JPH07150250A - Production of grain oriented silicon steel sheet - Google Patents

Production of grain oriented silicon steel sheet

Info

Publication number
JPH07150250A
JPH07150250A JP5302807A JP30280793A JPH07150250A JP H07150250 A JPH07150250 A JP H07150250A JP 5302807 A JP5302807 A JP 5302807A JP 30280793 A JP30280793 A JP 30280793A JP H07150250 A JPH07150250 A JP H07150250A
Authority
JP
Japan
Prior art keywords
steel sheet
furnace
annealing
gas
primary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5302807A
Other languages
Japanese (ja)
Inventor
Shigenobu Koga
重信 古賀
Shigehiko Nomura
成彦 野村
Osamu Togawa
修 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5302807A priority Critical patent/JPH07150250A/en
Publication of JPH07150250A publication Critical patent/JPH07150250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To extremely stably perform the decarburization of a steel sheet and the supply of oxygen to the surface of the steel sheet and to stabilize film properties and magnetism at high values. CONSTITUTION:A hot rolled plate of silicon steel, having a composition consisting of, by weight, 2.0-4.8% Si, inhibitor components, and the balance iron with inevitable impurities, is subjected, if necessary, to annealing and is then cold rolled once or cold rolled two or more times while process annealed between the cold rolling stages to prescribed sheet thickness. Subsequently, at the time of performing primary recrystallization annealing including decarburizing stage, this primary recrystallization annealing including decarburizing stage is performed while regulating the atmosphere in a furnace so that it consists of, as dry gas, >=25% H2, <2% COx, and the balance inert gas and has 50-70 deg.C dew point. In addition, the amount of atmospheric gas is controlled to [100X(H1+D)X(H1+H2)/H1] to [400X(H1+D)X(H1+H2)/H1]Nm<3>/hr, when, by meter, H1 represents the shorter one between the distances, in a direction perpendicular to sheet surface, from the steel sheet passed into the furnace to the interior furnace walls on both sides of the steel sheet and H2 represents the longer one and, further, D represents the width of the surface in a sheet surface interior direction. Further, a separation agent at annealing is applied and finish annealing is done.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄損が極めて低い方向性
珪素鋼板(以下方向性電磁鋼板という)の製造方法に関
するものである。特に、その脱炭工程を含む一次再結晶
焼鈍工程において鋼板の脱炭及び鋼板表面への酸素付与
を極めて安定して行い、皮膜及び磁性の高位安定化を図
ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet (hereinafter referred to as grain-oriented electrical steel sheet) having extremely low iron loss. In particular, in the primary recrystallization annealing process including the decarburization process, decarburization of the steel sheet and oxygen addition to the steel sheet surface are performed extremely stably, and it is intended to stabilize the film and magnetism at a high level.

【0002】[0002]

【従来の技術】方向性電磁鋼板は電気機器の磁気鉄心と
して多用され、エネルギーロスを少なくすべく、改善が
繰り返されてきた。所謂前工程の製鋼成分の最適化、熱
延条件等の最適化から後工程の仕上焼鈍等の最適化まで
改善が繰り返されてきた。脱炭工程を含む一次再結晶焼
鈍工程も例外ではなかった。脱炭工程を含む一次再結晶
焼鈍工程の主たる目的は、熱延工程でのγ相域確保等の
理由で鋼板に含まれた炭素(通常〜5×10-2%)を、
最終製品にて磁性が時効劣化しない領域まで脱炭し(〜
15ppm 未満)、次いで鋼板表面に適正な酸素付与を行
いFe及びSi酸化物を形成させ、その後で表面塗布し
たMgOと次工程の仕上焼鈍にて反応させ、グラス皮膜
を形成する前準備をするとともに、次工程の仕上焼鈍で
二次再結晶させるのに最適な結晶粒サイズに一次再結晶
させることである。
2. Description of the Related Art Grain-oriented electrical steel sheets are frequently used as magnetic iron cores for electric equipment and have been repeatedly improved to reduce energy loss. Improvements have been repeated from the optimization of so-called pre-process steelmaking components, the optimization of hot rolling conditions, etc. to the optimization of post-processes such as finish annealing. The primary recrystallization annealing process including the decarburization process was no exception. The main purpose of the primary recrystallization annealing process including the decarburization process is to remove the carbon (usually up to 5 × 10 -2 %) contained in the steel sheet for the reason of securing the γ phase region in the hot rolling process,
Decarburize to the extent that magnetism does not deteriorate with age in the final product (~
(Less than 15 ppm), and then appropriate oxygen is applied to the surface of the steel sheet to form Fe and Si oxides, and then the surface-coated MgO is reacted with finish annealing in the next step to prepare for forming a glass film. That is, the primary recrystallization is performed to the optimum grain size for secondary recrystallization in the finish annealing in the next step.

