of the output light of the semiconductor laser,
2. The optical module according to claim 1, wherein the width of the upper end surface of the protrusion of the convex portion of the semiconductor laser is at least wider than the width of the lower end surface of the protrusion of the convex portion of the semiconductor laser.
前記半導体レーザの出力光の光軸に垂直な断面において、
前記実装基板の凹型溝部の開口幅が底面幅及び前記半導体レーザの凸部の突起上端面の幅よりも広く、
前記凹型溝部の溝の深さが、前記凸部の突起の高さよりも深く、
前記凸部の突起の高さと略一致する深さにおける溝幅が前記凸部の突起上端面の幅よりも広いこと
を特徴とする請求項1または請求項2記載の光モジュール。
In a cross section perpendicular to the optical axis of the output light of the semiconductor laser,
The opening width of the concave groove portion of the mounting substrate is wider than the bottom surface width and the width of the protrusion upper end surface of the convex portion of the semiconductor laser,
The depth of the groove of the concave groove is deeper than the height of the protrusion of the convex portion,
3. The optical module according to claim 1, wherein a groove width at a depth substantially equal to a height of the protrusion of the convex portion is wider than a width of an upper end surface of the protrusion of the convex portion.
前記半導体レーザの凸部及び前記実装基板の凹型溝部は、
異方性エッチングにより形成されること
を特徴とする請求項1、請求項2または請求項3記載の光モジュール。
The convex part of the semiconductor laser and the concave groove part of the mounting substrate are
The optical module according to claim 1, wherein the optical module is formed by anisotropic etching.
前記半導体レーザは、
リッジ導波路型構造を有すること
を特徴とする請求項1から請求項4のいずれか1項記載の光モジュール。
The semiconductor laser is:
The optical module according to claim 1, wherein the optical module has a ridge waveguide structure.
JP2003401249A 2003-12-01 2003-12-01 Optical module Pending JP2005164799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003401249A JP2005164799A (en) 2003-12-01 2003-12-01 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401249A JP2005164799A (en) 2003-12-01 2003-12-01 Optical module

Publications (1)

Publication Number Publication Date
JP2005164799A true JP2005164799A (en) 2005-06-23

Family

ID=34725242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401249A Pending JP2005164799A (en) 2003-12-01 2003-12-01 Optical module

Country Status (1)

Country Link
JP (1) JP2005164799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111087A (en) * 2014-12-03 2016-06-20 株式会社豊田中央研究所 Optical semiconductor element, optical semiconductor device, and mounting method for optical semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111087A (en) * 2014-12-03 2016-06-20 株式会社豊田中央研究所 Optical semiconductor element, optical semiconductor device, and mounting method for optical semiconductor element

Similar Documents

Publication Publication Date Title
JP3117107B2 (en) Assembly structure of optical integrated circuit device
US5684902A (en) Semiconductor laser module
US5675684A (en) Optical module having semiconductor elements fixedly mounted thereon with improved accuracy
US10746934B2 (en) Laser patterned adapters with waveguides and etched connectors for low cost alignment of optics to chips
Friedrich et al. Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides
US6985647B2 (en) Optical module
JP2007286340A (en) Optical waveguide device and method of manufacturing the same
US11686906B1 (en) Self-aligned structure and method on interposer-based PIC
CN103443675A (en) Optical interposer
JPH11211942A (en) Method for photocoupling planar optical device and optical fiber
US9651749B1 (en) Interposer with opaque substrate
JPH0846292A (en) Semiconductor laser element and manufacture thereof
EP1446841B1 (en) A method of manufacturing a semiconductor device
JP2005164799A (en) Optical module
KR100594036B1 (en) Optical amplifier, optical module with the same and method for fabricating thereof
JPH0750449A (en) Semiconductor laser element
JP2006126754A (en) Light emitting module, its manufacturing method, optical transceiver module, and optical communication system
US20050069261A1 (en) Optical semiconductor device and method of manufacturing same
JP4119809B2 (en) Opto-electric hybrid board
JPS61174791A (en) Semiconductor laser diode device
JPH02220013A (en) Parallel transmission optical module
JPH11190811A (en) Substrate for optical device mounting and its manufacture and optical module
US10302883B2 (en) Optical coupling assemblies
JP2004302459A (en) Optical module
KR100351560B1 (en) Optical transmitter and method of fabricating the reflecting structure used therefor