JPS61168282A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61168282A
JPS61168282A JP760685A JP760685A JPS61168282A JP S61168282 A JPS61168282 A JP S61168282A JP 760685 A JP760685 A JP 760685A JP 760685 A JP760685 A JP 760685A JP S61168282 A JPS61168282 A JP S61168282A
Authority
JP
Japan
Prior art keywords
resonator
photodiode
light
laser
propagated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP760685A
Other languages
Japanese (ja)
Inventor
Yoshinobu Sekiguchi
芳信 関口
Toshitami Hara
利民 原
Hideaki Nojiri
英章 野尻
Akira Shimizu
明 清水
Seiichi Miyazawa
宮沢 誠一
Isao Hakamata
袴田 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP760685A priority Critical patent/JPS61168282A/en
Publication of JPS61168282A publication Critical patent/JPS61168282A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to utilize the cleaved surface of a semiconductor as a mirror of a resonator by disposing the resonator of a laser and a photodetector in parallel. CONSTITUTION:Most of light enclosed in an active layer 6 is propagated and emitted to a resonator direction (direction 10), but part is propagated to both sides of the resonator. The propagation to the photodiode is arrived at a photodiode without any failure to generate electron and hole pairs, and a feedback signal of a laser light is generated. The lights of the photodiode and reverse direction are enclosed by a lower clad layer 7, and a GaAs substrate 8 having large refractive index for enclosing the light. Accordingly, most of the light propagated to the vertical direction to the resonator arrives at the photodiode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザ装置(以下、レーザ部という)
とフィードバック制御用の光検出器がモノリシックに形
成された半導体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor laser device (hereinafter referred to as a laser section).
and a semiconductor device in which a photodetector for feedback control is monolithically formed.

〔従来の技術〕[Conventional technology]

従来、ファブリペロ−共振器を有するレーザ部とフィー
ドバック制御用の光検出器をモノリシックに形成する場
合には、光検出器をレーザ部の共振器方向に設けるため
、共振器の光検出器側の臂開面な襞間により設けること
ができないので、ウェットエツチングまたはドライエツ
チングによって作成さぜるを得ない。
Conventionally, when a laser section having a Fabry-Perot resonator and a photodetector for feedback control are formed monolithically, the photodetector is provided in the direction of the resonator of the laser section. Since it cannot be provided with open folds, it cannot be produced by wet etching or dry etching.

しかし、ウェットエツチングまたはドライエツチングに
よる共振器の作成では、十分な反射率を有する面が再現
性よく得られないため、本来重要なレーザ部の効率が低
下してしまうという問題点がある。
However, when creating a resonator by wet etching or dry etching, a surface having sufficient reflectance cannot be obtained with good reproducibility, so there is a problem that the efficiency of the originally important laser section is reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、レーザ部と光検出器をモノリシックに
形成するさいに、共振器を構成するミラーの作成にレー
ザ部の臂開面を利用できる半導体装置を提供することで
ある。
An object of the present invention is to provide a semiconductor device in which a laser section and a photodetector are monolithically formed, and the arm opening of the laser section can be used to create a mirror constituting a resonator.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はレーザ部の共振器と光検出器を並列に配置した
ものである。
In the present invention, the resonator of the laser section and the photodetector are arranged in parallel.

したがって、本発明によればレーザ部の臂開面をミラー
の作成に利用することができる。
Therefore, according to the present invention, the arm opening of the laser section can be used to create a mirror.

〔実施例〕〔Example〕

図面を参照して本発明の詳細な説明する。 The present invention will be described in detail with reference to the drawings.