【0003】従来、この方向性電磁鋼板の脱炭工程を含
む一次再結晶焼鈍工程は、連続焼鈍炉で行われるが、炉
内で鋼板が連続的に脱炭され、鋼板表面に酸素付与され
るとともに、雰囲気ガスも連続的に変化(還元)されて
おり、この炉内の反応プロセスが非常に複雑であるとと
もに、炉内反応を十分に解析する解析装置(分析装置)
がなく、加えて、品質(磁性・皮膜等)には前後工程、
特に、焼鈍工程の影響も大きく、結果として、十分な理
論的な解析が行われず、過去の経験に基づき、僅少な改
善しか行われていなかった。
Conventionally, the primary recrystallization annealing step including the decarburizing step of the grain-oriented electrical steel sheet is carried out in a continuous annealing furnace, but the steel sheet is continuously decarburized in the furnace and oxygen is added to the surface of the steel sheet. At the same time, the atmospheric gas is also continuously changed (reduced), and the reaction process in this furnace is extremely complicated, and an analysis device (analyzer) that sufficiently analyzes the reaction in the furnace
In addition, the quality (magnetism, coating, etc.)
In particular, the effect of the annealing process was large, and as a result, a sufficient theoretical analysis was not performed, and only a slight improvement was made based on past experience.

【0004】[0004]

【発明が解決しようとする課題】この方向性電磁鋼板の
脱炭工程を含む一次再結晶焼鈍工程については、鋼板温
度と雰囲気ガス成分分析値を用い改善が試みられてきた
が、雰囲気ガス成分分析値が極めて不安定であり、反応
を代表する炉内雰囲気ガス成分値を見つけることは困難
であり、例えば、雰囲気ガスの供給方法についても、炉
の後方からの一括供給と炉の複数箇所からの分割供給の
是非についても満足な評価ができず、経験に頼らざるを
得なかった。この結果、安定した脱炭工程を含む一次再
結晶焼鈍を行うことが困難であり、しばしば脱炭不良、
或いは皮膜不良或いは磁性不良を招くとともに、これら
の不良改善に多大の時間と費用を費やさざるを得ない状
態であった。本発明は上述した従来の脱炭工程を含む一
次再結晶焼鈍工程が持っている課題に鑑み、炉内の雰囲
気ガスの安定化(均一化)を行って、安定して製品を生
産する電磁鋼板の製造方法の提供を目的とする。
The primary recrystallization annealing process including the decarburizing process of the grain-oriented electrical steel sheet has been attempted to be improved by using the steel sheet temperature and the atmospheric gas component analysis value. The value is extremely unstable, and it is difficult to find the value of the atmospheric gas component in the furnace that represents the reaction.For example, regarding the method of supplying the atmospheric gas, the batch supply from the rear of the furnace and the multiple supply from the furnace I was unable to make a satisfactory evaluation of the pros and cons of divided supply, so I had to rely on experience. As a result, it is difficult to perform primary recrystallization annealing including a stable decarburization step, and often decarburization failure,
Alternatively, it causes a film defect or a magnetic defect and requires a great deal of time and cost to improve these defects. In view of the problems of the primary recrystallization annealing process including the conventional decarburizing process described above, the present invention stabilizes (uniformizes) the atmospheric gas in the furnace and stably manufactures a magnetic steel sheet. An object of the present invention is to provide a manufacturing method of.

【0005】[0005]

【課題を解決するための手段】本発明は、従来技術の課
題を有利に解決するものであって、上記目的を達成する
ために発明者らは脱炭工程を含む一次再結晶焼鈍工程の
炉内の雰囲気ガス流れに着目し、反応の詳細解析を行
い、創意工夫を重ねた結果、雰囲気ガス量をある範囲に
制御することにより、極めて安定して製品を生産するこ
とを可能にしたものである。
The present invention advantageously solves the problems of the prior art, and in order to achieve the above object, the inventors of the present invention used a furnace for a primary recrystallization annealing process including a decarburization process. Focusing on the atmosphere gas flow inside, detailed analysis of the reaction was performed, and as a result of repeated ingenuity, by controlling the atmosphere gas amount within a certain range, it was possible to produce the product extremely stably. is there.

