JP2010278664A - Solid-state imaging sensor and imaging apparatus - Google Patents

Solid-state imaging sensor and imaging apparatus Download PDF

Info

Publication number
JP2010278664A
JP2010278664A JP2009128098A JP2009128098A JP2010278664A JP 2010278664 A JP2010278664 A JP 2010278664A JP 2009128098 A JP2009128098 A JP 2009128098A JP 2009128098 A JP2009128098 A JP 2009128098A JP 2010278664 A JP2010278664 A JP 2010278664A
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
area
pixel
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009128098A
Other languages
Japanese (ja)
Other versions
JP5402249B2 (en
Inventor
Hisashi Akiyama
久志 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009128098A priority Critical patent/JP5402249B2/en
Publication of JP2010278664A publication Critical patent/JP2010278664A/en
Application granted granted Critical
Publication of JP5402249B2 publication Critical patent/JP5402249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent lowering of light quantity at a peripheral part of a picked up image in treatment on an imaging element side with a relatively simple configuration. <P>SOLUTION: The imaging element includes: a photodetector evenly spaced arrangement part 11a; a photodetector extension arrangement part 11b; and an output part for outputting photodetector signals accumulated in photodetectors arranged in both arrangement parts as imaging signals. The photodetector evenly spaced arrangement part 11a arranges photodetectors at regular intervals in horizontal and vertical directions, areas of light receiving regions of the respective photodetectors are equal in the first area and arranged almost in the center. The photodetector extension arrangement part 11b is arranged at a peripheral position symmetrical with respect to the photodetector evenly spaced arrangement part 11a as a center. As a configuration of the photodetector extension arrangement part 11b, it is arranged at wider intervals than regular intervals in the photodetector evenly spaced arrangement part 11a and areas of light receiving regions of the respective photodetector are increasingly larger than the first area as the photodetectors go away from the photodetector evenly spaced arrangement part. Extension of the area is designed on the basis of aperture efficiency of a lens system, for example. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばCCD型イメージャやCMOS型イメージャなどの各種撮像素子に適用して好適な固体撮像素子、及びその固体撮像素子を備えた撮像装置に関する。   The present invention relates to a solid-state imaging device suitable for application to various imaging devices such as a CCD type imager and a CMOS type imager, and an imaging device including the solid-state imaging device.

従来、CCD(Charge Coupled Device)型イメージャやCMOS(Complementary Metal Oxide Semiconductor)型イメージャなどの固体撮像素子は、画素を一定間隔で均一な状態で配置してある。即ち、例えば図7に示したように、固体撮像素子90の画素配置部91に、水平方向の画素間隔を一定にすると共に、垂直方向の画素間隔についても一定にして、それぞれの画素をマトリクス状に連続して配置してある。ここでの画素とは、入射光を受光する受光素子が配置された箇所である。なお、図7では説明を簡単にするために、水平・垂直のいずれの方向も十数個程度の画素数で簡略化して示してあるが、実際には、画像信号を得る固体撮像素子の画素数は、数十万画素から数百万画素、或いはそれ以上の画素数で構成される。   Conventionally, a solid-state imaging device such as a CCD (Charge Coupled Device) type imager or a CMOS (Complementary Metal Oxide Semiconductor) type imager has pixels arranged in a uniform state at regular intervals. That is, for example, as shown in FIG. 7, in the pixel arrangement portion 91 of the solid-state imaging device 90, the horizontal pixel spacing is made constant and the vertical pixel spacing is also made constant so that each pixel is arranged in a matrix. Are arranged in succession. Here, the pixel is a portion where a light receiving element that receives incident light is disposed. In FIG. 7, for simplification of explanation, the horizontal and vertical directions are simplified with about a dozen pixels. However, in actuality, the pixels of the solid-state imaging device that obtain image signals are shown. The number is composed of hundreds of thousands of pixels to millions of pixels or more.

このような固体撮像素子の各画素で受光した信号を、所定の順序で転送して読み出すことで、1枚(1フレーム)の撮像信号が得られる。1つの固体撮像素子内に配置されたそれぞれの画素のサイズは、従来、基本的に同じサイズであった。   A signal received by each pixel of such a solid-state imaging device is transferred and read out in a predetermined order, thereby obtaining one (one frame) imaging signal. Conventionally, the size of each pixel arranged in one solid-state imaging device is basically the same size.

特開2000−56407号公報JP 2000-56407 A 特開2004−64796号公報JP 2004-64796 A 特開平1−94776号公報JP-A-1-94777

ところで、このような固体撮像素子を使って撮像して得た撮像信号は、撮像装置が備えるレンズなどの問題から、1枚の画像の周辺が暗くなる問題があった。即ち、レンズを介して撮像を行う場合、そのレンズの中心の光軸とのなす角度θを決めた場合、コサイン4乗則[cosθ]で、入射角と照度の関係から周辺光量が低下することが知られている。周辺光量の低下は、そのまま固体撮像素子で撮像して得られる画像の周辺の明るさ低下につながり、撮像画像の品質低下につながる。
例えばθを10°とすると、cos10°≒98で、cosθ=0.94となり、それだけの低下があることが知られている。
By the way, the imaging signal obtained by imaging using such a solid-state imaging device has a problem that the periphery of one image becomes dark due to a problem such as a lens provided in the imaging apparatus. That is, when imaging is performed through a lens, when the angle θ formed with the optical axis at the center of the lens is determined, the peripheral light quantity is reduced by the cosine fourth law [cos 4 θ] due to the relationship between the incident angle and the illuminance. It is known to do. The decrease in the amount of ambient light leads to a decrease in the brightness of the periphery of the image obtained by imaging with the solid-state image sensor as it is, leading to a decrease in the quality of the captured image.
For example, when θ is 10 °, cos 10 ° ≈98 and cos θ = 0.94, and it is known that there is a corresponding decrease.

従来、この周辺光量の低下を固体撮像素子で補正する技術として、例えば各画素の受光部に微小なレンズを配置するいわゆるオンチップレンズ(OCL)構成として、周辺部の画素に配置されたレンズをずらして、周辺部での受光光量を確保する技術がある。
また別の技術としては、固体撮像素子に光を導くレンズ系で、故意に歪曲収差を発生させて、周辺スポットの面積を小さくし、光量を増加させる技術が知られている。
Conventionally, as a technique for correcting the decrease in the peripheral light amount with a solid-state imaging device, for example, as a so-called on-chip lens (OCL) configuration in which a minute lens is disposed in a light receiving portion of each pixel, a lens disposed in a peripheral pixel is used. There is a technique for ensuring the amount of received light at the periphery by shifting.
As another technique, a technique is known in which a lens system that guides light to a solid-state imaging device intentionally generates distortion, thereby reducing the area of a peripheral spot and increasing the amount of light.

これらの技術は、それぞれ最適化が難しいという問題がある。即ち、オンチップレンズ構成で、レンズをずらして周辺部の光量を増やすのは、最適化が非常に難しいとともに、けられる光線が発生し、感度均一性の手法として不十分である。
レンズ系で故意に歪曲収差を発生させる場合にも、上述したコサイン4乗則での現実の周辺光量落ち込みに歪曲収差をマッチングさせるのは非常に困難であり、最適化が難しいという問題がある。
Each of these technologies has a problem that optimization is difficult. In other words, with an on-chip lens configuration, it is very difficult to optimize the shift of the lens to increase the amount of light at the peripheral portion, and a scattered light beam is generated, which is insufficient as a method for uniformity of sensitivity.
Even when distortion is intentionally generated in the lens system, it is very difficult to match the distortion to the actual decrease in the amount of peripheral light according to the cosine fourth law described above, and optimization is difficult.

また、周辺光量の低下を固体撮像素子の画素サイズで補正する技術として、例えば特許文献1,2,3に記載されたものが提案されている。
特許文献1には、固体撮像素子の各画素の受光領域である開口の大きさを、周辺部から中心に向かうに従って徐々に小さく構成させて、シェーディング補正を行う点についての記載がある。
特許文献2には、電子撮像デバイスの画素レイアウトとして、中心から周辺になるに従って徐々に画素面積が増える構成のものが記載されている。
特許文献3には、レンズの歪曲収差による糸巻状の像歪みを補正するために、撮像素子の画素を糸巻状に配置すると共に、1つ1つの面積を中心から周辺部へ行くに従って大きくすることが記載されている。
Further, as a technique for correcting the decrease in the amount of peripheral light with the pixel size of the solid-state imaging device, for example, those described in Patent Documents 1, 2, and 3 have been proposed.
Japanese Patent Application Laid-Open No. 2004-228561 describes that shading correction is performed by gradually reducing the size of the opening, which is the light receiving region of each pixel of the solid-state imaging device, from the peripheral part toward the center.
Patent Document 2 describes a configuration in which the pixel area gradually increases from the center toward the periphery as the pixel layout of the electronic imaging device.
In Patent Document 3, in order to correct pincushion-like image distortion due to lens distortion, pixels of the image sensor are arranged in a pincushion shape, and each area increases from the center to the periphery. Is described.

