JPH07143411A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPH07143411A
JPH07143411A JP5311271A JP31127193A JPH07143411A JP H07143411 A JPH07143411 A JP H07143411A JP 5311271 A JP5311271 A JP 5311271A JP 31127193 A JP31127193 A JP 31127193A JP H07143411 A JPH07143411 A JP H07143411A
Authority
JP
Japan
Prior art keywords
solid
state image
sensor
image pickup
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5311271A
Other languages
Japanese (ja)
Inventor
Hiroshi Mori
浩史 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5311271A priority Critical patent/JPH07143411A/en
Publication of JPH07143411A publication Critical patent/JPH07143411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solid-state image pickup element in which no shading is in an output with an open aperture without increased production cost. CONSTITUTION:An area of a sensor opening section 12a located at the surrounding of a solid-state image pickup element 10 in which an on-chip micro lens 18 is provided on each light receiving sensor 12 is designed larger than the area of a sensor opening section 12a in the middle of the element. The luminous quantity incident from the surrounding light decreases when an aperture of an image pickup lens of the image pickup device provided with the element 10 is open because of the decreased surrounding light, but the sensitivity increased because the opening area of the sensor 12 is large so as to cancel the increase and the decrease with each other and a uniform video output is obtained outdoor and indoor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体撮像素子に関し、特
に受光センサからなる各画素上に集光レンズを装着し
た、いわゆるオンチップマイクロレンズ付き固体撮像素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to a so-called on-chip microlens solid-state image pickup device in which a condenser lens is mounted on each pixel composed of a light receiving sensor.

【0002】[0002]

【従来の技術】近年、ビデオカメラに代表されるよう撮
像装置などには“半導体式”の撮像素子、いわゆる固体
撮像素子が多用されている。図8は、一般的な撮像装置
の概略構成を示すものであり、装置前方には撮影レンズ
80が設けられている。撮影レンズ80および光学フィ
ルタ82を介して装置内に入った入力光像は、固体撮像
素子10により電気信号に変換され、信号処理回路84
を経て映像信号として外部に出力される。尚、本図にお
いて86は固体撮像素子10を駆動するクロックドライ
バ、88はタイミング発生回路、90は同期信号発生回
路である。
2. Description of the Related Art In recent years, "semiconductor" image pickup devices, so-called solid-state image pickup devices, have been widely used in image pickup devices such as video cameras. FIG. 8 shows a schematic configuration of a general image pickup apparatus, and a taking lens 80 is provided in front of the apparatus. The input light image that has entered the device through the taking lens 80 and the optical filter 82 is converted into an electric signal by the solid-state image pickup device 10, and the signal processing circuit 84 is provided.
Is output to the outside as a video signal. In the figure, 86 is a clock driver for driving the solid-state image sensor 10, 88 is a timing generation circuit, and 90 is a synchronization signal generation circuit.

【0003】図9に従来のオンチップマイクロレンズ付
き固体撮像素子20の平面図を、図10にその断面をそ
れぞれ示す。固体撮像素子20は、フォトダイオードか
らなる多数の受光センサ22(以下、センサと呼ぶ)
と、各センサ22の電荷を順序よく取出す垂直シフトレ
ジスタ24および水平シフトレジスタ26とを備えてお
り、更に各センサ22の上方には外部からの光をより集
中させて各センサ22へと導くための凸型集光レンズ
(オンチップマイクロレンズ)28が設けられている。
また、一般に固体撮像素子20の素子部表面20aに形
成される各センサ開口部22aの開口面積は、素子全域
に亙って等しくなるように形成されている。
FIG. 9 shows a plan view of a conventional solid-state image pickup device 20 with an on-chip microlens, and FIG. 10 shows a cross section thereof. The solid-state imaging device 20 includes a large number of light receiving sensors 22 (hereinafter, referred to as sensors) including photodiodes.
And a vertical shift register 24 and a horizontal shift register 26 for taking out the electric charges of the respective sensors 22 in order, and for further concentrating the light from the outside above the respective sensors 22 to guide them to the respective sensors 22. A convex condenser lens (on-chip microlens) 28 is provided.
Further, generally, the opening areas of the sensor openings 22a formed on the element surface 20a of the solid-state imaging element 20 are formed so as to be equal over the entire area of the element.