【0006】この発明の要旨は次の通りである。 (1)方向性電磁鋼板の製造において、Si:2.0〜
4.8重量%、インヒビター成分、残部鉄及び不可避的
不純物からなる珪素熱延鋼帯を必要に応じ焼鈍した後、
1回または中間焼鈍を含む2回以上の冷間圧延を行い所
定の板厚とし、次いで脱炭工程を含む一次再結晶焼鈍を
行う際、炉の雰囲気をH2 25%(ドライガス)以上、
COx 2%未満(ドライガス)、露点50〜70℃、残
部不活性ガスとするとともに、炉内に通板する鋼板とそ
の両側の炉の内壁までの距離(板面垂直方向距離)のう
ち短い方の距離をH1(m)、長い方の距離をH2
(m)、炉内幅(板面内方向幅)をD(m)とするとき
の雰囲気ガス量を、〔100×(H1+D)×(H1+
H2)/H1〕Nm3 /hr以上、〔400×(H1+D)
×(H1+H2)/H1〕Nm3 /hr以下として脱炭工程
を含む一次再結晶焼鈍を行い、更に焼鈍分離剤を塗布し
て仕上焼鈍を施すことを特徴とする方向性電磁鋼板の製
造方法。
The gist of the present invention is as follows. (1) In the production of grain-oriented electrical steel, Si: 2.0-
After annealing the hot-rolled silicon steel strip consisting of 4.8% by weight, inhibitor component, balance iron and unavoidable impurities, if necessary,
When performing cold rolling once or twice or more including an intermediate annealing to a predetermined plate thickness, and then performing primary recrystallization annealing including a decarburizing step, the furnace atmosphere is H 2 25% (dry gas) or more,
CO x less than 2% (dry gas), dew point 50 to 70 ° C, balance inert gas, and the distance between the steel plate to be passed through the furnace and the inner walls of the furnace on both sides (distance in the direction perpendicular to the plate surface) The shorter distance is H1 (m) and the longer distance is H2
(M) and the furnace internal width (width in the plate surface direction) is D (m), the atmospheric gas amount is [100 × (H1 + D) × (H1 +
H2) / H1] Nm 3 / hr or more, [400 × (H1 + D)
× (H1 + H2) / H1] Nm 3 / hr or less, a primary recrystallization annealing including a decarburizing step is performed, and an annealing separator is further applied to perform finish annealing, which is a method for producing a grain-oriented electrical steel sheet.

【0007】(2)炉内へ供給する雰囲気ガスを鋼板の
進行方向の最終部分に一括供給し、鋼板と対向する方向
に、一括して流し、鋼板の進行方向の初期部分から排出
することを特徴とする上記(1)記載の方向性電磁鋼板
の製造方法。 (3)鋼板の進行方向の初期部分から排出した雰囲気ガ
スを回収し、必要な成分調整をしたあと鋼板の進行方向
の最終部分から供給することを特徴とする上記(2)記
載の方向性電磁鋼板の製造方法。
(2) The atmospheric gas supplied into the furnace is supplied all at once to the final portion in the traveling direction of the steel sheet, is collectively flowed in the direction opposite to the steel sheet, and is discharged from the initial portion in the traveling direction of the steel sheet. The method for producing a grain-oriented electrical steel sheet according to (1) above. (3) The directional electromagnetic field according to (2) above, characterized in that the atmospheric gas discharged from the initial portion of the traveling direction of the steel sheet is recovered, the necessary components are adjusted, and then supplied from the final portion of the traveling direction of the steel sheet. Steel plate manufacturing method.

【0008】[0008]

【作用】以下、本発明について詳細に説明する。本発明
者らは、脱炭を含む一次再結晶焼鈍炉の供給雰囲気の炉
内のガス流れの挙動を詳細に調査したところ、炉内のガ
ス流れ挙動、特に鋼板と炉の間の距離、炉幅及びガス量
と鋼板と炉の内壁の間の雰囲気ガス成分のバラツキに強
い関係があることが見出された。調査は以下の如くして
行った。図1に、雰囲気ガスを炉の後方より一括供給し
ている脱炭を含む一次再結晶焼鈍炉の一例を示す。雰囲
気ガスは、炉1の後方の雰囲気ガス供給管3より一括供
給され、鋼板2と対向しながら炉の前方に流され、雰囲
気ガス排出管4より排出されている。図2に、雰囲気ガ
スを炉の複数点より分割供給している脱炭を含む一次再
結晶焼鈍炉の一例を示す。雰囲気ガスは、炉1の複数の
雰囲気ガス供給管31〜35から分割供給され、鋼板2
と対向しながら炉の前部に流され、雰囲気ガス排出管4
より排出されている。
The present invention will be described in detail below. The present inventors have investigated in detail the behavior of the gas flow in the furnace of the supply atmosphere of the primary recrystallization annealing furnace including decarburization, and found that the gas flow behavior in the furnace, especially the distance between the steel plate and the furnace, It has been found that there is a strong relationship between the width and the amount of gas and the variations in atmospheric gas components between the steel plate and the inner wall of the furnace. The survey was conducted as follows. FIG. 1 shows an example of a primary recrystallization annealing furnace including decarburization in which atmospheric gas is collectively supplied from the rear of the furnace. The atmospheric gas is supplied all at once from the atmospheric gas supply pipe 3 at the rear of the furnace 1, flows toward the front of the furnace while facing the steel plate 2, and is exhausted from the atmospheric gas exhaust pipe 4. FIG. 2 shows an example of a primary recrystallization annealing furnace including decarburization in which atmospheric gas is dividedly supplied from plural points of the furnace. The atmosphere gas is dividedly supplied from the plurality of atmosphere gas supply pipes 31 to 35 of the furnace 1, and the steel plate 2
Flowing toward the front of the furnace while facing the
Is being discharged more.

