JPH0715049A - 超伝導積層薄膜 - Google Patents

超伝導積層薄膜

Info

Publication number
JPH0715049A
JPH0715049A JP5152040A JP15204093A JPH0715049A JP H0715049 A JPH0715049 A JP H0715049A JP 5152040 A JP5152040 A JP 5152040A JP 15204093 A JP15204093 A JP 15204093A JP H0715049 A JPH0715049 A JP H0715049A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
substrate
layer
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5152040A
Other languages
English (en)
Inventor
Tetsuro Sato
哲朗 佐藤
Junichi Fujita
淳一 藤田
Tsutomu Yoshitake
務 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5152040A priority Critical patent/JPH0715049A/ja
Publication of JPH0715049A publication Critical patent/JPH0715049A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

(57)【要約】 【目的】 積層型ジョセフソン接合の作製に適した中間
層を有するBi−Sr−Ca−Cu−O系超伝導積層薄
膜を提供する。 【構成】 Bi2 Sr2 YCu2 x 中間層3をBi2
Sr2 CaCu2 x 超伝導体層2,4ではさんだ構造
を、SrTiO3 単結晶基板1上に作製する。この中間
層はBi系超伝導体と同様ペロブスカイト構造を基本と
する結晶構造を持っており、Bi系超伝導体層2,4の
間に、相互拡散なしで、十分に均一な厚さでエピタキシ
ャル成長できる。従って積層型ジョセフソン接合に適し
た超伝導積層薄膜を作製できる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は比較的高温で動作する積
層型ジョセフソン接合を作製するための、高い臨界温度
(Tc )を有するBi系超伝導酸化物層により中間層を
はさんだ構造を持つ超伝導積層薄膜に関するものであ
る。
【0002】
【従来の技術】高いTc を持つBi系酸化物超伝導体の
発見以来、その高いTc をもたらす超伝導機構の解明の
ための基礎研究や電子素子等への応用研究が活発におこ
なわれている。Bi系超伝導体は80K〜110Kとい
う高いTc を持つため、その使用に際しては、77Kの
沸点を持つ安価な液体窒素を冷媒として使用することが
可能で、またその低温の維持のための設備も簡単なもの
ですむという長所を持っている。このため、従来の低い
c を持つ物質を用いて実現した超伝導電子素子を、高
いTc を持つBi系超伝導体を用いて実現することは、
産業上大きな貢献となる。
【0003】このBi系超伝導体を用いて超伝導電子素
子を作製する際、この素子の重要な構成部分であるジョ
セフソン接合を再現性および制御性良く作製する必要が
ある。このための方法として、非超伝導体中間層を超伝
導体ではさんだ積層構造を作製する技術が一般的であ
る。この中間層を構成する非超伝導物質としては、Bi
系超伝導体と結晶構造が似ておりBi系超伝導薄膜上に
十分平坦に成長すること、薄膜成長温度においてBi系
超伝導体との相互拡散が小さいこと、低温で比抵抗が十
分高いこと(トンネル接合の場合)または十分低いこと
(近接効果による弱結合の場合)などの条件を満足する
必要がある。
【0004】Bi系超伝導積層薄膜の中間層として、従
来の低Tc 超伝導積層構造で用いられていたAl酸化物
やAuをそのまま用いると、相互拡散やBi系超伝導薄
膜の結晶配向性の乱れ等の問題が発生し、良質の超伝導
積層薄膜の作製が困難となる。そこで中間層に用いる物
質としてこれまでBi−Sr−Cu−O酸化物等が用い
られているが、いずれの物質もBi系超伝導層上に均一
に成長させることが困難で、そのためこれらの物質を中
間層に用いたジョセフソン接合中の電流分布には、十分
な均一性が得られないという問題点があった。
【0005】また均一な厚さを持つ中間層を作製するに
はBi系超伝導体層自身が十分に平坦でなければならな
い。しかし従来異相の発生等を抑えることは困難であっ
たため、均一な電流分布を持つジョセフソン接合を作製
することは困難だった。
【0006】またBi系超伝導体の超伝導コヒーレンス
長の異方性を考えると、ジョセフソン接合内で電流をB
i系超伝導体のab軸方向に流すことが望ましい。しか
し積層型ジョセフソン接合においてab軸方向に電流を