【0004】[0004]

【発明が解決しようとする課題】ところで、図8に示し
たような撮影レンズ80は、通常、レンズの絞りを開放
側にすると、開口効率の低下によってレンズの中央部に
対して周辺部の光量が少なくなり、いわゆる周辺減光が
発生する。そして、上述したような従来の固体撮像素子
20を用いたカメラなどでは、撮影レンズ80の絞りを
開放にした際に、画面の四隅が暗くなるシェーディング
現象が起こる。
By the way, in the taking lens 80 as shown in FIG. 8, when the aperture of the lens is set to the open side, the aperture efficiency is lowered and the amount of light in the peripheral portion with respect to the central portion of the lens is reduced. Is reduced and so-called peripheral dimming occurs. In a camera or the like using the conventional solid-state image sensor 20 as described above, when the diaphragm of the taking lens 80 is opened, a shading phenomenon occurs in which the four corners of the screen are dark.

【0005】このような問題に対しては特開昭63−1
47365号公報に、画素の位置に応じて屈折率やディ
オプター(レンズ強度)の異なる集光レンズを配し、全
域に亙って入射光量のバラツキを減少しようとした固体
撮像装置が開示されている。しかしながら、この装置は
曲率の異なる多数の集光レンズを素子部全域に亙って一
体的に被覆させる構成のため、レンズの成形が困難であ
り製造コストが高いという問題を含んでいる。
To solve this problem, Japanese Patent Laid-Open No. 63-1
Japanese Patent No. 47365 discloses a solid-state imaging device in which a condenser lens having a different refractive index or diopter (lens strength) depending on the position of a pixel is arranged to reduce variations in the amount of incident light over the entire area. . However, this device has a problem in that it is difficult to mold the lens and the manufacturing cost is high because a large number of condenser lenses having different curvatures are integrally covered over the entire element portion.

【0006】本発明は、このような現状に鑑み、製造が
容易でかつシェーディング現象を抑制できるような固体
撮像素子を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a solid-state image pickup device which is easy to manufacture and can suppress the shading phenomenon.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、画素を構成する受光センサ上にオ
ンチップマイクロレンズを設けた固体撮像素子におい
て、固体撮像素子の周辺部に位置する前記受光センサの
開口面積を、固体撮像素子の中央部に位置する受光セン
サの開口面積よりも大きくしたことを特徴とする固体撮
像素子が提供される。
In order to achieve the above object, according to the present invention, in a solid-state image pickup device in which an on-chip microlens is provided on a light-receiving sensor which constitutes a pixel, a position is provided in the peripheral portion of the solid-state image pickup device. There is provided a solid-state imaging device, wherein the opening area of the light-receiving sensor is larger than the opening area of the light-receiving sensor located at the center of the solid-state imaging device.

【0008】[0008]

【作用】固体撮像素子周辺部の受光センサの開口部面積
を、その中央部に位置する受光センサの開口部面積より
も大きくした分、それだけ受光感度を増すことができ
る。これより、撮影レンズ開放時、開口効率の低下に伴
って撮影レンズ周辺部の入射光量が中央部よりも減少し
ても、受光感度増大した分相殺され、全体としては中央
部、周辺部とも差のない受光量となる。
It is possible to increase the light receiving sensitivity by the amount that the opening area of the light receiving sensor in the peripheral portion of the solid-state image sensor is larger than the opening area of the light receiving sensor located in the central portion. As a result, even if the amount of incident light on the peripheral part of the shooting lens decreases with the decrease in aperture efficiency when the shooting lens is open, it is offset by the increase in the photosensitivity, and there is a difference between the central part and the peripheral part as a whole. There is no light reception.

【0009】[0009]

【実施例】図面を参照しながら本発明による固体撮像素
子を以下、説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid-state image sensor according to the present invention will be described below with reference to the drawings.