これら各特許文献に記載のように、画素面積を中心から周辺になるに従って徐々に大きくすることで、周辺部の各画素への受光光量を、中心部よりも増やすようにして、画像の周辺部の光量低下を補うアイデアは既に各種提案されている。
しかしながら、1つ1つの画素面積を、中心から周辺部へ行くに従って徐々に大きくするということは、1つ1つの画素の配置間隔が水平方向と垂直方向のそれぞれで異なることになり、撮像素子から出力される撮像信号の画素間隔が一定ではなくなる。
As described in each of these patent documents, by gradually increasing the pixel area from the center to the periphery, the amount of received light to each pixel in the peripheral part is increased from the central part, so that the peripheral part of the image Various ideas have already been proposed to compensate for the decrease in light intensity.
However, gradually increasing the area of each pixel as it goes from the center to the peripheral part means that the arrangement interval of each pixel is different between the horizontal direction and the vertical direction. The pixel interval of the output imaging signal is not constant.

一方、撮像素子で撮像して得た撮像信号を、ディスプレイなどに表示させるための画像信号とする際には、画素の間隔を一定の画像信号とする必要がある。このため、撮像素子上の全ての画素が、異なる間隔で配置されていると、画素間隔が一定の画像信号に変換するための回路で、ほぼ全ての画素の信号について補間などの画素位置変換の処理が必要になる。このような変換回路は大規模な変換処理が必要で、回路系の負担が非常に大きいという問題がある。   On the other hand, when an image signal obtained by imaging with an image sensor is used as an image signal for display on a display or the like, it is necessary to set the interval between pixels to a constant image signal. For this reason, if all the pixels on the image sensor are arranged at different intervals, a circuit for converting the image signals to a constant pixel interval is used to perform pixel position conversion such as interpolation for almost all pixel signals. Processing is required. Such a conversion circuit requires a large-scale conversion process, and there is a problem that the burden on the circuit system is very large.

本発明はかかる点に鑑みてなされたものであり、比較的簡単な構成で、撮像画像の周辺部の光量低下を防ぐようにすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to prevent a decrease in the amount of light at the peripheral portion of a captured image with a relatively simple configuration.

本発明の撮像素子は、受光素子等間隔配置部と、受光素子拡大配置部と、両配置部に配置された受光素子に蓄積した受光信号を撮像信号として出力させる出力部とを備えた。
受光素子等間隔配置部は、受光素子が水平方向に一定間隔で配置されると共に垂直方向にも一定間隔で配置され、ぞれぞれの受光素子の受光領域の面積が第1の面積で等しく、撮像素子を構成する基板のほぼ中央に配置される。
受光素子拡大配置部は、受光素子等間隔配置部を中心として対称となる周辺位置に配置される。その受光素子拡大配置部の構成としては、受光素子等間隔配置部での一定間隔よりも広い間隔で配置され、各受光素子の受光領域の面積を、受光素子等間隔配置部から離れるに従って第1の面積よりも徐々に大きい面積とした。
The imaging device of the present invention includes a light receiving element equidistant arrangement unit, a light receiving element expansion arrangement unit, and an output unit that outputs a light reception signal accumulated in the light receiving elements arranged in both arrangement units as an imaging signal.
The light receiving element equidistant arrangement portion is arranged with the light receiving elements arranged at a constant interval in the horizontal direction and at a constant interval in the vertical direction, and the area of the light receiving region of each light receiving element is equal to the first area. , And is arranged at substantially the center of the substrate constituting the image sensor.
The light receiving element expansion arrangement portion is arranged at a peripheral position that is symmetrical about the light receiving element equal interval arrangement portion. As the configuration of the light receiving element expansion arrangement portion, the light receiving elements are arranged at intervals wider than the constant interval in the light receiving element equal interval arrangement portion. The area was gradually larger than the area.

また本発明の撮像装置は、上述した本発明の撮像素子を備える。そして、撮像素子から出力される撮像信号の内の、受光素子等間隔配置部内の受光素子から読み出した撮像信号と、受光素子拡大配置部から読み出した撮像信号とを、一定の画素間隔の撮像信号に変換する変換部を備える。さらに、その変換部で変換された撮像信号を処理する撮像信号処理部を備えた。   Moreover, the imaging device of this invention is provided with the image pick-up element of this invention mentioned above. Then, among the imaging signals output from the imaging element, the imaging signal read from the light receiving element in the light receiving element equidistant arrangement portion and the imaging signal read from the light receiving element expansion arrangement portion are taken as an imaging signal having a constant pixel interval. The conversion part which converts into is provided. Furthermore, the imaging signal processing part which processes the imaging signal converted by the conversion part was provided.

本発明によると、受光素子の受光領域の面積が拡大した受光素子拡大配置部を配置したことで、撮像素子の周辺部では、受光光量が増加して、レンズ系の問題に起因した周辺光量の低下を補正することができる。
この場合、受光素子等間隔配置部から読出した信号については、一定間隔の画素間隔の信号となり、出力部から出力される信号を、通常の撮像素子の出力撮像信号と同様に処理できる。そして、撮像素子の周辺の受光素子拡大配置部から読出して出力部から出力される信号については、その間隔の変化に対応して補間などの補正処理が必要になる。従って、出力撮像信号に対して補正処理を行う領域が、周辺の受光素子拡大配置部だけに限定されるようになる。
According to the present invention, by arranging the light receiving element expansion arrangement portion in which the area of the light receiving region of the light receiving element is enlarged, the amount of received light increases in the peripheral portion of the image sensor, and the amount of peripheral light caused by the problem of the lens system is increased. The decrease can be corrected.
In this case, the signal read from the light receiving element equidistant arrangement section becomes a signal having a constant pixel interval, and the signal output from the output section can be processed in the same manner as the output image pickup signal of a normal image pickup element. Then, correction processing such as interpolation is required for signals output from the output unit after being read from the light receiving element enlargement / arrangement unit around the image sensor in accordance with the change in the interval. Therefore, the region where the correction process is performed on the output imaging signal is limited only to the peripheral light receiving element enlarged arrangement portion.

本発明によると、撮像素子の出力部から出力される撮像信号に対して補正処理を行う領域が、周辺の受光素子拡大配置部だけに限定されるようになり、等間隔配置部では特別な処理が不要になる。従って、画素間隔を変換する処理系の負担が少ない構成で、レンズ系の問題に起因した周辺光量の低下を補正することができる。   According to the present invention, the area where correction processing is performed on the image pickup signal output from the output unit of the image pickup device is limited to only the peripheral light receiving element enlarged arrangement unit, and special processing is performed in the equally spaced arrangement unit. Is no longer necessary. Accordingly, it is possible to correct a decrease in the amount of peripheral light caused by the problem of the lens system with a configuration in which the burden on the processing system for converting the pixel interval is small.

本発明の第1の実施の形態による撮像素子の画素配置例を示す説明図である。It is explanatory drawing which shows the pixel arrangement example of the image pick-up element by the 1st Embodiment of this invention. 本発明の第1の実施の形態による撮像装置の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of an imaging apparatus according to a first embodiment of the present invention. レンズの開口効率の概念を示した説明図である。It is explanatory drawing which showed the concept of the aperture efficiency of a lens. 本発明の第1の実施の形態による撮像素子に非球面レンズの光学系を組み合わせた例を示した説明図である。It is explanatory drawing which showed the example which combined the optical system of the aspherical lens with the image pick-up element by the 1st Embodiment of this invention. 歪曲収差の発生例を示した説明図である。It is explanatory drawing which showed the example of generation | occurrence | production of a distortion aberration. 本発明の第2の実施の形態による撮像素子の画素配置例を示す説明図である。It is explanatory drawing which shows the pixel arrangement example of the image pick-up element by the 2nd Embodiment of this invention. 従来のイメージセンサの画素配置例を示した説明図である。It is explanatory drawing which showed the example of pixel arrangement | positioning of the conventional image sensor.

以下、本発明の実施の形態の例を、以下の順序で説明する。
1.第1の実施の形態の撮像装置全体の構成例(図2)
2.第1の実施の形態の撮像素子の画素配置例(図1)
3.第1の実施の形態で画素サイズを決める条件についての説明(図3〜図5)
4.第2の実施の形態の撮像素子の画素配置例(図6)
5.各実施の形態の変形例
Hereinafter, examples of embodiments of the present invention will be described in the following order.
1. Configuration example of entire imaging apparatus according to first embodiment (FIG. 2)
2. Pixel arrangement example of the image sensor of the first embodiment (FIG. 1)
3. Description of conditions for determining the pixel size in the first embodiment (FIGS. 3 to 5)
4). Pixel arrangement example of the image sensor of the second embodiment (FIG. 6)
5). Modification of each embodiment

[1.第1の実施の形態の撮像装置全体の構成例(図2)]
本発明の第1の実施の形態の例は、撮像素子としてCCD(Charge Coupled Device)型イメージャを使用した撮像装置としたものである。撮像装置は、主として動画撮像を行うビデオカメラや、主として静止画の撮像を行うデジタルスチルカメラなど、種々の撮像を行う撮像装置が適用可能である。
[1. Configuration example of entire imaging apparatus according to first embodiment (FIG. 2)]
The example of the first embodiment of the present invention is an imaging apparatus using a CCD (Charge Coupled Device) type imager as an imaging element. As the imaging apparatus, an imaging apparatus that performs various imaging such as a video camera that mainly captures moving images and a digital still camera that mainly captures still images can be applied.