【0009】本発明者らは、炉のサイズ、鋼板の炉内の
位置、雰囲気ガス量及び雰囲気ガス供給位置を種々に変
えて調査した。その結果、雰囲気供給ガス量と鋼板と炉
の内壁の間の雰囲気濃度バラツキに強い相関があること
を見出し、更に詳細に解析したところ、炉内に通板する
鋼板とその両側の炉の内壁までの距離(板面垂直方向距
離)のうち短い方の距離をH1(m)、長い方の距離を
H2(m)(H1+H2:炉内に通板する鋼板の両側の
炉の内壁間の距離)、炉内幅(板面内方向幅)をD
(m)とし、α=(H1+D)×(H1+H2)/H1
とするとき、αを変数とした雰囲気ガス供給量と鋼板と
炉の内壁の間の雰囲気濃度バラツキに強い相関があるこ
とを見出した。
The present inventors conducted various investigations by changing the size of the furnace, the position of the steel sheet in the furnace, the amount of atmospheric gas, and the position of supplying the atmospheric gas. As a result, it was found that there is a strong correlation between the atmosphere supply gas amount and the atmospheric concentration variation between the steel plate and the inner wall of the furnace, and further detailed analysis revealed that the steel plate passed through the furnace and the inner walls of the furnace on both sides Of the distances (distance in the direction perpendicular to the plate surface), the shorter distance is H1 (m), and the longer distance is H2 (m) (H1 + H2: distance between inner walls of the furnace on both sides of the steel plate that passes through the furnace). , Furnace width (width in the plate surface direction) D
(M) and α = (H1 + D) × (H1 + H2) / H1
Then, it was found that there is a strong correlation between the atmospheric gas supply amount with α as a variable and the atmospheric concentration variation between the steel plate and the inner wall of the furnace.

【0010】図3に、雰囲気ガス供給量と炉内の鋼板と
炉の内壁間の雰囲気ガス濃度のバラツキ(鋼板近傍点5
と鋼板〜炉内壁中央点6との露点の測定値差)の関係の
例を示す。供給雰囲気ガスは、H2 75%(ドライガ
ス)、COx (大部分はCOであり、一部CO2 を含
む)1%未満、露点64℃であった。また、通板した鋼
板の板厚は0.30mm、組成は、Si:3.0重量%、
酸可溶性Al:0.029重量%、N:0.075重量
%、Mn:0.12重量%、S:0.007重量%、
C:0.05重量%、残部Fe及び不可避不純物であっ
た。雰囲気ガス量が、100×αNm3 /hr超にて、鋼板
と炉の内壁の間の雰囲気ガス濃度のバラツキが非常に小
さくなることを解明した。加えて、雰囲気ガスの供給方
法についても、炉後方からの一括供給が、炉内への分割
供給に比べ格段に鋼板と炉の内壁の間の雰囲気ガスの濃
度バラツキを小さくすることを解明した。尚、本発明者
らは、種々の成分系についても、同様の研究を行い、上
記関係が成り立つことを検証した。
FIG. 3 shows variations in the atmospheric gas supply amount and the atmospheric gas concentration between the steel plate in the furnace and the inner wall of the furnace (point 5 near the steel plate).
And the measured value difference of the dew point between the steel plate and the center point 6 of the inner wall of the furnace). The supply atmosphere gas was such that H 2 was 75% (dry gas), CO x (most of which was CO, and part of CO 2 was included) was less than 1%, and the dew point was 64 ° C. Further, the thickness of the passed steel plate is 0.30 mm, the composition is Si: 3.0% by weight,
Acid-soluble Al: 0.029% by weight, N: 0.075% by weight, Mn: 0.12% by weight, S: 0.007% by weight,
C: 0.05% by weight, balance Fe and inevitable impurities. It has been clarified that when the atmospheric gas amount exceeds 100 × αNm 3 / hr, the variation in the atmospheric gas concentration between the steel plate and the inner wall of the furnace becomes extremely small. In addition, regarding the method of supplying atmospheric gas, it was clarified that batch supply from the rear of the furnace significantly reduces the variation in the concentration of the atmospheric gas between the steel plate and the inner wall of the furnace, compared to the split supply into the furnace. The inventors of the present invention have conducted similar studies on various component systems and have verified that the above relationship holds.

【0011】以下、実施条件について述べる。本発明に
おける鋼成分は、Si:2.0〜4.8重量%、方向性
電磁鋼板製造に必要なインヒビター成分、残部Fe及び
不可避的不純物からなり、それ以外の成分は規定しな
い。Siは、電気抵抗を高め鉄損を下げるうえで重要で
あるが、その含有量が4.8重量%超では冷間圧延時に
割れやすくなる。一方、2.0重量%未満では電気抵抗
が低く、鉄損を下げるうえで問題がある。また、インヒ
ビター構成元素としては、Mn,S,Al,N,Se,
Sn,B,Bi,Nb,Ti,P等あらゆるものに対し
有効である。
The implementation conditions will be described below. The steel component in the present invention comprises Si: 2.0 to 4.8% by weight, an inhibitor component necessary for the production of grain-oriented electrical steel, the balance Fe and inevitable impurities, and the other components are not specified. Si is important for increasing electric resistance and reducing iron loss, but if its content exceeds 4.8% by weight, it tends to crack during cold rolling. On the other hand, if it is less than 2.0% by weight, the electric resistance is low and there is a problem in reducing iron loss. Moreover, Mn, S, Al, N, Se, and
It is effective for all of Sn, B, Bi, Nb, Ti, P and the like.