流そうとすると、積層薄膜はab軸配向薄膜であるか、
あるいは(110)配向薄膜であることなど、積層薄膜
の垂直方向にab軸成分を持つ薄膜であることが要求さ
れる。しかしBi系超伝導体薄膜ではc軸配向薄膜が中
心で、ジョセフソン接合に適した十分な平坦性を持った
ab軸配向薄膜成長は成功していない。また(110)
配向薄膜などab軸が基板表面に対して大きな角度で傾
斜している薄膜は表面平坦性が著しく悪く、積層型ジョ
セフソン接合作製には適していない。
【0007】
【発明が解決しようとする課題】本発明の目的は、積層
薄膜で用いられる中間層としてBi系超伝導体に良く適
した物質を選び、また場合によっては緩衝層を設けるこ
とにより異相の発生を抑えることによって、界面におけ
る相互拡散やBi系超伝導薄膜の結晶配向性の乱れ等が
なく、十分均一な膜厚の中間層を持つ良質のBi系超伝
導積層薄膜を提供すること、および薄膜の垂直方向にa
b軸成分を持ち、しかも積層型ジョセフソン接合作製に
十分な平坦性を持つ、前記の良質なBi系超伝導積層薄
膜を提供することにある。
【0008】
【課題を解決するための手段】本発明はBi−Sr−C
a−R−Cu−O(RはY,Ce,Pr,Nd,Sm,
Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,L
uのうちの少なくとも一種類を含む)で表される中間
層、または、M−Cu−O(MはBa,Sr,Ca,N
d,Laのうち少なくとも一種類を含む)で表される中
間層、または、Bi−AE−Co−O(ABはBa,S
r,Caのうちの少なくとも一種類を含む)で表される
中間層と、それをはさむBi−Sr−Ca−Cu−O系
超伝導体層を基板上に設けたことを特徴とする超伝導積
層薄膜である。
【0009】または基板と接するBi−Sr−Cu−O
緩衝層を設けたことを特徴とする、前記のいずれかの超
伝導積層薄膜である。
【0010】または基板を構成する物質の所定の結晶面
から所定の角度だけ傾斜させた表面を持つ基板を用いる
ことを特徴とする、前記のいずれかの超伝導積層薄膜で
ある。
【0011】
【作用】Bi−Sr−Ca−R−Cu−O、M−Cu−
O、Bi−AE−Co−O酸化物を中間層として用いた
のは、Bi系超伝導体と同様ペロブスカイト構造を基本
とする結晶構造を持っており、Bi系超伝導体層の上に
これらの中間層を十分に均一な厚さでエピタキシャル成
長させること、および逆にBi−Sr−Ca−R−Cu
−O酸化物層の上にBi系超伝導体層をエピタキシャル
成長させることが可能であること、Bi系超伝導体層と
の間の相互拡散が小さいこと、低温で充分高い比抵抗
(Bi−Sr−Ca−R−Cu−O)または十分低い比
抵抗(M−Cu−O、Bi−AE−Co−O)を持つこ
とが理由である。
【0012】基板と接するBi−Sr−Cu−O緩衝層
を設けたのは、その上に堆積する薄膜の平坦性向上、特
に異相の発生の抑制のためである。
【0013】または基板を構成する物質の所定の結晶面
から所定の角度だけ傾斜させた表面を持つ基板を用いる
のは、積層薄膜の垂直方向にab軸成分を持ち、しかも
積層型ジョセフソン接合作製に十分な平坦性を持つ積層
薄膜を作製するためである。
【0014】
【実施例】(実施例1)図1は本発明によるBi系超伝
導積層薄膜の概略図である。基板1には(001)Sr
TiO3 単結晶基板を用いた。基板の大きさは15mm
角で厚さは0.5mmである。基板上にまずBi2 Sr
2 CaCu2 x 超伝導体層2を堆積させ、その上にB
2 Sr2 YCu2 x 中間層3を、最後にその上にB
2 Sr2 CaCu2 x 超伝導体層4を堆積させて積
層薄膜を作製した。成長手法は多元マグネトロンスパッ
タリング法を用いた。ターゲットは各層にそれぞれ1枚
づつ割り振り、Bi2 . 5 Sr2 . 0 Ca0 . 8 Cu
2 . 4 x 、およびBi2 .6 Sr2 . 0 1 . 0 Cu
2 . 4 x という組成の焼結ターゲットを用いた。成長
中の基板温度は700〜750℃、スパッタガスはAr
およびOで、Ar:O=1:1で、全ガス圧は50〜2
00mTorrとした。作製した積層薄膜の各層の厚さ
は上下のBi2 Sr2 CaCu2 x 超伝導層がいずれ
も約100nm、Bi2 Sr2 YCu2 x 中間層が約
20nmであった。
【0015】積層薄膜を2次イオン質量分析装置(SI
MS)で分析したところ、各層は相互拡散せず堆積され
ており、良質の積層薄膜が作製されていることが確認さ
れた。各層が均一な厚さを持ち相互拡散していないこと
は、高分解能電子顕微鏡による積層薄膜断面の観察によ
っても確認された。またこの積層薄膜をX線回折法およ
び電子線回折法で調べると、各層ともc軸が基板表面に
垂直で、かつ基板の<110>方向と積層薄膜を構成す
る各酸化物の<100>方向とが平行となるエピタキシ
ャル成長をしていることが確認された。なおX線回折法
で調べた結果、Bi2 Sr2 CaCu2 x 酸化物相お
よびBi2 Sr2 YCu2 x 酸化物相以外の相は薄膜