【0010】図1は、本発明による固体撮像素子の平面
図であり、左側はチップ水平方向(矢印A方向)におけ
る中央部の素子外観、右側は水平方向周辺部の素子外観
をそれぞれ示している。本図において、10は固体撮像
素子(チップ)、12はフォトダイオードからなりそれ
ぞれが画素となるセンサ、14はセンサ12の電荷を順
序よく取出す垂直シフトレジスタ、16は水平シフトレ
ジスタである。
FIG. 1 is a plan view of a solid-state image pickup device according to the present invention. The left side shows the element appearance of the central portion in the chip horizontal direction (arrow A direction), and the right side shows the element appearance of the peripheral portion in the horizontal direction. . In the figure, 10 is a solid-state image sensor (chip), 12 is a sensor which is composed of a photodiode and each is a pixel, 14 is a vertical shift register for taking out electric charges of the sensor 12 in order, and 16 is a horizontal shift register.

【0011】また、図2は図1のB−B線に沿う素子断
面図である。この図に示すように、各センサ12の上方
には外部からの光をより集中させて各センサ12へと導
くための凸状のオンチップマイクロレンズ(画素レン
ズ)18が設けられている。
FIG. 2 is a sectional view of the element taken along the line BB of FIG. As shown in this figure, a convex on-chip microlens (pixel lens) 18 for concentrating the light from the outside and guiding it to each sensor 12 is provided above each sensor 12.

【0012】以上のように構成される固体撮像素子10
において、本実施例によれば、素子部表面10aに形成
されるセンサ12の開口部12aは、中央部のそれが正
方形であるのに対し、周辺部は長方形に形成され、開口
部面積が中央部よりも周辺部が大きくなるように設定さ
れる。また、各センサ12に対応してそれぞれ設けられ
るオンチップマイクロレンズ18の各曲率は全て等し
く、同じレンズ特性(屈折率やディオプターなど)を持
つように形成されている。
The solid-state image pickup device 10 constructed as described above.
According to the present embodiment, the opening 12a of the sensor 12 formed on the surface 10a of the element portion has a square shape in the central portion, while the peripheral portion has a rectangular shape, and the opening area is central. The peripheral part is set to be larger than the part. Further, the curvatures of the on-chip microlenses 18 provided corresponding to the respective sensors 12 are all the same and are formed to have the same lens characteristics (refractive index, diopter, etc.).

【0013】以上のように形成された固体撮像素子10
の作用を説明する。
Solid-state image pickup device 10 formed as described above
The action of will be explained.

【0014】図3(a)は撮影レンズ80(図8)のレ
ンズのF値を増加させ、いわゆる絞りを絞った場合のオ
ンチップマイクロレンズ18の集光形態を示したもので
あり、(b)に比較例として従来の固体撮像素子を示し
たものである。尚、ここに図示する従来素子は、センサ
の開口面積が中央部、周辺部とも全て等しく設定された
ものであり、またPおよびP’は撮影レンズ80、光学
フィルタ82(図8)を介してセンサ12、12’に入
射する光線である。
FIG. 3 (a) shows the focusing form of the on-chip microlens 18 when the F-number of the lens of the taking lens 80 (FIG. 8) is increased and the so-called diaphragm is narrowed. ) Shows a conventional solid-state imaging device as a comparative example. It should be noted that in the conventional element shown in the figure, the opening area of the sensor is set to be equal in both the central portion and the peripheral portion, and P and P ′ are taken through the taking lens 80 and the optical filter 82 (FIG. 8). The light rays are incident on the sensors 12 and 12 '.

【0015】このように絞りを絞った状態では、撮影レ
ンズ80の周辺減光はなくレンズ中央部と周辺部でほぼ
等しい光量が得られる。またオンチップマイクロレンズ
18、18’へと向かう光線P、P’の各軌跡は、開口
効率の増加によりほぼ平行になる。
In the state in which the diaphragm is narrowed in this way, there is no dimming of the periphery of the taking lens 80, and almost the same amount of light is obtained in the central portion and the peripheral portion of the lens. Further, the trajectories of the light rays P and P ′ toward the on-chip microlenses 18 and 18 ′ become substantially parallel due to the increase in aperture efficiency.