【0012】脱炭工程を含む一次再結晶焼鈍工程の雰囲
気ガスのH2 濃度(ドライガス)は、25%未満では、
酸化ポテンシャルが強く表面のSi選択酸化を阻害させ
る。COx 濃度(ドライガス)は、2%超では、酸化ポ
テンシャルが弱く脱炭性を低下させる。露点50℃未満
では、酸化ポテンシャルが低く脱炭性を低下させる。一
方、70℃超では、1℃当たりの水の量が多くなりすぎ
供給雰囲気成分の変動を大きくする。脱炭工程を含む一
次再結晶焼鈍工程の雰囲気ガス量は、〔100×(H1
+D)×(H1+H2)/H1〕Nm3 /hr未満では、炉
内の雰囲気ガス流れが不安定であり、鋼板垂直方向の雰
囲気ガス成分のバラツキも大きい。一方、〔400×
(H1+D)×(H1+H2)/H1〕Nm3 /hr超で
は、雰囲気ガス量が大きすぎ、非経済的である。
When the H 2 concentration (dry gas) of the atmosphere gas in the primary recrystallization annealing step including the decarburizing step is less than 25%,
It has a strong oxidation potential and hinders the selective oxidation of Si on the surface. If the CO x concentration (dry gas) exceeds 2%, the oxidation potential is weak and the decarburizing property is reduced. When the dew point is less than 50 ° C, the oxidation potential is low and the decarburizing property is lowered. On the other hand, if it exceeds 70 ° C., the amount of water per 1 ° C. becomes too large, and the fluctuations in the components of the supply atmosphere are increased. The atmosphere gas amount in the primary recrystallization annealing step including the decarburization step is [100 × (H1
If less than + D) × (H1 + H2) / H1] Nm 3 / hr, the atmosphere gas flow in the furnace is unstable, and the variation of the atmosphere gas component in the vertical direction of the steel sheet is large. On the other hand, [400 ×
If (H1 + D) × (H1 + H2) / H1] Nm 3 / hr is exceeded, the amount of atmospheric gas is too large, which is uneconomical.

【0013】脱炭工程を含む一次再結晶焼鈍工程の雰囲
気ガスの供給方法は、鋼板の進行方向の最終部分に一括
供給し、鋼板と対向する方向に、一括して流し、鋼板の
進行方向の初期部分から排出する方法が、分割供給方式
に比べ、炉内雰囲気ガスのバラツキが小さいとともに、
設備として簡素化される。鋼板の進行方向の初期部分か
ら排出した雰囲気ガスを回収し、必要な成分調整をした
あと鋼板の進行方向の最終部分から供給することによ
り、より経済的となる。
The method of supplying the atmospheric gas in the primary recrystallization annealing step including the decarburizing step is that the gas is supplied all at once to the final portion in the traveling direction of the steel sheet, and is collectively flowed in the direction opposite to the steel sheet. Compared to the split supply method, the method of discharging from the initial part has less variation in the atmosphere gas in the furnace, and
The equipment is simplified. It becomes more economical by collecting the atmospheric gas discharged from the initial portion of the traveling direction of the steel sheet, adjusting the necessary components and then supplying it from the final portion of the traveling direction of the steel sheet.

【0014】以下、本発明の実施態様を述べる。 Si:2.0〜4.8重量%、方向性電磁鋼板製造に必
要なインヒビター成分、残部Fe及び不可避的不純物か
らなる溶鋼を、通常の工程で、もしくは連続鋳造して熱
延鋼板あるいは熱延鋼帯とする。この熱延鋼板あるいは
熱延鋼帯に、必要に応じて、750〜1200℃の温度
域で、30秒〜30分間磁束密度向上のための焼鈍が施
され、次いでこれらの熱延鋼板あるいは熱延鋼帯は冷間
圧延される。冷間圧延は、最終冷間圧延率50%以上、
望ましくは、特公昭40−15644号公報に開示され
ているように、80%以上とする。冷間圧延後の材料
は、脱炭焼鈍を含む一次再結晶焼鈍炉に入れられる。
The embodiments of the present invention will be described below. Si: 2.0 to 4.8 wt%, hot rolled steel sheet or hot rolled steel sheet, which is composed of an inhibitor component necessary for the production of grain-oriented electrical steel sheet, the balance Fe and unavoidable impurities, in a normal process or continuously cast. Use steel strip. This hot-rolled steel sheet or hot-rolled steel strip is, if necessary, annealed at a temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes to improve the magnetic flux density, and then these hot-rolled steel sheet or hot-rolled steel sheet is hot rolled. The steel strip is cold rolled. Cold rolling is a final cold rolling rate of 50% or more,
Desirably, it is 80% or more as disclosed in Japanese Examined Patent Publication No. 40-15644. The material after cold rolling is put into a primary recrystallization annealing furnace including decarburization annealing.