中に存在していないことが確認された。積層薄膜の表面
および同条件で作製した各単層薄膜の表面を2次電子顕
微鏡および原子間力顕微鏡で観察したところ、表面は1
0nm程度の凹凸がみられるだけの平坦さで、異相の発
生も20×20μm2 に1個程度であることが確認され
た。4端子法でBi2 Sr2 CaCu2 O超伝導体層
2,4の抵抗の温度変化を測定したところ、いずれの層
ともに70K以上のTc を持つことが確認され、良質の
Bi2 Sr2 CaCu2 x 超伝導体層が作製されてい
ることがわかった。
【0016】なお、中間層にSr0 . 9 Nd0 . 1 Cu
x 、Bi2 Sr3 Co2 x を用いても同様の結果が
得られた。
【0017】(実施例2)図2は本発明によるBi系超
伝導積層薄膜の概略図である。基板11には(001)
SrTiO3 単結晶基板を用いた。基板の大きさは15
mm角で厚さは0.5mmである。基板上にまずBi2
Sr2 CuOx 緩衝層15を堆積した。次にその上にB
2 Sr2 CaCu2 x 超伝導体層12を堆積させ、
その上にBi2 Sr2 YCu2 x 中間層13を、最後
にその上にBi2 Sr2 CaCu2x 超伝導体層14
を堆積させて積層薄膜を作製した。成長手法は多元マグ
ネトロンスパッタリング法を用いた。Bi2 . 2 Sr
2 . 1 Cu1 . 0 x 、Bi2. 5 Sr2 . 0 Ca
0 . 8 Cu2 . 4 x 、およびBi2 . 6 Sr2 . 0
1 .0 Cu2 . 4 x という組成の焼結ターゲットを用
いた。成長中の基板温度は700℃〜750℃、スパッ
タガスはArおよび0で、Ar:O=1:1で、全ガス
圧は50〜200mTorrとした。作製した積層薄膜
の各層の厚さは緩衝層が約10nm、上下のBi2 Sr
2 CaCu2 x 超伝導層がいずれも約100nm、B
2 Sr2 YCu2 x 中間層が約20nmであった。
【0018】積層薄膜の表面および同条件で作製した各
単層薄膜の表面を2次電子顕微鏡および原子間力顕微鏡
で観察したところ、表面は5nm程度の凹凸がみられる
だけの平坦さであり、また実施例1の場合と比較して異
相の発生が非常に少なく、ほとんど異相が観察されない
ことが確認された。
【0019】なお、中間層にSr0 . 9 Nd0 . 1 Cu
x 、Bi2 Sr3 Co2 x を用いても同様の結果が
得られた。
【0020】(実施例3)図3は本発明によるBi系超
伝導積層薄膜の概略図である。基板21に用いたSrT
iO3 単結晶基板は、その法線が<100>から<11
1>に向かって4°傾いた表面を持っているものを用い
た。この傾斜角度が2°以上の基板を用いれば、その上
に成長させる積層薄膜のab軸方向を基板表面に対して
同じ角度だけ傾斜させることができた。基板の大きさは
15mm角で厚さは0.5mmである。基板上にまずB
2 Sr2 CuOx 緩衝層25を堆積した。次にその上
にBi2 Sr2 CaCu2 x 超伝導体層22を堆積さ
せ、その上にBi2 Sr2 YCu2 x 中間層23を、
最後にその上にBi2 Sr2 CaCu2 x 超伝導体層
24を堆積させて積層薄膜を作製した。成長手法は多元
マグネトロンスパッタリング法を用いた。成長中の基板
温度は700〜750℃、スパッタガスはArおよびO
で、Ar:O=1:1で、全ガス圧は50〜200mT
orrとした。作製した積層薄膜の各層の厚さは緩衝層
が約10nm、上下のBi2 Sr2 CaCu2 x 超伝
導層がいずれも約100nm、Bi2 Sr2 YCu2
x 中間層が約20nmであった。
【0021】この積層薄膜をX線および電子線回折法、
電子顕微鏡法で調べると、各層ともc軸が基板表面では
なく基板の<100>に垂直で、積層薄膜の垂直方向に
ab軸成分を持ち、積層型ジョセフソン接合に適した構
造になっていることが確認された。積層薄膜の表面およ
び同条件で作製した各単層薄膜の表面を2次電子顕微鏡
および原子間力顕微鏡で観察したところ、表面は基板傾
斜の影響で5〜10nm程度の階段状の構造がみられる
ものの、異相の発生は実施例2と同様に少なく、十分平
坦であることが確認された。
【0022】なお、中間層にSr0 . 9 Nd0 . 1 Cu
x 、Bi2 Sr3 Co2 x を用いても同様の結果が
得られた。
【0023】
【発明の効果】本発明は界面における相互拡散やBi系
超伝導薄膜の結晶配向性の乱れ等がなく、十分均一な膜
厚の中間層を持つ良質のBi系超伝導積層薄膜を提供す
るものであり、Bi系超伝導体の超伝導電子素子への応
用上効果が大きい。
【図面の簡単な説明】
【図1】本発明によるBi系超伝導積層薄膜の概略図で
ある。
【図2】本発明によるBi系超伝導積層薄膜の概略図で
ある。
【図3】本発明によるBi系超伝導積層薄膜の概略図で
ある。
【符号の説明】
1,11,21 SrTiO3 基板 2,4,12,14,22,24 Bi2 Sr2 CaC
2 x 超伝導体層 23 Bi2 Sr2 YCu2 x 中間層 25 Bi2 Sr2 CuOx 緩衝層