【0016】この状態では、オンチップマイクロレンズ
18、18’に入射した光線P、P’は、素子全域に亙
り均一化されたレンズ特性により同じように収斂し、ほ
ぼ完全にセンサ12、12’内に集光される。従って、
従来素子の場合でも、また本実施例の素子の場合でも、
そのセンサ集光度はチップ中央部と周辺部との間で差を
生ずることがなく、結果として内外同等の感度を得るこ
とができる。これに対し撮影レンズの中央部と周辺部を
通過する光量は、F値の増加に伴いほぼ同程度となるた
めに、カメラの信号処理回路84(図8)を介して外部
出力される映像信号は、図4に示すように(a)本実施
例の素子でも、また(b)従来の素子の場合でも内外均
一な出力波形が得られる。
In this state, the light rays P and P'which are incident on the on-chip microlenses 18 and 18 'are similarly converged by the uniformed lens characteristics over the entire element, and the sensors 12 and 12' are almost completely converged. It is collected inside. Therefore,
Whether in the case of the conventional element or the element of this embodiment,
There is no difference in the sensor light condensing degree between the central portion and the peripheral portion of the chip, and as a result, it is possible to obtain the same sensitivity inside and outside. On the other hand, the amount of light passing through the central portion and the peripheral portion of the taking lens becomes almost the same as the F value increases, so that the video signal externally output via the signal processing circuit 84 (FIG. 8) of the camera. As shown in FIG. 4, even in the case of (a) the device of this embodiment and (b) the conventional device, uniform output waveforms can be obtained inside and outside.

【0017】図5(a)、(b)に撮影レンズ80のレ
ンズのF値を減少させ、絞りを開放状態にした場合の、
本実施例素子および従来素子におけるオンチップマイク
ロレンズ18の集光形態を示す。
5 (a) and 5 (b), when the F value of the lens of the taking lens 80 is reduced and the diaphragm is opened,
The condensing form of the on-chip microlens 18 in the device of this embodiment and the conventional device is shown.

【0018】図示するように、絞り開放状態においては
オンチップマイクロレンズ18、18’へと向かう光線
P、P’の各軌跡は平行にはならず、全体しては撮影レ
ンズ80より円錐状に拡散放射する光線の集まりとな
る。従って、この状態では素子面からの垂線に対し、傾
斜した状態でオンチップマイクロレンズ18、18’に
入射することとなり、完全にセンサ12、12’内に集
光されにくくなる。従って、(b)に示す従来素子の場
合には、センサ12’の受光量はチップ中央部と周辺部
との間で差を生ずることがなく、結果として内外同等の
感度となる。これに対し、(a)で示す本実施例素子の
場合には、中央部のセンサに比べ周辺部のセンサの方が
開口面積が広く形成されているために、この分周辺部の
センサの受光量が増えることとなり感度が高くなる。
As shown in the figure, when the diaphragm is open, the trajectories of the light rays P and P'toward the on-chip microlenses 18 and 18 'are not parallel, and as a whole, they are conical from the taking lens 80. It is a collection of light rays that diffusely emit. Therefore, in this state, the light is incident on the on-chip microlenses 18 and 18 'in an inclined state with respect to the vertical line from the element surface, and it is difficult to completely collect the light in the sensors 12 and 12'. Therefore, in the case of the conventional element shown in (b), there is no difference in the amount of light received by the sensor 12 'between the central portion and the peripheral portion of the chip, and as a result, the same sensitivity is obtained inside and outside. On the other hand, in the case of the element of this embodiment shown in (a), the peripheral area sensor is formed to have a larger opening area than the central area sensor. The amount increases and the sensitivity increases.

【0019】ここで、撮影レンズ80は前述したように
絞り開放状態にあるため、開口効率の低下によって、レ
ンズ周辺部を通過する光量は中央部のそれよりも少なく
なり、中央部に比して周辺部が暗くなる、いわゆる周辺
減光状態になる。しかしながら、本実施例の固体撮像素
子の場合には、前述したようにチップ周辺部のセンサ感
度が高いなっているために、撮影レンズの周辺減光を相
殺することとなり、カメラの信号処理回路84を介して
外部出力される映像信号は、図6(a)に示すように内
外均一な出力波形が得られる。
Here, since the photographic lens 80 is in the aperture open state as described above, the amount of light passing through the peripheral portion of the lens becomes smaller than that at the central portion due to the reduction of the aperture efficiency, and compared with the central portion. The periphery becomes dark, so-called peripheral dimming. However, in the case of the solid-state image sensor of the present embodiment, since the sensor sensitivity of the peripheral portion of the chip is high as described above, the peripheral dimming of the photographing lens is canceled and the signal processing circuit 84 of the camera is canceled. The video signal externally output via the output signal has a uniform output waveform inside and outside as shown in FIG.