図2は、本実施の形態の例の撮像装置全体の概要を示した図である。
複数枚のレンズで構成されるレンズ系1を介して得た像光を、撮像素子であるCCDイメージセンサ10の画素配列部11に結像させる。レンズ系1の途中には、絞り2が配置してある。画素配列部11の画素構成については後述する。
FIG. 2 is a diagram illustrating an overview of the entire imaging apparatus according to the example of the present embodiment.
The image light obtained through the lens system 1 composed of a plurality of lenses is imaged on the pixel array unit 11 of the CCD image sensor 10 that is an image sensor. A diaphragm 2 is disposed in the middle of the lens system 1. The pixel configuration of the pixel array unit 11 will be described later.

CCDイメージセンサ10の画素配列部11で得られた各画素の受光信号は、駆動回路26から供給される駆動信号に同期して、イメージセンサ10内のレジスタ(図示せず)で順に転送されて、出力回路21から撮像信号として出力される。出力回路21にも駆動回路26から駆動用クロックが供給されて、そのクロックに同期したタイミングで処理される。出力回路21から出力された撮像信号は、遅延回路22及び補間回路23に供給する。補間回路23では、後述する画素位置補正のための補間処理が行われる。遅延回路22は、補間回路23での補間処理とタイミングを同期させるためのものである。   The light reception signal of each pixel obtained in the pixel array unit 11 of the CCD image sensor 10 is sequentially transferred by a register (not shown) in the image sensor 10 in synchronization with the drive signal supplied from the drive circuit 26. The output circuit 21 outputs the image signal. A driving clock is also supplied from the driving circuit 26 to the output circuit 21 and processed at a timing synchronized with the clock. The imaging signal output from the output circuit 21 is supplied to the delay circuit 22 and the interpolation circuit 23. In the interpolation circuit 23, interpolation processing for pixel position correction described later is performed. The delay circuit 22 is for synchronizing the timing with the interpolation processing in the interpolation circuit 23.

そして、遅延回路22で遅延された撮像信号と、補間回路23で補間された撮像信号を、切換スイッチ24に供給して、いずれか一方の信号を選択して、撮像信号処理部25に供給する。切換スイッチ24での切換えについては、駆動回路26から供給されるクロックに同期して行われる。切換スイッチ24で切換えられる処理状態の詳細は後述する。
撮像信号処理部25では、供給される撮像信号を処理して、所定のフォーマットの画像信号(映像信号)に変換する。撮像信号処理部25で変換された画像信号は、記録系回路27に供給して各種媒体に記録(記憶)させる。或いは、撮像信号処理部25で変換された画像信号を、表示系回路28に供給してディスプレイなどに表示させる。或いはまた、撮像信号処理部25で変換された画像信号を、出力端子部29に供給して外部に出力させる。
Then, the image pickup signal delayed by the delay circuit 22 and the image pickup signal interpolated by the interpolation circuit 23 are supplied to the changeover switch 24, and either one of the signals is selected and supplied to the image pickup signal processing unit 25. . Switching by the changeover switch 24 is performed in synchronization with a clock supplied from the drive circuit 26. Details of the processing state switched by the selector switch 24 will be described later.
The imaging signal processing unit 25 processes the supplied imaging signal and converts it into an image signal (video signal) in a predetermined format. The image signal converted by the imaging signal processing unit 25 is supplied to the recording system circuit 27 and recorded (stored) in various media. Alternatively, the image signal converted by the imaging signal processing unit 25 is supplied to the display system circuit 28 and displayed on a display or the like. Alternatively, the image signal converted by the imaging signal processing unit 25 is supplied to the output terminal unit 29 and output to the outside.

[2.第1の実施の形態の撮像素子の画素配置例(図1)]
次に、CCDイメージセンサ10の画素配列部11の画素配列状態を、図1を参照して説明する。なお、図1に図示した画素配列は、本実施の形態の原理を説明するために強調して図示したものであり、また画素数についても、簡略化して示してある。また、図1では2つの画素の状態を拡大して示してある。
図1に示したように、CCDイメージセンサ10の画素配列部11には、それぞれの画素を構成する受光素子の受光部が縦横それぞれ所定個で配置してある。各画素を構成する受光部の脇には、転送レジスタが配置してあり、その転送レジスタに受光部で受光して得た信号電荷を送り、用意された転送レジスタ内を駆動回路26(図2)から供給されるクロックに同期して転送させ、出力回路21まで供給する。
[2. Example of Pixel Arrangement of Image Sensor of First Embodiment (FIG. 1)]
Next, the pixel arrangement state of the pixel arrangement unit 11 of the CCD image sensor 10 will be described with reference to FIG. Note that the pixel array shown in FIG. 1 is shown in an emphasized manner for explaining the principle of the present embodiment, and the number of pixels is also shown in a simplified manner. In FIG. 1, the states of the two pixels are enlarged.
As shown in FIG. 1, in the pixel array unit 11 of the CCD image sensor 10, a predetermined number of light receiving portions of light receiving elements constituting each pixel are arranged vertically and horizontally. A transfer register is arranged beside the light receiving unit constituting each pixel, and signal charges obtained by receiving light from the light receiving unit are sent to the transfer register, and a drive circuit 26 (FIG. 2) is provided in the prepared transfer register. ) In synchronization with the clock supplied from () and supplied to the output circuit 21.

本実施の形態においては、図1に示すように、画素配列部11は、中心画素部11aと周辺画素部11bとに別れている。中心画素部11aは、これから説明するように受光素子等間隔配置部である。周辺画素部11bは、受光素子が一定でない間隔で配置された受光素子拡大配置部である。
図1では、中心画素部11aの画素の領域に斜線を付与して示してあり、中心画素部11aの上下左右の周囲に配列された画素が周辺画素部11bである。周辺画素部11bは、中心画素部11a側から見て、左右対称な位置関係に配置してあると共に、上下方向にも対称な位置関係に配置してある。この例では、画素配列部11の中心位置から縁部までの長さの1/3から1/2程度までで設定した範囲を中心画素部11aとしてあり、受光素子を等間隔に配置してある。そして、残りの領域を、周辺画素部11bとしてある。この周辺画素部11bは、後述する開口効率などの点である程度以下に受光光量が落ちる周辺部である。
In the present embodiment, as shown in FIG. 1, the pixel array unit 11 is divided into a central pixel unit 11a and a peripheral pixel unit 11b. The center pixel portion 11a is a light receiving element equidistant arrangement portion as will be described. The peripheral pixel portion 11b is a light receiving element enlarged arrangement portion in which the light receiving elements are arranged at non-constant intervals.
In FIG. 1, the pixel area of the central pixel portion 11a is indicated by hatching, and the pixels arranged around the top, bottom, left, and right of the central pixel portion 11a are the peripheral pixel portion 11b. The peripheral pixel portion 11b is arranged in a symmetrical positional relationship when viewed from the central pixel portion 11a side, and is also arranged in a symmetrical positional relationship in the vertical direction. In this example, a range set from about 1/3 to about 1/2 of the length from the center position to the edge of the pixel array unit 11 is used as the center pixel unit 11a, and the light receiving elements are arranged at equal intervals. . The remaining area is a peripheral pixel portion 11b. The peripheral pixel portion 11b is a peripheral portion where the received light amount falls to a certain extent in terms of aperture efficiency, which will be described later.

中心画素部11a内の各画素は、画素の配置間隔が水平方向で一定の間隔であり、垂直方向でも一定の間隔である。そして、それぞれ画素が備える受光素子の受光領域の面積についても、中心画素部11a内では等しい面積としてある。即ち、図1に示すように、中心画素部11a内の各画素は、画素のサイズとして、垂直方向の幅v1及び水平方向の幅h1としてある。   Each pixel in the center pixel portion 11a has a constant pixel arrangement interval in the horizontal direction and a constant interval in the vertical direction. The areas of the light receiving regions of the light receiving elements included in the pixels are also equal in the center pixel portion 11a. That is, as shown in FIG. 1, each pixel in the central pixel portion 11a has a vertical width v1 and a horizontal width h1 as the pixel size.

図1では、その中心画素部11a内の1つの画素を拡大して示してある。中心画素部11a内の1つの画素の垂直方向の幅v1×水平方向の幅h1の内で、水平方向の幅v0については、転送レジスタ13の幅である。残りの水平方向の幅h1′と垂直方向の幅v1とで、各画素の受光領域12aの面積が決まる。中心画素部11aについては、画素配置間隔が一定であり、中心画素部11a内の全ての画素の受光領域12aの面積は等しい。   In FIG. 1, one pixel in the central pixel portion 11a is shown enlarged. Of the width v1 in the vertical direction of one pixel in the central pixel portion 11a × the width h1 in the horizontal direction, the width v0 in the horizontal direction is the width of the transfer register 13. The remaining horizontal width h1 ′ and vertical width v1 determine the area of the light receiving region 12a of each pixel. As for the central pixel portion 11a, the pixel arrangement interval is constant, and the areas of the light receiving regions 12a of all the pixels in the central pixel portion 11a are equal.