第1図は、本発明の半導体装置の一実施例の斜視図であ
る。本実施例では、n形ガリウム砒素(以下、GaAs
という)の基板8の上に厚さ2牌のn形アルミニウム・
ガリウム砒素(以下、A1GaSbという)の下側クラ
ッド層7、厚さ0.1u+のGaAsの活性層6、厚さ
2IL11の半絶縁性AJI G a A sの上側ク
ラッド層5、厚さ0.5uの半絶縁性GaAsのキャッ
プ層4が順次積層され、さらに、亜鉛の拡散によりp形
電極取出し層3が形成され、最後に発光部および光検出
部(フォトダイオード)の金属電極1.2.9が形成さ
れている。ここで、電極1を有するレーザ部の共振器は
活性層6の中の電極1の方向(光線方向10)のり開面
の間に形成され、これと光検出器が並列に配置されてい
る。
FIG. 1 is a perspective view of an embodiment of the semiconductor device of the present invention. In this example, n-type gallium arsenide (hereinafter referred to as GaAs)
n-type aluminum plate with a thickness of 2 tiles is placed on the substrate 8 of the
A lower cladding layer 7 of gallium arsenide (hereinafter referred to as A1GaSb), an active layer 6 of GaAs with a thickness of 0.1u+, an upper cladding layer 5 of semi-insulating AJI GaAs with a thickness of 2IL11, a thickness of 0.5u A cap layer 4 of semi-insulating GaAs is sequentially laminated, a p-type electrode extraction layer 3 is formed by diffusion of zinc, and finally a metal electrode 1.2.9 of a light emitting part and a light detection part (photodiode) is formed. is formed. Here, the resonator of the laser section having the electrode 1 is formed between the open planes of the active layer 6 in the direction of the electrode 1 (light beam direction 10), and a photodetector is arranged in parallel with the resonator.

このとき、電極1.2は互に電気的に絶縁されていなけ
ればならないので、上側クラッド層5およびキャップ層
4は半絶縁性であることが必要である。亜鉛の拡散フロ
ンh3aと活性層6までの距離は0.1u1以下である
が、フォトダイオード部ではこれほど近づける必要はな
く、距離を離して、高耐圧にして、感度を−Lげること
も可能である。レーザ部およびフォトダイオード部のス
イライブ電極1.2の幅は、約101LI11、各電極
1,2間の距離は、小さい方が望ましいが亜鉛拡散によ
る横方向への広がりを考慮し、約10犀としている。
At this time, since the electrodes 1.2 must be electrically insulated from each other, the upper cladding layer 5 and the cap layer 4 must be semi-insulating. The distance between the zinc diffusion flon h3a and the active layer 6 is 0.1u1 or less, but it is not necessary to make it this close in the photodiode part, and it is possible to increase the distance by increasing the withstand voltage and lowering the sensitivity by -L. It is possible. The width of the suirive electrodes 1.2 in the laser section and the photodiode section is approximately 101 LI11, and the distance between each electrode 1 and 2 is preferably as small as possible, but considering the lateral spread due to zinc diffusion, the width is approximately 10 LI11. There is.

第2図は、本実施例の等価回路である。電流源11によ
り電流12がレーザ部13に注入され、レーザ光の一部
14が伝搬されて、定電圧電源17によりバイアスされ
たフォトダイオード15に電流16が流れる。上述した
ように、レーザ部13で発生した光の大部分は共振器方
向10に出射されるが、レーザ光の一部14は、活性層
6に平行で共振器と垂直な方向に伝搬される。このフォ
トダイオード15に達したレーザ光の一部14が電子と
正孔の対を生成して電流1Bが流れる。この電流16は
、レーザ光の強弱を反映するので、これをフィードパ・
ンク制御に利用できる。
FIG. 2 is an equivalent circuit of this embodiment. A current 12 is injected into the laser section 13 by the current source 11, a portion 14 of the laser light is propagated, and a current 16 flows through the photodiode 15 biased by the constant voltage power supply 17. As described above, most of the light generated in the laser section 13 is emitted in the direction of the resonator 10, but a portion of the laser light 14 is propagated in a direction parallel to the active layer 6 and perpendicular to the resonator. . A portion 14 of the laser beam reaching this photodiode 15 generates pairs of electrons and holes, and a current 1B flows. This current 16 reflects the strength of the laser beam, so it is
Can be used for link control.

本実施例ではレーザ部および光検出器の材料としてAl
l GaAs / GaAsを用いる場合について説明
したが、コノ他に、A1GaSb、 GaAsP、Ga
ArSb、 InAsP。
In this example, Al is used as the material for the laser section and photodetector.
Although the case where GaAs/GaAs is used has been explained, Kono et al.
ArSb, InAsP.