【0020】これに対し、従来素子の場合には、周辺部
のセンサ感度と中央部のセンサ感度には差がないため
に、周辺減光の影響を受け、外部出力としては図6
(b)のように周辺部センサからの出力レベルが低下す
る、シェーディング状態になる。
On the other hand, in the case of the conventional element, since there is no difference between the sensor sensitivity of the peripheral portion and the sensor sensitivity of the central portion, it is affected by peripheral dimming, and the external output is as shown in FIG.
As in (b), the shading state occurs in which the output level from the peripheral sensor decreases.

【0021】このように本実施例によれば、中央部のセ
ンサに比べて周辺部のセンサ開口面積を大きくしたため
に、撮影レンズの絞り具合に拘わらずシェーディングの
無い均一な映像信号出力が得られる。また、本実施例の
固体撮像素子を構成する各オンチップマイクロレンズは
全て同一形状に形成され、単にセンサの開口面積を変え
ることで上述した効果を奏することができるため、従来
素子と比較してコストが上昇するようなことはない。
As described above, according to this embodiment, since the sensor opening area in the peripheral portion is larger than that in the sensor in the central portion, a uniform video signal output without shading can be obtained regardless of the aperture of the taking lens. . Further, all the on-chip microlenses forming the solid-state imaging device of the present embodiment are formed in the same shape, and the above-described effects can be obtained by simply changing the aperture area of the sensor, so that compared with the conventional device. The cost does not increase.

【0022】以上、本発明を、チップ周辺部と中央部と
の間でセンサ開口面積を異ならしめた固体撮像素子に例
をとり説明してきたが、他の実施例としては、図7の各
パターン(a)、(b)に示したように、センサ開口面
積を中央部からその周辺部にかけて徐々に増大するよう
にしたり、或いは所定数の画素毎に段階的に増大するよ
うにしても良い。また、図示した実施例では、チップ水
平方向における素子周辺部と素子中央部との間でセンサ
開口面積に差を持たせたものであったが、パターン
(c)に示すように、チップ垂直方向における周辺部と
中央部との間でセンサ開口面積に差を持たせても良く、
またパターン(d)のように双方の方向において本発明
を適用するようにしても良い。
Although the present invention has been described by taking the example of the solid-state image pickup device in which the sensor opening areas are different between the peripheral portion and the central portion of the chip, as another embodiment, each pattern of FIG. As shown in (a) and (b), the sensor opening area may be gradually increased from the central portion to the peripheral portion thereof, or may be gradually increased for every predetermined number of pixels. In the illustrated embodiment, the sensor opening area is different between the element peripheral portion and the element central portion in the chip horizontal direction, but as shown in the pattern (c), the chip vertical direction is shown. There may be a difference in the sensor opening area between the peripheral part and the central part in
The present invention may be applied in both directions as in the pattern (d).