周辺画素部11bについては、中心画素部11aと接する位置から、画素配列部11の縁部になるに従って、徐々に1つの画素の面積を増やす構成としてある。具体的には、図1に示すように、中心画素部11aの左右の端部と接する画素については、水平方向の幅を、幅h1よりも広い幅h2としてあり、その画素位置から1画素ずつ進むに従って、水平方向の幅h3,h4となるようにしてある。ここで、h1<h2<h3<h4である。
また、中心画素部11aの上下の端部と接する画素については、垂直方向の幅を、幅v1よりも広い幅v2としてあり、その画素位置から1画素ずつ進むに従って、垂直方向の幅が拡がって、幅v3となるようにしてある。ここで、v1<v2<v3である。
The peripheral pixel unit 11b is configured to gradually increase the area of one pixel from the position in contact with the central pixel unit 11a toward the edge of the pixel array unit 11. Specifically, as shown in FIG. 1, the pixels in contact with the left and right ends of the central pixel portion 11a have a horizontal width that is wider than the width h1, and one pixel at a time from the pixel position. As the process proceeds, the horizontal widths h3 and h4 are set. Here, h1 <h2 <h3 <h4.
In addition, the pixels in contact with the upper and lower ends of the central pixel portion 11a have a width in the vertical direction that is wider than the width v1, and the width in the vertical direction increases as the pixel position advances from the pixel position. , Width v3. Here, v1 <v2 <v3.

図1では、周辺画素部11b内の1つの画素についても拡大して示してある。図1に示した拡大表示した周辺画素部11b内の1つの画素は、左側の端部の画素であり、垂直方向の幅v4×水平方向の幅h1の画素であり、水平方向の幅v0については、転送レジスタ13の幅である。残りの水平方向の幅h4′と垂直方向の幅v1とで、その画素の受光領域12bの面積が決まる。
ここでは、転送レジスタ13の幅は、中心画素部11a内の画素と、周辺画素部11b内の画素とで等しい。
なお、図1に示した転送レジスタ13は垂直転送レジスタであり、その垂直転送レジスタの端部には、図示しない水平転送レジスタが接続してあり、その水平転送レジスタで、出力回路21まで信号電荷が転送される。
In FIG. 1, one pixel in the peripheral pixel portion 11b is also shown enlarged. One pixel in the enlarged peripheral pixel portion 11b shown in FIG. 1 is a pixel at the left end, a pixel having a vertical width v4 × horizontal width h1, and a horizontal width v0. Is the width of the transfer register 13. The remaining horizontal width h4 ′ and vertical width v1 determine the area of the light receiving region 12b of the pixel.
Here, the width of the transfer register 13 is equal between the pixels in the central pixel portion 11a and the pixels in the peripheral pixel portion 11b.
The transfer register 13 shown in FIG. 1 is a vertical transfer register, and a horizontal transfer register (not shown) is connected to the end of the vertical transfer register. Is transferred.

この図1に示した画素配列の各画素の受光素子の受光領域に蓄積した信号電荷は、図2に示した出力回路21で撮像信号として読出される。ここで、中心画素部11a内の各画素の撮像信号については、一定間隔で画素が配置された信号であるので、駆動回路26からの一定周期のクロックに同期してそのまま出力させればよい。このため、図2の撮像装置の構成で示した切換スイッチ24については、中心画素部11a内の各画素の信号が出力される区間では、遅延回路23の出力をそのまま撮像信号処理部25に供給すればよい。   The signal charge accumulated in the light receiving region of the light receiving element of each pixel in the pixel array shown in FIG. 1 is read out as an imaging signal by the output circuit 21 shown in FIG. Here, since the image pickup signal of each pixel in the center pixel portion 11a is a signal in which pixels are arranged at a constant interval, it may be output as it is in synchronization with a clock with a fixed period from the drive circuit 26. For this reason, with respect to the changeover switch 24 shown in the configuration of the imaging apparatus in FIG. 2, the output of the delay circuit 23 is supplied to the imaging signal processing unit 25 as it is in the section where the signal of each pixel in the central pixel unit 11a is output. do it.

一方、周辺画素部11b内の各画素の撮像信号については、間隔が異なる画素配置で得た信号であるので、補間回路22の隣接画素信号どうしを、そのときの画素位置に対応した比率で加算して、中心画素部11aと同じ画素間隔の撮像信号に変換する。隣接した画素の信号としては、例えば水平方向に隣接した画素の信号と、垂直方向に隣接した画素の信号を使用して行う。垂直方向に隣接した画素の信号を使う必要がない画素位置の場合には、水平方向に隣接した画素の信号だけを使って補間してもよい。そして、その補間回路22で補間された撮像信号を切換スイッチ24で選択させる。補間回路22での補間処理のタイミング及び切換スイッチ24での切換タイミングについては、例えば駆動回路26内で周辺画素部11bでの非等間隔の画素配列に対応した非等間隔の画素クロックを生成させて、その画素クロックに同期して行う。   On the other hand, since the imaging signals of the respective pixels in the peripheral pixel unit 11b are signals obtained with pixel arrangements having different intervals, the adjacent pixel signals of the interpolation circuit 22 are added at a ratio corresponding to the pixel position at that time. Then, it is converted into an imaging signal having the same pixel interval as that of the central pixel portion 11a. As the signal of the adjacent pixel, for example, the signal of the pixel adjacent in the horizontal direction and the signal of the pixel adjacent in the vertical direction are used. In the case of a pixel position where it is not necessary to use signals of pixels adjacent in the vertical direction, interpolation may be performed using only signals of pixels adjacent in the horizontal direction. The image pickup signal interpolated by the interpolation circuit 22 is selected by the changeover switch 24. As for the timing of the interpolation processing in the interpolation circuit 22 and the switching timing in the changeover switch 24, for example, non-uniformly spaced pixel clocks corresponding to the unequally spaced pixel arrangement in the peripheral pixel unit 11b are generated in the drive circuit 26. In synchronization with the pixel clock.

[3.第1の実施の形態で画素サイズを決める条件についての説明(図3〜図5)]
次に、図1に示した中心画素部11aと周辺画素部11bを有する撮像素子の、画素サイズを決める条件について説明する。
既に説明したように、周辺画素部11b内の画素の受光領域の面積を拡大するのは、レンズ系の影響で周辺部への入射光量が低下するのを補うためである。
本例の場合には、次式に基づいて周辺部の受光部への光量を求める。
周辺光量=中心光量×開口効率×cosθ ・・・(1)
ここで、θはレンズ系を通過する光の入射角である。
[3. Description of conditions for determining the pixel size in the first embodiment (FIGS. 3 to 5)]
Next, conditions for determining the pixel size of the imaging device having the central pixel portion 11a and the peripheral pixel portion 11b shown in FIG. 1 will be described.
As described above, the reason why the area of the light receiving region of the pixel in the peripheral pixel portion 11b is enlarged is to compensate for a decrease in the amount of light incident on the peripheral portion due to the influence of the lens system.
In the case of this example, the amount of light to the peripheral light receiving part is obtained based on the following equation.
Peripheral light quantity = Center light quantity × Aperture efficiency × cos 4 θ (1)
Here, θ is an incident angle of light passing through the lens system.

この(1)式から求めた光量の不足分を補うように、周辺画素部11bにおいて、各画素の受光領域の面積を拡大するように設定する。
具体的には、例えば入射角を10°とすると、
cos10°≒0.98となり、
cosθ=0.94となる。
さらに、開口効率を90%として、(1)式を求めると、周辺光量は85%まで低下する。
従って、周辺光量85%で15%の低下を補うように、該当する画素位置での受光領域の面積を約15%程度拡大することで、受光光量を中心部の画素とほぼ等しくすることができる。この約15%程度n拡大は、画素のサイズで示すと、縦横双方を拡大する場合には、1つの辺の4%程度の拡大でよい。これは、例えば中心画素部11aでの1つの画素の1辺のサイズ(間隔)が例えば1.55umであるとすると、周辺画素部11bでは、1つの画素の1辺のサイズを1.60um強に拡大することで対処可能である。
In the peripheral pixel unit 11b, the area of the light receiving region of each pixel is set to be enlarged so as to compensate for the shortage of the light amount obtained from the equation (1).
Specifically, for example, if the incident angle is 10 °,
cos10 ° ≈0.98
cos 4 θ = 0.94.
Furthermore, when the aperture efficiency is set to 90% and the expression (1) is obtained, the peripheral light amount is reduced to 85%.
Therefore, by increasing the area of the light receiving region at the corresponding pixel position by about 15% so as to compensate for the 15% decrease at the peripheral light amount of 85%, the received light amount can be made substantially equal to the central pixel. . The enlargement of about 15% is expressed by the size of the pixel. When both the vertical and horizontal directions are enlarged, the enlargement may be about 4% of one side. For example, if the size (interval) of one side of one pixel in the central pixel unit 11a is 1.55 μm, for example, the size of one side of one pixel is slightly over 1.60 μm in the peripheral pixel unit 11b. Can be dealt with by expanding to

ここで開口効率について図3を参照して説明する。
図3に示すようにCCDイメージセンサ10の画素配列部11の前面に、レンズと絞りが配置されていた場合に、画素配列部11の中心位置の画素Pcに入射する光は、開口量S0の光であるとする。このとき、画素配列部11の縁部の画素Peに入射する光は、開口量S0よりも絞られた開口量S1の光になる。この開口量S0と開口量S1との比が、開口効率になる。先に説明したように開口量S0を100%としたとき、入射角θが10°の場合の開口量S1は90%程度まで低下する。
本実施の形態の場合には、従来一般的に周辺部の光量減少の原因と言われていたcosθの4乗則だけでなく、開口効率による周辺光量の低下まで含めて、レンズ系による光量変化の補正を行う構成としてある。このため、より正確な周辺部の光量補正が可能となる。
Here, the aperture efficiency will be described with reference to FIG.
As shown in FIG. 3, when a lens and a diaphragm are arranged in front of the pixel array unit 11 of the CCD image sensor 10, the light incident on the pixel Pc at the center position of the pixel array unit 11 has an aperture amount S0. Let it be light. At this time, the light incident on the pixel Pe at the edge of the pixel array portion 11 becomes light having an aperture amount S1 that is narrower than the aperture amount S0. The ratio between the opening amount S0 and the opening amount S1 is the opening efficiency. As described above, when the opening amount S0 is 100%, the opening amount S1 when the incident angle θ is 10 ° is reduced to about 90%.
In the case of the present embodiment, not only the cos θ fourth law, which is generally said to be the cause of the decrease in the amount of light in the peripheral portion, but also the change in the amount of light due to the lens system, including the decrease in the amount of peripheral light due to the aperture efficiency. The correction is performed as follows. For this reason, it is possible to more accurately correct the amount of light at the peripheral portion.