InGaAs、 InGaSb等の3元混晶を用いる系
および、AfiGaAsSb、 InGaAs!1li
b等の4元混晶を用いる系などが、レーザ部と光検出器
をモノリシックに作る際に利用できる。
Systems using ternary mixed crystals such as InGaAs and InGaSb, AfiGaAsSb, InGaAs! 1li
A system using a quaternary mixed crystal such as b can be used to monolithically fabricate a laser section and a photodetector.

第3図および第4図は、レーザ部の横方向(活性層に平
行で共振器方向に垂直)の光閉じ込めを行なう本発明の
他の実施例の半導体装置を示している。
FIGS. 3 and 4 show a semiconductor device according to another embodiment of the present invention in which optical confinement is performed in the lateral direction of the laser section (parallel to the active layer and perpendicular to the cavity direction).

第3図(a)は段付きの基板を有する半導体装置の斜視
図、第3図(b)は段付き基板の斜視図、第3図(C)
は第3図(a)の断面図である。第3図(c)において
、活性層6に閉じ込められた光の大部分は共振器方向(
方向10)に伝搬、出射されるが、一部は共振器の両側
へ伝搬される。このうち、フォトダイオードの方向への
伝搬は何も障害なくフォトダイオードに達して電子・正
孔対を生成し、レーザ光のフィードバック信号を発生す
る。一方、フォトダイオード部と反対方向への光は、光
を閉じ込めるための下部クララど層7が薄くなっており
、しかも、屈折率の大きいGaAs基板8が近くに存在
するために、光は伝搬しにくく、この方向の光閉じ込め
が実現されている。したがって、共振器に垂直な方向へ
伝搬する光のほとんどは、フォトダイオードに到達する
FIG. 3(a) is a perspective view of a semiconductor device having a stepped substrate, FIG. 3(b) is a perspective view of the stepped substrate, and FIG. 3(C)
is a sectional view of FIG. 3(a). In FIG. 3(c), most of the light confined in the active layer 6 is directed toward the cavity (
It is propagated and emitted in the direction 10), but a portion is propagated to both sides of the resonator. Of these, the propagation in the direction of the photodiode reaches the photodiode without any hindrance, generates electron-hole pairs, and generates a feedback signal of the laser beam. On the other hand, the light traveling in the opposite direction from the photodiode section is not propagated because the lower clarification layer 7 for confining the light is thin and the GaAs substrate 8 with a high refractive index is present nearby. It is difficult to achieve optical confinement in this direction. Therefore, most of the light propagating in the direction perpendicular to the resonator reaches the photodiode.

第4図(a)は丁字形の溝のある基板を有する半導体装
置の斜視図、第4図(b)は丁字形の溝のある基板の斜
視図、第4図(C)は第4図(a)の断面図である。第
4図(c)において、共振器の横方向の光閉じ込めは、
下部のクラッド層7が両側ともに薄くなっているので両
方向ともに実現されている。したがって、レーザ部から
フォトダイオードに向う横方向の光は1字溝によって形
成される光導波路を通してフォトダイオードに達する。
4(a) is a perspective view of a semiconductor device having a substrate with a T-shaped groove, FIG. 4(b) is a perspective view of a substrate with a T-shaped groove, and FIG. 4(C) is a perspective view of a semiconductor device having a substrate with a T-shaped groove. It is a sectional view of (a). In Fig. 4(c), the lateral optical confinement of the resonator is
Since the lower cladding layer 7 is thin on both sides, both directions are realized. Therefore, the lateral light directed from the laser section toward the photodiode reaches the photodiode through the optical waveguide formed by the single-shaped groove.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、レーザ部とフィードバッ
ク制御用の光検出器をモノリシックに形成する際に、レ
ーザ部の共振器と並列に光検出器を設けることにより、
共振器のミラーとして半導体の臂開面を利用して、レー
ザとしての特性を劣化させることなく、フィードバック
制御のためのレーザ光のモニターが可能となる。
As explained above, the present invention provides the following advantages: When the laser section and the photodetector for feedback control are monolithically formed, the photodetector is provided in parallel with the resonator of the laser section.
By using the semiconductor arm opening as a mirror of the resonator, it becomes possible to monitor the laser light for feedback control without deteriorating the laser characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体の一実施例の斜視図、第2図は
第1図の実施例の等価回路、第3図(a)および第4図
(a)は、段付き基板および丁字形溝を有する基板を用
いた実施例の斜視図、第3図(b)および第4図(b)
は段付き基板および丁字形溝を有する斜視図、第3図(
c)および第4図(c)はそれぞれ第3図(a)および
第4図(a)の断面図である。 1.2.9−m−電極、 3−m−電極取出し層、  4−m−キャップ層、5.
7−−−クラツド層、 6一−−活性層、8−−一基板
。 3a   3a 第1図 第2図 (a) (b) (C) #  ORη (a) (b) (C) 第4図 手続補正書(自発) 昭和80年4月15日
FIG. 1 is a perspective view of an embodiment of the semiconductor of the present invention, FIG. 2 is an equivalent circuit of the embodiment of FIG. 1, and FIGS. Perspective views of an embodiment using a substrate with shaped grooves, FIG. 3(b) and FIG. 4(b)
is a perspective view with a stepped base plate and a T-shaped groove, FIG.
c) and FIG. 4(c) are cross-sectional views of FIG. 3(a) and FIG. 4(a), respectively. 1.2.9-m-electrode, 3-m-electrode extraction layer, 4-m-cap layer, 5.
7--Clad layer, 6--Active layer, 8--Substrate. 3a 3a Figure 1 Figure 2 (a) (b) (C) #ORη (a) (b) (C) Figure 4 procedural amendment (voluntary) April 15, 1980