【0015】この脱炭焼鈍を含む一次再結晶焼鈍は、鋼
板温度800〜850℃で行われる。このとき、炉に供
給する炉の雰囲気ガスを、ガス組成はH2 75%(ドラ
イガス)以上、COx 2%未満(ドライガス)、露点5
0〜70℃、残部不活性ガスとするとともに、雰囲気ガ
ス量を〔100×(H1+D)×(H1+H2)/H
1〕Nm3 /hr以上、〔400×(H1+D)×(H1+
H2)/H1〕Nm3 /hr以下とする。こうして、脱炭さ
れ、一次再結晶した鋼板あるいは鋼帯は、MgOを主成
分とする焼鈍分離剤が塗布されて仕上焼鈍炉に入り、9
20〜1150℃に到達後、5時間以上保持され二次再
結晶され、その後、純化のため1200℃まで昇温し、
この温度に10時間以上保持される。仕上焼鈍終了後、
必要に応じ、磁区細分化処理を含む張力コーティングを
行う。
The primary recrystallization annealing including the decarburization annealing is performed at a steel plate temperature of 800 to 850 ° C. At this time, the atmosphere gas supplied to the furnace has a gas composition of 75% or more of H 2 (dry gas), less than 2% of CO x (dry gas), and a dew point of 5
0 to 70 ° C., the balance is inert gas, and the amount of atmospheric gas is [100 × (H1 + D) × (H1 + H2) / H
1] Nm 3 / hr or more, [400 × (H1 + D) × (H1 +
H2) / H1] Nm 3 / hr or less. In this way, the decarburized steel sheet or steel strip that has undergone primary recrystallization is coated with an annealing separator containing MgO as a main component, and enters a finishing annealing furnace.
After reaching 20 to 1150 ° C., secondary recrystallization is performed by holding for 5 hours or more, and thereafter, the temperature is raised to 1200 ° C. for purification,
This temperature is maintained for 10 hours or more. After finishing annealing,
If necessary, tension coating including magnetic domain subdivision processing is performed.

【0016】[0016]

【実施例】【Example】

実施例1 Si:3.0重量%、酸可溶性Al:0.026重量
%、N:0.0090重量%、Mn:0.08重量%、
S:0.027重量%、C:0.05重量%、残部Fe
及び不可避不純物からなる珪素熱延鋼帯を、1100℃
で2分間焼鈍した後冷延し、0.23mmとした。これら
の冷延板を供給雰囲気ガス組成H2 75%(ドライガ
ス)、COx 1%未満(ドライガス)、露点68℃、残
部不活性ガスとするとともに鋼板温度830℃で2分間
焼鈍し、脱炭を含む一次再結晶させた。その後、MgO
を主成分とする焼鈍分離剤を塗布し、高温焼鈍した。高
温焼鈍は、1100℃まで10%N2 −90%H2 雰囲
気で150℃/hrの昇温速度を保ちながら昇温し、11
00℃到達後、その温度で10時間保持した。その後、
100%H2 雰囲気とし、更に1200℃まで昇温し、
この温度に10時間保持した。仕上焼鈍終了後、リン酸
−クロム酸系の張力コーティング処理を行った。得られ
た特性及び皮膜状況は表1の通りである。
Example 1 Si: 3.0 wt%, acid-soluble Al: 0.026 wt%, N: 0.0090 wt%, Mn: 0.08 wt%,
S: 0.027% by weight, C: 0.05% by weight, balance Fe
And hot-rolled silicon steel strip consisting of unavoidable impurities at 1100 ° C
After annealing for 2 minutes, it was cold-rolled to 0.23 mm. These cold-rolled sheets were annealed at a steel sheet temperature of 830 ° C. for 2 minutes, with a supply atmosphere gas composition H 2 of 75% (dry gas), CO x of less than 1% (dry gas), a dew point of 68 ° C., and a balance of inert gas. A primary recrystallization including decarburization was performed. Then MgO
Was annealed at a high temperature. In the high temperature annealing, the temperature was raised up to 1100 ° C. in a 10% N 2 -90% H 2 atmosphere while maintaining a temperature rising rate of 150 ° C./hr.
After reaching 00 ° C, the temperature was maintained for 10 hours. afterwards,
In a 100% H 2 atmosphere, further raise the temperature to 1200 ° C.,
Hold at this temperature for 10 hours. After finishing annealing, phosphoric acid-chromic acid-based tension coating treatment was performed. The properties and film conditions obtained are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例2 Si:3.2重量%、酸可溶性Al:0.030重量
%、N:0.0060重量%、Mn:0.13重量%、
S:0.007重量%、C:0.05重量%、残部Fe
及び不可避不純物からなる珪素熱延鋼帯を、1120℃
で2分間焼鈍した後冷延し、0.23mmとした。これら
の冷延板を供給雰囲気ガス組成H2 75%(ドライガ
ス)、COx 1%未満(ドライガス)、露点65℃、残
部不活性ガスとするとともに鋼板温度820℃で2分間
焼鈍し、脱炭を含む一次再結晶させた。次に、二次再結
晶を安定にさせるために、アンモニア雰囲気中で窒化処
理を行い、窒素量を190ppm としインヒビターを強化
した。その後、MgOを主成分とする焼鈍分離剤を塗布
し、高温焼鈍した。
Example 2 Si: 3.2% by weight, acid-soluble Al: 0.030% by weight, N: 0.0060% by weight, Mn: 0.13% by weight,
S: 0.007 wt%, C: 0.05 wt%, balance Fe
And hot-rolled silicon steel strip consisting of inevitable impurities at 1120 ° C
After annealing for 2 minutes, it was cold-rolled to 0.23 mm. These cold-rolled sheets were made into a supply atmosphere gas composition H 2 of 75% (dry gas), CO x of less than 1% (dry gas), a dew point of 65 ° C., and a balance inert gas, and were annealed at a steel plate temperature of 820 ° C. for 2 minutes, A primary recrystallization including decarburization was performed. Next, in order to stabilize the secondary recrystallization, nitriding treatment was performed in an ammonia atmosphere to adjust the amount of nitrogen to 190 ppm to strengthen the inhibitor. After that, an annealing separator containing MgO as a main component was applied, and high temperature annealing was performed.