また、本実施の形態の場合にはCCDイメージセンサ10の画素配列部11の中心画素部11aについては、水平・垂直のいずれの方向にも一定間隔で各画素を配置してあり、光量変化の補正を行わない構成としてある。このため、画素配列部11の中心画素部11aではレンズ系による光量減少の補正が行われないが、中心画素部11aは光量変化の低下が少ない領域であり、受光量を増やすことによる補正をしなくても、光量低下が撮像画像から目立つことはない。
なお、図1に示した中心画素部11aと周辺画素部11bとの境界部は、例えば上述した(1)式で得られる周辺光量が、予め決めた一定の値より低下した位置を基準にして設定してもよい。
Further, in the case of the present embodiment, the central pixel portion 11a of the pixel array portion 11 of the CCD image sensor 10 has pixels arranged at regular intervals in both the horizontal and vertical directions, and the amount of light changes. The configuration is such that no correction is performed. For this reason, the center pixel unit 11a of the pixel array unit 11 does not perform correction of the light amount decrease by the lens system, but the center pixel unit 11a is a region where the decrease in the light amount change is small, and correction is performed by increasing the amount of received light. Even if it is not, the decrease in the amount of light does not stand out from the captured image.
The boundary between the central pixel portion 11a and the peripheral pixel portion 11b shown in FIG. 1 is based on a position where the peripheral light amount obtained by the above-described equation (1) is lower than a predetermined value. It may be set.

このように構成した本実施の形態のCCDイメージセンサ10は、非球面レンズを備えた光学系と組み合わせた場合にも、高い効果が得られる。即ち、例えば図4に示したように、CCDイメージセンサ10の画素配列部11の前面に配置した光学系として、複数枚のレンズ1a〜1fを備えた場合に、そのレンズ1a〜1fの内の1枚又は複数枚のレンズを非球面レンズを備えた構成とする場合がある。この非球面レンズは、主として球面収差を是正するためのものであり、少ない枚数のレンズで収差を低減するようにしてある。しかしながら、非球面レンズは、光軸上の1点から出た光に対する補正であり、光軸外の1点から出た光に対する補正はなされていない。つまり、周辺光量が低下する方向に対する補正は行えていない。   The CCD image sensor 10 of the present embodiment configured as described above can achieve a high effect even when combined with an optical system having an aspheric lens. That is, for example, as shown in FIG. 4, when a plurality of lenses 1 a to 1 f are provided as an optical system arranged on the front surface of the pixel array unit 11 of the CCD image sensor 10, the lenses 1 a to 1 f are included. One or a plurality of lenses may be provided with an aspheric lens. This aspherical lens is mainly for correcting spherical aberration, and the aberration is reduced with a small number of lenses. However, the aspheric lens corrects light emitted from one point on the optical axis, and does not correct light emitted from one point outside the optical axis. That is, no correction is made for the direction in which the peripheral light amount decreases.

従って、図4に示すように非球面レンズを備えたレンズ系1a〜1fを使用した撮像装置に、本実施の形態のCCDイメージセンサ10を組み合わせることで、非球面レンズを使うことによる周辺光量補正をイメージセンサ10で行え、補正効果が高い。即ち、上述した(1)式で求まる周辺光量に、さらに非球面レンズによる周辺光量補正を加えて、周辺部の画素の受光面積を拡大する処理を行うことで、より精度の高い周辺光量補正処理が行える。   Therefore, as shown in FIG. 4, the peripheral light quantity correction by using the aspheric lens by combining the CCD image sensor 10 of the present embodiment with the imaging device using the lens systems 1a to 1f provided with the aspheric lens. Can be performed by the image sensor 10, and the correction effect is high. That is, the peripheral light amount correction processing with higher accuracy is performed by adding the peripheral light amount correction by the aspherical lens to the peripheral light amount obtained by the above-described formula (1) and expanding the light receiving area of the peripheral pixel. Can be done.

また、撮像装置が備えるレンズ系として、歪曲収差が発生する場合がある。この歪曲収差について図5を参照して説明すると、歪曲収差としては、図5(a)に示したように樽型の歪曲収差が発生する場合と、図5(b)に示したように糸巻き型の歪曲収差が発生する場合がある。
歪曲収差が発生するレンズ系を使用した撮像装置に、本実施の形態のCCDイメージセンサ10を組み合わせた場合にも、その歪曲収差による周辺光量補正をイメージセンサ10で行え、補正効果が高い。即ち、上述した(1)式で求まる周辺光量に、さらに歪曲収差による周辺光量補正を加えて、周辺部の画素の受光面積を拡大する処理を行うことで、より精度の高い周辺光量補正処理が行える。なお、歪曲収差の場合には、図5(b)に示した糸巻き型の歪曲収差では、周辺光量が低下する方向に発生するので、より周辺部の画素の受光面積を拡大することになる。これに対して、図5(a)に示した樽型の歪曲収差では、周辺光量が増加する方向に発生するので、周辺部の画素の受光面積を、(1)式で得られた補正量から減らすことになる。
In addition, distortion may occur as a lens system included in the imaging apparatus. This distortion will be described with reference to FIG. 5. As the distortion, a barrel-shaped distortion occurs as shown in FIG. 5 (a), and a pincushion as shown in FIG. 5 (b). Mold distortion may occur.
Even when the CCD image sensor 10 of the present embodiment is combined with an image pickup apparatus using a lens system that generates distortion, the image sensor 10 can perform peripheral light amount correction by the distortion, and the correction effect is high. That is, by adding the peripheral light amount correction due to distortion to the peripheral light amount obtained by the above-described equation (1), and performing the process of enlarging the light receiving area of the peripheral pixels, a more accurate peripheral light amount correction process is performed. Yes. In the case of distortion, the pincushion distortion shown in FIG. 5B is generated in the direction in which the peripheral light amount decreases, so that the light receiving area of the peripheral pixel is further expanded. On the other hand, the barrel-shaped distortion shown in FIG. 5A is generated in the direction in which the peripheral light amount increases. Therefore, the light receiving area of the peripheral pixel is determined by the correction amount obtained by the expression (1). Will be reduced from.

[4.第2の実施の形態の撮像素子の画素配置例(図6)]
次に、本発明の第2の実施の形態の例を、図6を参照して説明する。
第2の実施の形態においても、上述した第1の実施の形態の例と同様に、撮像素子としてCCD型イメージャを使用した撮像装置としたものであり、種々の撮像を行う撮像装置が適用可能である。撮像装置全体の構成ついては、例えば図2に示した構成が適用可能である。
[4. Example of Pixel Arrangement of Image Sensor of Second Embodiment (FIG. 6)]
Next, an example of the second embodiment of the present invention will be described with reference to FIG.
Also in the second embodiment, as in the example of the first embodiment described above, an imaging device using a CCD type imager as an imaging device is used, and an imaging device that performs various imaging can be applied. It is. For example, the configuration illustrated in FIG. 2 can be applied to the configuration of the entire imaging apparatus.

本実施の形態においては、第1の実施の形態で説明したCCDイメージセンサ10の画素配列部を、図6に示した画素配列部31としたものである。なお、図6に図示した画素配列は、本実施の形態の原理を説明するために強調して図示したものであり、また画素数についても、簡略化して示してある。また、図6では2つの画素の状態を拡大して示してある。
図6に示したように、CCDイメージセンサの画素配列部31には、それぞれの画素を構成する受光素子の受光部が縦横それぞれ所定個で配置してある。各画素を構成する受光部の脇には、転送レジスタが配置してあり、その転送レジスタに受光部で受光して得た信号電荷を送り、用意された転送レジスタ内を駆動回路26(図2)から供給されるクロックに同期して転送させ、出力回路21まで供給する。
In the present embodiment, the pixel array section of the CCD image sensor 10 described in the first embodiment is the pixel array section 31 shown in FIG. Note that the pixel arrangement shown in FIG. 6 is shown in an emphasized manner for explaining the principle of the present embodiment, and the number of pixels is also shown in a simplified manner. In FIG. 6, the states of the two pixels are shown enlarged.
As shown in FIG. 6, in the pixel array part 31 of the CCD image sensor, a predetermined number of light receiving parts of the light receiving elements constituting the respective pixels are arranged. A transfer register is arranged beside the light receiving unit constituting each pixel, and signal charges obtained by receiving light from the light receiving unit are sent to the transfer register, and a drive circuit 26 (FIG. 2) is provided in the prepared transfer register. ) In synchronization with the clock supplied from () and supplied to the output circuit 21.