Claims (1)

【特許請求の範囲】 半導体レーザ装置とフィードバック制御用の光検出器が
モノリシックに形成された半導体装置において、 前記半導体レーザ装置の共振器と前記検出器が並列に配
置されていることを特徴とする半導体装置。
[Claims] A semiconductor device in which a semiconductor laser device and a photodetector for feedback control are monolithically formed, characterized in that a resonator of the semiconductor laser device and the detector are arranged in parallel. Semiconductor equipment.
JP760685A 1985-01-21 1985-01-21 Semiconductor device Pending JPS61168282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP760685A JPS61168282A (en) 1985-01-21 1985-01-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP760685A JPS61168282A (en) 1985-01-21 1985-01-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61168282A true JPS61168282A (en) 1986-07-29

Family

ID=11670459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP760685A Pending JPS61168282A (en) 1985-01-21 1985-01-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61168282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449636A2 (en) * 1990-03-28 1991-10-02 Xerox Corporation Laser apparatus with means for detecting the laser power level
US5252513A (en) * 1990-03-28 1993-10-12 Xerox Corporation Method for forming a laser and light detector on a semiconductor substrate
EP0517503A3 (en) * 1991-06-03 1994-01-12 Nippon Telegraph & Telephone Optical amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449636A2 (en) * 1990-03-28 1991-10-02 Xerox Corporation Laser apparatus with means for detecting the laser power level
US5252513A (en) * 1990-03-28 1993-10-12 Xerox Corporation Method for forming a laser and light detector on a semiconductor substrate
EP0517503A3 (en) * 1991-06-03 1994-01-12 Nippon Telegraph & Telephone Optical amplifier

Similar Documents

Publication Publication Date Title
US4653058A (en) Distributed feedback semiconductor laser with monitor
US6999638B2 (en) Semiconductor waveguide device
US4581744A (en) Surface emitting injection type laser device
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
JPH0571154B2 (en)
JPS61168282A (en) Semiconductor device
JPS63116489A (en) Optical integrated circuit
US4912533A (en) End face light emitting element
JPH05167197A (en) Optical semiconductor device
US4833510A (en) Semiconductor laser array with independently usable laser light emission regions formed in a single active layer
US4910744A (en) Buried heterostructure semiconductor laser device
US4771433A (en) Semiconductor laser device
JP2846668B2 (en) Broad area laser
JPS62291987A (en) Optical integrated device
JPS6395690A (en) Surface emission type semiconductor laser
KR100566216B1 (en) Semiconductor optical device being monolith integrated
JPS63234585A (en) Semiconductor laser array device
JPS6243355B2 (en)
JP2001024211A (en) Semiconductor light receiving element
JPS6320398B2 (en)
JPS5875879A (en) Photointegrated element
JPS6342874B2 (en)
CA1242789A (en) Phase-locked laser array with mode-mixing means
JPH03192787A (en) Integrated optical modulator
JPH0521899Y2 (en)