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 Bi−Sr−Ca−R−Cu−O(Rは
    Y,Ce,Pr,Nd,Sm,Eu,Gd,Tb,D
    y,Ho,Er,Tm,Yb,Luのうち少なくとも一
    種類を含む)で表される中間層と、それをはさむBi−
    Sr−Ca−Cu−O系超伝導体層を基板上に設けたこ
    とを特徴とする超伝導積層薄膜。
  2. 【請求項2】 M−Cu−O(MはBa,Sr,Ca,
    Nd,Laのうち少なくとも一種類を含む)で表される
    中間層と、それをはさむBi−Sr−Ca−Cu−O系
    超伝導体層を基板上に設けたことを特徴とする超伝導積
    層薄膜。
  3. 【請求項3】 Bi−AE−Co−O(AEはBa,S
    r,Caのうち少なくとも一種類を含む)で表される中
    間層と、それをはさむBi−Sr−Ca−Cu−O系超
    伝導体層を基板上に設けたことを特徴とする超伝導積層
    薄膜。
  4. 【請求項4】 基板と接するBi−Sr−Cu−O緩衝
    層を設けたことを特徴とする、請求項1、2または3に
    記載の超伝導積層薄膜。
  5. 【請求項5】 基板を構成する物質の所定の結晶面から
    所定の角度だけ傾斜させた表面を持つ基板を用いること
    を特徴とする、請求項1、2、3または4に記載の超伝
    導積層薄膜。
JP5152040A 1993-06-23 1993-06-23 超伝導積層薄膜 Pending JPH0715049A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5152040A JPH0715049A (ja) 1993-06-23 1993-06-23 超伝導積層薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5152040A JPH0715049A (ja) 1993-06-23 1993-06-23 超伝導積層薄膜