【0019】高温焼鈍は、1100℃まで10%N2
90%H2 雰囲気で150℃/hrの昇温速度を保ちなが
ら昇温し、1100℃到達後、その温度で10時間保持
した。その後、100%H2 雰囲気とし、更に1200
℃まで昇温し、この温度に10時間保持した。仕上焼鈍
終了後、リン酸−クロム酸系の張力コーティング処理を
行った。得られた特性及び皮膜状況は表2の通りであ
る。例1及び例2で明らかなように、雰囲気ガスの炉内
での均一化(バラツキの減少)により磁性及び皮膜を含
めて製品の安定生産化がなされた。また、炉内雰囲気を
回収し、ガス成分を調整し、再使用することも可能であ
る。こうしてより経済的な製造を可能とした。
The high temperature annealing is performed at 10% N 2 − up to 1100 ° C.
The temperature was raised in a 90% H 2 atmosphere while maintaining the temperature rising rate of 150 ° C./hr, and after reaching 1100 ° C., the temperature was maintained for 10 hours. Then, the atmosphere is set to 100% H 2 and further 1200
The temperature was raised to 0 ° C. and the temperature was maintained for 10 hours. After finishing annealing, phosphoric acid-chromic acid-based tension coating treatment was performed. Table 2 shows the obtained characteristics and film conditions. As is clear from Example 1 and Example 2, stable production of the product including the magnetism and the film was achieved by homogenizing the atmosphere gas in the furnace (reducing variation). It is also possible to recover the atmosphere in the furnace, adjust the gas component, and reuse. In this way, more economical manufacturing was made possible.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明により、脱炭工程を含む一次再結
晶焼鈍工程の炉内の雰囲気ガスのガス量をある範囲に制
御することにより、皮膜性能及び磁性を高位安定化する
ことを可能とし、極めて安定して製品を生産することが
可能となり、工業上の価値は絶大である。
According to the present invention, by controlling the gas amount of the atmosphere gas in the furnace in the primary recrystallization annealing process including the decarburization process within a certain range, it becomes possible to stabilize the film performance and magnetism at a high level. It becomes possible to produce products with extremely high stability, and its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】雰囲気ガスを炉後方より一括供給している脱炭
を含む一次再結晶炉の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a primary recrystallization furnace including decarburization in which an atmospheric gas is collectively supplied from the rear of the furnace.

【図2】雰囲気ガスを炉内に分割供給している脱炭を含
む一次再結晶炉の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a primary recrystallization furnace including decarburization in which atmospheric gas is dividedly supplied into the furnace.

【図3】雰囲気ガス量と炉内の鋼板と炉の内壁間の雰囲
気ガスの濃度バラツキの関係を示す図表である。
FIG. 3 is a table showing the relationship between the amount of atmospheric gas and the concentration variation of the atmospheric gas between the steel plate in the furnace and the inner wall of the furnace.