【0023】尚、本実施例によれる固体撮像素子は、上
述したように通常の撮影レンズの絞りを開放した時のシ
ェーディング抑制に効果があるが、射出瞳距離の短い撮
影レンズの場合にも、チップ周辺部に入射する光線角度
が小さくなることによる周辺部の信号出力低下の問題が
あり、この問題に対しても本発明を適用することにより
シェーディングを低減することができる。
The solid-state image sensor according to the present embodiment is effective in suppressing shading when the aperture of a normal photographing lens is opened as described above, but is also effective for a photographing lens having a short exit pupil distance. However, there is a problem that the signal output of the peripheral portion is reduced due to the reduction of the angle of the light beam incident on the peripheral portion of the chip, and by applying the present invention to this problem as well, shading can be reduced.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、固
体撮像素子の周辺部に位置する受光センサの開口面積
を、固体撮像素子の中央部に位置するセンサの開口面積
よりも大きくして感度アップさせたことにより、撮影レ
ンズの絞り開放時においても周辺減光の影響を受けるこ
となく、製造コストアップすることなくシェーディング
のない映像出力を得ることができる。
As described above, according to the present invention, the aperture area of the light receiving sensor located in the peripheral portion of the solid-state image sensor is made larger than the aperture area of the sensor located in the central portion of the solid-state image sensor. By increasing the sensitivity, it is possible to obtain an image output without shading without being affected by peripheral dimming even when the aperture of the taking lens is opened, and without increasing the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による固体撮像素子の平面図
である。
FIG. 1 is a plan view of a solid-state image sensor according to an embodiment of the present invention.

【図2】図1のB−B線に沿う素子断面図である。FIG. 2 is a device cross-sectional view taken along the line BB of FIG.

【図3】撮影レンズの絞りを絞った時の素子内における
集光状態を示し、(a)は本実施例素子、(b)は従来
素子の断面をそれぞれ示す図である。
3A and 3B are views showing a light collecting state in the element when the diaphragm of the taking lens is narrowed, FIG. 3A is a cross-sectional view of the element of the present example, and FIG.

【図4】図3に対応する映像信号出力波形を示す図であ
る。
FIG. 4 is a diagram showing a video signal output waveform corresponding to FIG.

【図5】撮影レンズの絞りを開放した時の素子内におけ
る集光状態を示し、(a)は本実施例素子、(b)は従
来素子の断面をそれぞれ示す図である。
5A and 5B are views showing a light collecting state in the element when the diaphragm of the taking lens is opened, FIG. 5A is a cross-sectional view of the element of this example, and FIG.

【図6】図5に対応する映像信号出力波形を示す図であ
る。
6 is a diagram showing a video signal output waveform corresponding to FIG.

【図7】図1とは異なる実施例としての開口パターンを
示す図である。
FIG. 7 is a diagram showing an opening pattern as an embodiment different from FIG.

【図8】固体撮像装置の構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a solid-state imaging device.

【図9】従来の固体撮像素子の平面図である。FIG. 9 is a plan view of a conventional solid-state image sensor.

【図10】図9のB−B線に沿う素子断面図である。FIG. 10 is an element cross-sectional view taken along the line BB of FIG.

【符号の説明】[Explanation of symbols]

10…固体撮像素子(チップ) 12…受光センサ 12a…開口部 14…垂直シフトレジスタ 16…水平シフトレジスタ 18…オンチップマイクロレンズ(画素レンズ) 80…撮影レンズ DESCRIPTION OF SYMBOLS 10 ... Solid-state image sensor (chip) 12 ... Light receiving sensor 12a ... Opening 14 ... Vertical shift register 16 ... Horizontal shift register 18 ... On-chip microlens (pixel lens) 80 ... Photographing lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 画素を構成する受光センサ上にオンチッ
プマイクロレンズを設けた固体撮像素子において、 固体撮像素子の周辺部に位置する前記受光センサの開口
面積を、固体撮像素子の中央部に位置するセンサの開口
面積よりも大きくしたことを特徴とする固体撮像素子。
1. In a solid-state image sensor having an on-chip microlens provided on a light-receiving sensor that constitutes a pixel, the aperture area of the light-receiving sensor located in the peripheral part of the solid-state image sensor is located in the central part of the solid-state image sensor. The solid-state imaging device is characterized in that it has a larger opening area than the sensor.
【請求項2】 前記受光センサの開口面積は、固体撮像
素子の中央部からその周辺部にかけて徐々に増大するこ
とを特徴とする請求項1に記載の固体撮像素子。
2. The solid-state image sensor according to claim 1, wherein an opening area of the light-receiving sensor gradually increases from a central portion of the solid-state image sensor to a peripheral portion thereof.
【請求項3】 前記受光センサの開口面積は、固体撮像
素子の中央部からその周辺部にかけて、所定数の画素毎
に段階的に増大することを特徴とする請求項1に記載の
固体撮像素子。
3. The solid-state image sensor according to claim 1, wherein the aperture area of the light-receiving sensor is increased stepwise for each predetermined number of pixels from the central part of the solid-state image sensor to its peripheral part. .
【請求項4】 前記中央部および周辺部は、固体撮像素
子の水平方向におけ中央部および周辺部にそれぞれ相当
することを特徴とする請求項2または3に記載の固体撮
像素子。
4. The solid-state image sensor according to claim 2, wherein the central part and the peripheral part respectively correspond to the central part and the peripheral part in the horizontal direction of the solid-state image sensor.
【請求項5】 前記中央部および周辺部は、固体撮像素
子の垂直方向におけ中央部および周辺部にそれぞれ相当
することを特徴とする請求項2または3に記載の固体撮
像素子。
5. The solid-state imaging device according to claim 2, wherein the central part and the peripheral part correspond to the central part and the peripheral part in the vertical direction of the solid-state imaging device, respectively.
JP5311271A 1993-11-16 1993-11-16 Solid-state image pickup element Pending JPH07143411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5311271A JPH07143411A (en) 1993-11-16 1993-11-16 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5311271A JPH07143411A (en) 1993-11-16 1993-11-16 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH07143411A true JPH07143411A (en) 1995-06-02