Publications (1)

Publication Number Publication Date
JPH0715049A true JPH0715049A (ja) 1995-01-17

Family

ID=15531750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5152040A Pending JPH0715049A (ja) 1993-06-23 1993-06-23 超伝導積層薄膜

Country Status (1)

Country Link
JP (1) JPH0715049A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077462A1 (ja) * 2003-02-26 2004-09-10 Tdk Corporation 電極層および誘電体層を含む積層体ユニット
US7453094B2 (en) 2002-09-20 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting apparatus and fabrication method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350122A (ja) * 1988-04-08 1991-03-04 Toshiba Corp 絶縁性組成物
JPH0483383A (ja) * 1990-07-25 1992-03-17 Matsushita Electric Ind Co Ltd 薄膜超伝導素子の製造方法
JPH04332180A (ja) * 1991-05-07 1992-11-19 Sumitomo Electric Ind Ltd ジョセフソン素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350122A (ja) * 1988-04-08 1991-03-04 Toshiba Corp 絶縁性組成物
JPH0483383A (ja) * 1990-07-25 1992-03-17 Matsushita Electric Ind Co Ltd 薄膜超伝導素子の製造方法
JPH04332180A (ja) * 1991-05-07 1992-11-19 Sumitomo Electric Ind Ltd ジョセフソン素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453094B2 (en) 2002-09-20 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting apparatus and fabrication method of the same
WO2004077462A1 (ja) * 2003-02-26 2004-09-10 Tdk Corporation 電極層および誘電体層を含む積層体ユニット

Similar Documents

Publication Publication Date Title
DE3855246T2 (de) Supraleitende dünne Schicht und Verfahren zu ihrer Herstellung
Ramesh et al. Ferroelectric bismuth titanate/superconductor (Y‐Ba‐Cu‐O) thin‐film heterostructures on silicon
EP0406126B2 (en) Substrate having a superconductor layer
EP0446145B1 (en) Process for preparing high-temperature superconducting thin films
US4983575A (en) Superconducting thin films made of stacked composite oxide layers
EP0506570B1 (en) Method of forming compound oxide superconducting thin film
CA2194400A1 (en) Epitaxial thallium high temperature superconducting films formed via a nucleation layer
EP0322306B1 (en) Process for producing a superconducting thin film
US5416062A (en) Thin film superconductor with an interlayer on a silicon substrate
AU614606B2 (en) Semiconductor substrate having a superconducting thin film, and a process for producing the same
JPH0715049A (ja) 超伝導積層薄膜
JP2501035B2 (ja) 超電導薄膜
JPH026394A (ja) 超伝導薄層
EP0459906B1 (en) Process for preparing superconducting junction of oxide superconductor
EP0494830B1 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JP2590142B2 (ja) 超伝導体
JPH07309700A (ja) 酸化物薄膜とその製造方法、およびそれを用いた超電導素子
JP2959290B2 (ja) 超伝導積層薄膜およびその製造方法
JP2813287B2 (ja) 超電導線材
JP2931779B2 (ja) 超電導素子
JPH03105807A (ja) 酸化物超伝導体と酸化物磁性体の積層薄膜
JP2544759B2 (ja) 超電導薄膜の作成方法
JPH01101677A (ja) 電子装置
JP3003398B2 (ja) 超伝導積層薄膜
JP2544760B2 (ja) 超電導薄膜の作製方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960709