本実施の形態においては、図6に示すように、画素配列部31は、中心画素部31aと周辺画素部31bとに別れている。中心画素部31aは受光素子等間隔配置部である。周辺画素部31bは、受光素子が一定でない間隔で配置された受光素子拡大配置部である。
図6では、中心画素部11aの画素の領域に斜線を付与して示してあり、中心画素部31aの左右の周囲に配列された画素が周辺画素部31bである。周辺画素部31bは、中心画素部31a側から見て、左右対称な位置関係に配置してある。本例の場合には、図1の例と異なり、中心画素部31aの上下方向には、周辺画素部31bを配置していない。中心画素部31aは、画素配列部31の内の中心部の比較的大きな領域としてあり、周辺画素部31bは、開口効率などの点である程度以下に受光光量が落ちる周辺部の比較的小さな領域としてある。
In the present embodiment, as shown in FIG. 6, the pixel array unit 31 is divided into a central pixel unit 31a and a peripheral pixel unit 31b. The center pixel portion 31a is a light receiving element equidistant arrangement portion. The peripheral pixel portion 31b is a light receiving element enlarged arrangement portion in which the light receiving elements are arranged at non-constant intervals.
In FIG. 6, the pixel area of the central pixel portion 11a is indicated by hatching, and the pixels arranged around the left and right of the central pixel portion 31a are the peripheral pixel portion 31b. The peripheral pixel portion 31b is arranged in a symmetrical position when viewed from the central pixel portion 31a side. In the case of this example, unlike the example of FIG. 1, the peripheral pixel portion 31b is not arranged in the vertical direction of the central pixel portion 31a. The central pixel portion 31a is a relatively large region in the central portion of the pixel array portion 31, and the peripheral pixel portion 31b is a relatively small region in the peripheral portion where the amount of received light falls to a certain extent in terms of aperture efficiency. is there.

中心画素部31a内の各画素は、画素の配置間隔が水平方向で一定の間隔であり、垂直方向でも一定の間隔である。そして、それぞれ画素が備える受光素子の受光領域の面積についても、中心画素部31a内では等しい面積としてある。即ち、図6に示すように、中心画素部31a内の各画素は、画素のサイズとして、垂直方向の幅v11及び水平方向の幅h11としてある。   Each pixel in the central pixel portion 31a has a constant pixel arrangement interval in the horizontal direction and a constant interval in the vertical direction. The areas of the light receiving regions of the light receiving elements included in the pixels are also equal in the central pixel portion 31a. That is, as shown in FIG. 6, each pixel in the central pixel portion 31a has a vertical width v11 and a horizontal width h11 as the pixel size.

図6では、その中心画素部31a内の1つの画素を拡大して示してある。中心画素部31a内の1つの画素の垂直方向の幅v11×水平方向の幅h11の内で、水平方向の幅v0については、転送レジスタ33の幅である。残りの水平方向の幅h11′と垂直方向の幅v11とで、各画素の受光領域32aの面積が決まる。中心画素部31aについては、画素配置間隔が一定であり、中心画素部31a内の全ての画素の受光領域32aの面積は等しい。   FIG. 6 shows an enlarged view of one pixel in the central pixel portion 31a. Of the vertical width v11 × horizontal width h11 of one pixel in the central pixel portion 31a, the horizontal width v0 is the width of the transfer register 33. The remaining horizontal width h11 ′ and vertical width v11 determine the area of the light receiving region 32a of each pixel. As for the central pixel portion 31a, the pixel arrangement interval is constant, and the areas of the light receiving regions 32a of all the pixels in the central pixel portion 31a are equal.

周辺画素部31bについては、中心画素部31aと接する位置から、画素配列部31の縁部になるに従って、水平方向に徐々に1つの画素の面積を増やす構成としてある。具体的には、図1に示すように、中心画素部31aの左右の端部と接する画素については、水平方向の幅を、幅h11よりも広い幅h12としてあり、その画素位置から1画素ずつ進むに従って、水平方向の幅h13,h14となるようにしてある。ここで、h11<h12<h13<h14である。
また、中心画素部31aと周辺画素部31bの双方で、それぞれの画素の垂直方向の幅は、幅v11として等しくしてある。
The peripheral pixel unit 31b is configured to gradually increase the area of one pixel in the horizontal direction from the position in contact with the central pixel unit 31a toward the edge of the pixel array unit 31. Specifically, as shown in FIG. 1, for the pixels in contact with the left and right end portions of the central pixel portion 31a, the horizontal width is set to a width h12 wider than the width h11, and one pixel at a time from the pixel position. As the process proceeds, the horizontal widths h13 and h14 are set. Here, h11 <h12 <h13 <h14.
Further, in both the central pixel portion 31a and the peripheral pixel portion 31b, the vertical widths of the respective pixels are made equal as the width v11.

図6では、周辺画素部31b内の1つの画素についても拡大して示してある。図6に示した拡大表示した周辺画素部31b内の1つの画素は、左側の端部の画素であり、垂直方向の幅v11×水平方向の幅h14の画素であり、水平方向の幅v0については、転送レジスタ33の幅である。残りの水平方向の幅h14′と垂直方向の幅v11とで、その画素の受光領域32bの面積が決まる。
転送レジスタ33の幅は、中心画素部31a内の画素と、周辺画素部31b内の画素とで等しい。
In FIG. 6, one pixel in the peripheral pixel portion 31b is also shown enlarged. One pixel in the enlarged peripheral pixel portion 31b shown in FIG. 6 is a pixel at the left end, is a pixel having a vertical width v11 × a horizontal width h14, and a horizontal width v0. Is the width of the transfer register 33. The remaining horizontal width h14 'and vertical width v11 determine the area of the light receiving region 32b of the pixel.
The width of the transfer register 33 is equal between the pixels in the central pixel portion 31a and the pixels in the peripheral pixel portion 31b.

この周辺画素部31b内の画素内の受光領域の面積を水平方向に徐々に増やす処理は、各画素位置の光量を、上述した(1)式の周辺光量から得て、その周辺光量の減少を補正するような面積とすればよい。従って、開口効率を考慮した上で補正が行われる。   In the process of gradually increasing the area of the light receiving region in the pixel in the peripheral pixel portion 31b in the horizontal direction, the light amount at each pixel position is obtained from the peripheral light amount of the above-described equation (1), and the decrease in the peripheral light amount is reduced. The area to be corrected may be set. Therefore, the correction is performed in consideration of the aperture efficiency.

この図6に示した画素配列の各画素の受光素子の受光領域に蓄積した信号電荷は、例えば図2に示した出力回路21で撮像信号として読出される。ここで、中心画素部31a内の各画素の撮像信号については、一定間隔で画素が配置された信号であるので、駆動回路26からの一定周期のクロックに同期してそのまま出力させればよい。このため、図2の撮像装置の構成で示した切換スイッチ24については、中心画素部31a内の各画素の信号が出力される区間では、遅延回路23の出力をそのまま撮像信号処理部25に供給すればよい。   Signal charges accumulated in the light receiving region of the light receiving element of each pixel in the pixel array shown in FIG. 6 are read out as an imaging signal by the output circuit 21 shown in FIG. 2, for example. Here, since the image pickup signal of each pixel in the center pixel portion 31a is a signal in which pixels are arranged at a constant interval, it may be output as it is in synchronization with a clock of a fixed cycle from the drive circuit 26. For this reason, with respect to the changeover switch 24 shown in the configuration of the imaging device in FIG. 2, the output of the delay circuit 23 is supplied to the imaging signal processing unit 25 as it is in the section where the signal of each pixel in the central pixel unit 31a is output. do it.

一方、周辺画素部31b内の各画素の撮像信号については、間隔が異なる画素配置で得た信号であるので、補間回路22で隣接画素信号どうしを、そのときの画素位置に対応した比率で加算して、中心画素部31aと同じ画素間隔の撮像信号に変換する。隣接した画素の信号としては、例えば水平方向に隣接した画素の信号だけを使ってもよいが、垂直方向に隣接した画素の信号についても使用して、補間して得た信号の精度を向上させてもよい。そして、その補間回路22で補間された撮像信号を切換スイッチ24で選択させる。補間回路22での補間処理のタイミング及び切換スイッチ24での切換タイミングについては、例えば駆動回路26内で周辺画素部11bでの非等間隔の画素配列に対応した非等間隔の画素クロックを生成させて、その画素クロックに同期して行う。   On the other hand, since the imaging signals of the respective pixels in the peripheral pixel unit 31b are signals obtained with pixel arrangements having different intervals, the adjacent pixel signals are added by the interpolation circuit 22 at a ratio corresponding to the pixel position at that time. Then, it is converted into an imaging signal having the same pixel interval as that of the central pixel portion 31a. For example, only the signal of the pixel adjacent in the horizontal direction may be used as the signal of the adjacent pixel, but the signal of the pixel adjacent in the vertical direction is also used to improve the accuracy of the signal obtained by interpolation. May be. The image pickup signal interpolated by the interpolation circuit 22 is selected by the changeover switch 24. As for the timing of the interpolation processing in the interpolation circuit 22 and the switching timing in the changeover switch 24, for example, non-equally spaced pixel clocks corresponding to the unequally spaced pixel array in the peripheral pixel unit 11b are generated in the drive circuit 26. In synchronization with the pixel clock.