Family

ID=18015135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5311271A Pending JPH07143411A (en) 1993-11-16 1993-11-16 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH07143411A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332711A (en) * 2000-05-18 2001-11-30 Sony Corp Solid-state image pickup element and its manufacturing method
JP2002344811A (en) * 2001-05-14 2002-11-29 Olympus Optical Co Ltd Solid-state imaging device
JP2005327921A (en) * 2004-05-14 2005-11-24 Sony Corp Solid state imaging apparatus
JP2010278664A (en) * 2009-05-27 2010-12-09 Sony Corp Solid-state imaging sensor and imaging apparatus
JP2017063393A (en) * 2015-09-25 2017-03-30 日本電産コパル株式会社 Imaging device and camera

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332711A (en) * 2000-05-18 2001-11-30 Sony Corp Solid-state image pickup element and its manufacturing method
JP2002344811A (en) * 2001-05-14 2002-11-29 Olympus Optical Co Ltd Solid-state imaging device
JP2005327921A (en) * 2004-05-14 2005-11-24 Sony Corp Solid state imaging apparatus
JP2010278664A (en) * 2009-05-27 2010-12-09 Sony Corp Solid-state imaging sensor and imaging apparatus
JP2017063393A (en) * 2015-09-25 2017-03-30 日本電産コパル株式会社 Imaging device and camera

Similar Documents

Publication Publication Date Title
JP3170847B2 (en) Solid-state image sensor and optical device using the same
US7119319B2 (en) Solid-state image sensing element and its design support method, and image sensing device
CN103037180B (en) Imageing sensor and picture pick-up device
KR101188575B1 (en) Imaging apparatus and arranging method for the same
CN100504452C (en) Optical device and beam splitter
JPH08107194A (en) Solid state image sensor
JP2600250B2 (en) Solid-state imaging device and video camera
CN110636277B (en) Detection apparatus, detection method, and image pickup apparatus
US7355154B2 (en) Image sensing apparatus with movable light flux splitter and control method thereof
TWI235606B (en) Solid state image pick up device
JP2002170944A (en) Solid state imaging device
JP2001210812A (en) Solid-state image pickup device and solid-state image pickup system provided with the same
JPH06118209A (en) Solid image pickup device
JP4384288B2 (en) Focus detection device
JP4564794B2 (en) Solid-state image sensor
JP2586044B2 (en) Optical device for focus detection
JPH07143411A (en) Solid-state image pickup element
US7639293B2 (en) Imaging apparatus and imaging method
JP3240752B2 (en) Solid-state imaging device
JPH06326284A (en) Color sold-state imaging device
JPH0637289A (en) Solid-state image sensing device
JPH09126757A (en) Distance measuring device
JP2000125310A (en) Solid-state image pickup device
JPS63147365A (en) Solid-state image sensing device
JP2638885B2 (en) Solid-state imaging device