【符号の説明】[Explanation of symbols]

1 炉 2 鋼板 3 雰囲気ガス供給管(後半部一括供給) 4 雰囲気ガス排出管 5 鋼板近傍点 6 鋼板〜炉内壁中央点 31〜35 雰囲気ガス供給管(炉内分割供給) 1 furnace 2 steel plate 3 atmospheric gas supply pipe (second half batch supply) 4 atmospheric gas discharge pipe 5 steel plate vicinity point 6 steel plate to furnace inner wall center point 31 to 35 atmosphere gas supply pipe (divided supply inside furnace)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 方向性珪素鋼板の製造において、Si:
2.0〜4.8重量%、インヒビター成分、残部鉄及び
不可避的不純物からなる珪素熱延鋼帯を必要に応じ焼鈍
した後、1回または中間焼鈍を含む2回以上の冷間圧延
を行い所定の板厚とし、次いで脱炭工程を含む一次再結
晶焼鈍を行う際、炉の雰囲気をH2 25%(ドライガ
ス)以上、COx 2%未満(ドライガス)、露点50〜
70℃、残部不活性ガスとするとともに、炉内に通板す
る鋼板とその両側の炉の内壁までの距離(板面垂直方向
距離)のうち短い方の距離をH1(m)、長い方の距離
をH2(m)、炉内幅(板面内方向幅)をD(m)とす
るときの雰囲気ガス量を、〔100×(H1+D)×
(H1+H2)/H1〕Nm3 /hr以上、〔400×(H
1+D)×(H1+H2)/H1〕Nm3 /hr以下として
脱炭工程を含む一次再結晶焼鈍を行い、更に焼鈍分離剤
を塗布して仕上焼鈍を施すことを特徴とする方向性珪素
鋼板の製造方法。
1. In the production of a grain-oriented silicon steel sheet, Si:
A hot-rolled silicon steel strip composed of 2.0 to 4.8% by weight, an inhibitor component, the balance iron and unavoidable impurities is annealed if necessary, and then cold rolled once or twice or more including an intermediate annealing. When performing the primary recrystallization annealing including a predetermined plate thickness and then including a decarburizing step, the furnace atmosphere is H 2 25% or more (dry gas), CO x 2% or less (dry gas), dew point 50 to
70 ° C., with the balance of the inert gas, the shorter distance of the distance between the steel plate to be passed through the furnace and the inner walls of the furnace on both sides (distance in the direction perpendicular to the plate surface) is H1 (m), and the longer one is When the distance is H2 (m) and the furnace width (width in the plate surface direction) is D (m), the amount of atmospheric gas is [100 × (H1 + D) ×
(H1 + H2) / H1] Nm 3 / hr or more, [400 × (H
1 + D) × (H1 + H2) / H1] Nm 3 / hr or less, a primary recrystallization annealing including a decarburization step is performed, and a finish separating annealing is further applied by applying an annealing separator to produce a grain-oriented silicon steel sheet. Method.
【請求項2】 炉内へ供給する雰囲気ガスを鋼板の進行
方向の最終部分に一括供給し、鋼板と対向する方向に、
一括して流し、鋼板の進行方向の初期部分から排出する
ことを特徴とする請求項1記載の方向性珪素鋼板の製造
方法。
2. The atmosphere gas supplied into the furnace is collectively supplied to the final portion in the traveling direction of the steel sheet, and in a direction facing the steel sheet,
The method for manufacturing a grain-oriented silicon steel sheet according to claim 1, wherein the steel sheet is poured in a batch and discharged from an initial portion in the traveling direction of the steel sheet.
【請求項3】 鋼板の進行方向の初期部分から排出した
雰囲気ガスを回収し、必要な成分調整をしたあと鋼板の
進行方向の最終部分から供給することを特徴とする請求
項2記載の方向性珪素鋼板の製造方法。
3. The directivity according to claim 2, wherein the atmospheric gas discharged from the initial portion of the steel sheet in the traveling direction is recovered, and after the necessary components are adjusted, the atmospheric gas is supplied from the final portion of the steel sheet in the traveling direction. Manufacturing method of silicon steel sheet.
JP5302807A 1993-12-02 1993-12-02 Production of grain oriented silicon steel sheet Pending JPH07150250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5302807A JPH07150250A (en) 1993-12-02 1993-12-02 Production of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5302807A JPH07150250A (en) 1993-12-02 1993-12-02 Production of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH07150250A true JPH07150250A (en) 1995-06-13

Family

ID=17913347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5302807A Pending JPH07150250A (en) 1993-12-02 1993-12-02 Production of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH07150250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946143B1 (en) * 2002-09-17 2010-03-10 주식회사 포스코 Method for manufacturing Glassless electrical steel sheet by controlling atomosphere gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946143B1 (en) * 2002-09-17 2010-03-10 주식회사 포스코 Method for manufacturing Glassless electrical steel sheet by controlling atomosphere gas

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
US7399369B2 (en) Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
JPS6250529B2 (en)
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
KR100359239B1 (en) Method for producing a directional electric steel plate having a high flux density
JPH07150250A (en) Production of grain oriented silicon steel sheet
KR100479996B1 (en) The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same
JP2771634B2 (en) Decarburized continuous annealing furnace for grain-oriented electrical steel sheets
JP2826903B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with good glass coating
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JPH05214445A (en) Production of grain-oriented silicon steel sheet having extremely high magnetic flux density
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH01119622A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
JPH03111516A (en) Production of grain-oriented electrical steel sheet
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH07179948A (en) Production of nonoriented silicon steel sheet
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP2022022486A (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH05179418A (en) Method for controlling nitriding amount in grain-oriented silicon steel sheet
JPS6250528B2 (en)