このように構成した第2の実施の形態によると、上述した第1の実施の形態の撮像素子と同様に、周辺画素の光量低下を補正することが可能となる。図6に示した第2の実施の形態の場合には、左右の端部での光量低下だけが行われて、上下の端部では補正が行われないが、ビデオカメラ用などの撮像素子は、撮像面(画面)の縦横比が9:16のように比較的横長であるため、良好な補正が可能である。即ち、レンズ系による周辺の光量低下は、中心位置から等距離の円を描いて発生するため、上下の端部ではそれほど光量低下が発生せず、左右の端部で比較的大きな光量低下が発生する可能性が高い。従って、図6に示した構成で補正することで、その比較的大きな光量低下が補正され、良好な撮像が可能となる。
そして、本実施の形態の場合には、水平方向に画素を配置する間隔だけを変化させてあるので、垂直方向の画素間隔は全ての画素で同じであり、それだけ撮像素子として構成が簡単であると共に、その撮像素子の出力撮像信号を処理する処理系も簡単になる。
According to the second embodiment configured as described above, it is possible to correct a decrease in the amount of light of the peripheral pixels as in the image sensor of the first embodiment described above. In the case of the second embodiment shown in FIG. 6, only the light amount is reduced at the left and right ends, and correction is not performed at the upper and lower ends. Since the aspect ratio of the imaging surface (screen) is relatively long like 9:16, good correction is possible. In other words, the peripheral light intensity drop due to the lens system occurs by drawing a circle equidistant from the center position, so the light quantity reduction does not occur so much at the top and bottom edges, and a relatively large light quantity reduction occurs at the left and right edges. There is a high possibility of doing. Therefore, by correcting with the configuration shown in FIG. 6, the relatively large light amount decrease is corrected, and good imaging can be performed.
In the case of the present embodiment, since only the interval in which the pixels are arranged in the horizontal direction is changed, the pixel interval in the vertical direction is the same for all the pixels, and the configuration as an image sensor is simple accordingly. In addition, the processing system for processing the output image pickup signal of the image pickup device is simplified.

[5.各実施の形態の変形例]
なお、上述した第1及び第2の実施の形態では、CCDイメージセンサに適用した例について説明したが、CMOS型イメージャなど他の構成の固体撮像素子に、本発明を適用してもよいことは勿論である。即ち、固体撮像素子に配置される各画素を構成する受光素子として、図1又は図6に示した原理で配置することが可能であれば、各種方式の撮像素子に適用可能である。
[5. Modification of each embodiment]
In the first and second embodiments described above, the example applied to the CCD image sensor has been described. However, the present invention may be applied to a solid-state imaging device having another configuration such as a CMOS imager. Of course. In other words, as long as the light receiving element constituting each pixel arranged in the solid-state image sensor can be arranged according to the principle shown in FIG. 1 or FIG. 6, it can be applied to various types of image sensors.

また、第2の実施の形態では、中心画素部の左右方向だけに周辺画素部を配置して、その周辺画素部で受光領域の面積を拡大するようにしたが、中心画素部の上下方向だけに周辺画素部を配置して、その周辺画素部で受光領域の面積を拡大するようにしてもよい。但し一般的な撮像素子は撮像領域が横長であるため、第2の実施の形態で説明した中心画素部の左右方向だけに周辺画素部を配置する構成の方が好ましい。   In the second embodiment, the peripheral pixel portion is arranged only in the left-right direction of the central pixel portion, and the area of the light receiving region is enlarged in the peripheral pixel portion, but only in the vertical direction of the central pixel portion. A peripheral pixel portion may be arranged in the peripheral pixel portion, and the area of the light receiving region may be enlarged in the peripheral pixel portion. However, since a general imaging element has a horizontally long imaging region, the configuration in which the peripheral pixel portion is arranged only in the left-right direction of the central pixel portion described in the second embodiment is preferable.

1…レンズ系、2…絞り、10…CCDイメージセンサ、11…画素配列部、11a…中心画素部、11b…周辺画素部、12a,12b…受光領域、13…転送レジスタ部、21…出力回路、22…遅延回路、23…補間回路、24…切換スイッチ、25…撮像信号処理部、26…駆動回路、27…記録系回路、28…表示系回路、29…出力端子部、31…画素配列部、31a…中心画素部、31b…周辺画素部、32a,32b…受光領域、33…転送レジスタ部   DESCRIPTION OF SYMBOLS 1 ... Lens system, 2 ... Diaphragm, 10 ... CCD image sensor, 11 ... Pixel arrangement part, 11a ... Center pixel part, 11b ... Peripheral pixel part, 12a, 12b ... Light-receiving area, 13 ... Transfer register part, 21 ... Output circuit , 22 ... delay circuit, 23 ... interpolation circuit, 24 ... changeover switch, 25 ... imaging signal processing unit, 26 ... drive circuit, 27 ... recording system circuit, 28 ... display system circuit, 29 ... output terminal unit, 31 ... pixel array Part, 31a ... center pixel part, 31b ... peripheral pixel part, 32a, 32b ... light receiving area, 33 ... transfer register part

Claims (10)

受光素子が水平方向に一定間隔で配置されると共に垂直方向にも一定間隔で配置され、ぞれぞれの受光素子の受光領域の面積が第1の面積で等しく、撮像素子を構成する基板のほぼ中央に配置された受光素子等間隔配置部と、
前記受光素子等間隔配置部を中心として対称となる周辺位置に配置され、前記受光素子等間隔配置部での前記水平方向の一定間隔及び/又は前記垂直方向の一定間隔よりも広い間隔で配置され、それぞれの受光素子の受光領域の面積を、前記受光素子等間隔配置部から離れるに従って前記第1の面積よりも徐々に大きい面積とした受光素子拡大配置部と、
前記受光素子等間隔配置部に配置された受光素子に蓄積した受光信号と、前記受光素子拡大配置部に配置された受光素子に蓄積した受光信号とを撮像信号として出力させる出力部とを備えた
撮像素子。
The light receiving elements are arranged at regular intervals in the horizontal direction and at regular intervals in the vertical direction, and the areas of the light receiving regions of the respective light receiving elements are equal to each other in the first area, and A light receiving element equidistantly arranged portion disposed substantially at the center;
Arranged at peripheral positions that are symmetric with respect to the light receiving element equidistant arrangement part, and arranged at a wider interval than the constant interval in the horizontal direction and / or the constant interval in the vertical direction in the light receiving element equidistant arrangement part. A light receiving element expansion arrangement portion in which the area of the light receiving region of each light receiving element is gradually larger than the first area as the distance from the light receiving element equal interval arrangement portion increases;
A light receiving signal accumulated in the light receiving elements arranged in the light receiving element equidistantly arranged portion and an output unit for outputting the light received signals accumulated in the light receiving elements arranged in the light receiving element enlarged arrangement portion as imaging signals; Image sensor.
前記受光素子拡大配置部で受光素子の受光領域の面積を大きくするのは、
受光素子に到達する光を透過させるレンズ系の開口効率と、前記レンズ系の中心光軸と周辺光とのなす角度をθとしたときのcosθとを、中心光量に乗算して得られる光量低下を補正するに相当する面積拡大である
請求項1記載の撮像素子。
Increasing the area of the light receiving region of the light receiving element in the light receiving element expansion arrangement portion,
It is obtained by multiplying the central light quantity by the aperture efficiency of the lens system that transmits the light that reaches the light receiving element and cos 4 θ when the angle between the central optical axis of the lens system and the peripheral light is θ. The image pickup device according to claim 1, wherein the image pickup element is an area expansion corresponding to correcting a light amount decrease.
前記受光素子拡大配置部の受光素子の配置間隔の拡大に対応して、受光素子の受光領域だけを拡大し、受光素子に蓄積した受光信号を転送させるレジスタの幅は変化させない
請求項1記載の撮像素子。
The width of a register for transferring only a light receiving region of the light receiving element and transferring a light receiving signal accumulated in the light receiving element is not changed in response to an increase in an arrangement interval of the light receiving elements of the light receiving element expanding arrangement portion. Image sensor.
前記受光素子拡大配置部は、前記受光素子等間隔配置部の上下左右の周辺位置に配置され、それぞれの受光素子の受光領域の面積を、前記受光素子等間隔配置部から垂直方向に離れるに従って、前記第1の面積よりも徐々に大きい面積にすると共に、前記受光素子等間隔配置部から水平方向に離れるに従って、前記第1の面積よりも徐々に大きい面積にした
請求項1記載の撮像素子。
The light receiving element expansion arrangement part is arranged at the upper, lower, left and right peripheral positions of the light receiving element equidistant arrangement part, and the area of the light receiving region of each light receiving element is separated from the light receiving element equidistant arrangement part in the vertical direction. The imaging device according to claim 1, wherein the area is gradually larger than the first area, and is gradually larger than the first area as the distance from the light receiving element equidistant arrangement portion is increased in the horizontal direction.
前記受光素子拡大配置部は、前記受光素子等間隔配置部の左右の周辺位置に配置され、それぞれの受光素子の受光領域の面積を、前記受光素子等間隔配置部から水平方向に離れるに従って、前記第1の面積よりも徐々に大きい面積にし、
前記受光素子等間隔配置部の上下の周辺位置には前記受光素子拡大配置部を配置しない構成とした
請求項1記載の撮像素子。
The light receiving element expansion arrangement portion is arranged at the left and right peripheral positions of the light receiving element equal interval arrangement portion, and the area of the light receiving region of each light receiving element is increased as the distance from the light receiving element equal interval arrangement portion increases in the horizontal direction. Make the area gradually larger than the first area,
The imaging device according to claim 1, wherein the light receiving element enlarged arrangement portion is not arranged at upper and lower peripheral positions of the light receiving element equal interval arrangement portion.
受光素子が水平方向に一定間隔で配置されると共に垂直方向にも一定間隔で配置され、ぞれぞれの受光素子の受光領域の面積が第1の面積で等しく、撮像素子を構成する基板のほぼ中央に配置された受光素子等間隔配置部と、
前記受光素子等間隔配置部を中心として対称となる周辺位置に配置され、前記受光素子等間隔配置部での前記水平方向の一定間隔及び/又は前記垂直方向の一定間隔よりも広い間隔で配置され、それぞれの受光素子の受光領域の面積を、前記受光素子等間隔配置部から離れるに従って前記第1の面積よりも徐々に大きい面積とした受光素子拡大配置部と、
前記受光素子等間隔配置部に配置された受光素子に蓄積した受光信号と、前記受光素子拡大配置部に配置された受光素子に蓄積した受光信号とを撮像信号として出力させる出力部とを有する撮像素子と、
前記撮像素子の出力部から出力される撮像信号の内の、前記受光素子等間隔配置部内の受光素子から読み出した撮像信号と、前記受光素子拡大配置部から読み出した撮像信号とを、一定の画素間隔の撮像信号に変換する変換部と、
前記変換部で変換された撮像信号を処理する撮像信号処理部とを備えた
撮像装置。
The light receiving elements are arranged at regular intervals in the horizontal direction and at regular intervals in the vertical direction, and the areas of the light receiving regions of the respective light receiving elements are equal to each other in the first area, and A light receiving element equidistantly arranged portion disposed substantially at the center;
Arranged at peripheral positions that are symmetric with respect to the light receiving element equidistant arrangement part, and arranged at a wider interval than the constant interval in the horizontal direction and / or the constant interval in the vertical direction in the light receiving element equidistant arrangement part. A light receiving element expansion arrangement portion in which the area of the light receiving region of each light receiving element is gradually larger than the first area as the distance from the light receiving element equal interval arrangement portion increases;
Imaging having a light receiving signal accumulated in a light receiving element arranged in the light receiving element equidistantly arranged portion and an output unit for outputting the light receiving signal accumulated in the light receiving element arranged in the light receiving element enlarged arrangement portion as an imaging signal Elements,
Among the imaging signals output from the output unit of the imaging element, an imaging signal read from the light receiving element in the light receiving element equidistantly arranged portion and an imaging signal read from the light receiving element enlarged arrangement portion are fixed pixels. A conversion unit for converting to an imaging signal at an interval;
An imaging apparatus comprising: an imaging signal processing unit that processes the imaging signal converted by the conversion unit.
前記撮像素子の受光素子拡大配置部で受光素子の受光領域の面積を大きくするのは、
受光素子に到達する光を透過させるレンズ系の開口効率と、前記レンズ系の中心光軸と周辺光とのなす角度をθとしたときのcosθとを、中心光量に乗算して得られる光量低下を補正するに相当する面積拡大である
請求項6記載の撮像装置。
Increasing the area of the light receiving region of the light receiving element in the light receiving element enlarged arrangement portion of the image pickup element,
It is obtained by multiplying the central light quantity by the aperture efficiency of the lens system that transmits the light that reaches the light receiving element and cos 4 θ when the angle between the central optical axis of the lens system and the peripheral light is θ. The imaging apparatus according to claim 6, wherein the area is enlarged corresponding to correcting a light amount decrease.
前記撮像素子は、前記受光素子拡大配置部の受光素子の配置間隔の拡大に対応して、受光素子の受光領域だけを拡大し、受光素子に蓄積した受光信号を転送させるレジスタの幅は変化させない
請求項6記載の撮像装置。
The imaging element expands only the light receiving area of the light receiving element in response to the increase in the arrangement interval of the light receiving elements in the light receiving element expanding arrangement portion, and does not change the width of the register for transferring the light receiving signal accumulated in the light receiving element. The imaging device according to claim 6.
前記撮像素子の前記受光素子拡大配置部は、前記受光素子等間隔配置部の上下左右の周辺位置に配置され、それぞれの受光素子の受光領域の面積を、前記受光素子等間隔配置部から垂直方向に離れるに従って、前記第1の面積よりも徐々に大きい面積にすると共に、前記受光素子等間隔配置部から水平方向に離れるに従って、前記第1の面積よりも徐々に大きい面積にした
請求項6記載の撮像装置。
The light receiving element expansion arrangement portion of the imaging element is arranged at the upper, lower, left and right peripheral positions of the light receiving element equidistant arrangement portion, and the area of the light receiving area of each light receiving element is perpendicular to the light receiving element equidistant arrangement portion. The area gradually larger than the first area as the distance from the first area increases, and the area gradually larger than the first area as the distance from the light receiving element equidistantly arranged portion in the horizontal direction increases. Imaging device.
前記撮像素子前記受光素子拡大配置部は、前記受光素子等間隔配置部の左右の周辺位置に配置され、それぞれの受光素子の受光領域の面積を、前記受光素子等間隔配置部から水平方向に離れるに従って、前記第1の面積よりも徐々に大きい面積にし、
前記受光素子等間隔配置部の上下の周辺位置には前記受光素子拡大配置部を配置しない構成とした
請求項6記載の撮像装置。
The image pickup element and the light receiving element expansion arrangement portion are arranged at the left and right peripheral positions of the light receiving element equal interval arrangement portion, and the areas of the light receiving regions of the respective light receiving elements are separated from the light receiving element equal interval arrangement portion in the horizontal direction. And gradually increasing the area to be larger than the first area,
The imaging apparatus according to claim 6, wherein the light receiving element enlarged arrangement portion is not arranged at upper and lower peripheral positions of the light receiving element equal interval arrangement portion.
JP2009128098A 2009-05-27 2009-05-27 Solid-state imaging device and imaging apparatus Expired - Fee Related JP5402249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128098A JP5402249B2 (en) 2009-05-27 2009-05-27 Solid-state imaging device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128098A JP5402249B2 (en) 2009-05-27 2009-05-27 Solid-state imaging device and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2010278664A true JP2010278664A (en) 2010-12-09
JP5402249B2 JP5402249B2 (en) 2014-01-29

Family

ID=43425227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128098A Expired - Fee Related JP5402249B2 (en) 2009-05-27 2009-05-27 Solid-state imaging device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP5402249B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097884A1 (en) * 2012-12-18 2014-06-26 富士フイルム株式会社 Solid-state image pickup device
JP2015230950A (en) * 2014-06-04 2015-12-21 住友電気工業株式会社 Array type photodetector
JP2017225665A (en) * 2016-06-23 2017-12-28 株式会社ユニバーサルエンターテインメント Game machine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207383A (en) * 1992-01-29 1993-08-13 Toshiba Corp Solid-state image pickup device
JPH06197288A (en) * 1992-12-25 1994-07-15 Canon Inc Picture information processing unit
JPH07143411A (en) * 1993-11-16 1995-06-02 Sony Corp Solid-state image pickup element
JPH08116041A (en) * 1994-10-13 1996-05-07 Olympus Optical Co Ltd Manufacture of solid-state image sensing device
JPH11150254A (en) * 1997-11-17 1999-06-02 Asahi Optical Co Ltd Solid-state image-pickup element
JP2000036587A (en) * 1998-07-21 2000-02-02 Sony Corp Solid-state image pickup element
JP2001189442A (en) * 1999-12-28 2001-07-10 Nikon Corp Solid-state image pickup device, manufacturing method therefor, and digital camera
JP2002040145A (en) * 2000-07-25 2002-02-06 Shimadzu Corp X-ray detector
JP2003101884A (en) * 2001-09-21 2003-04-04 Fuji Photo Film Co Ltd Shading correcting device and method
JP2004064796A (en) * 2002-07-29 2004-02-26 Hewlett-Packard Development Co Lp Electronic imaging device
JP2006324354A (en) * 2005-05-17 2006-11-30 Fujifilm Holdings Corp Imaging device and imaging apparatus
JP2009088382A (en) * 2007-10-02 2009-04-23 Dainippon Printing Co Ltd Solid state image sensing element and image pick-up device using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207383A (en) * 1992-01-29 1993-08-13 Toshiba Corp Solid-state image pickup device
JPH06197288A (en) * 1992-12-25 1994-07-15 Canon Inc Picture information processing unit
JPH07143411A (en) * 1993-11-16 1995-06-02 Sony Corp Solid-state image pickup element
JPH08116041A (en) * 1994-10-13 1996-05-07 Olympus Optical Co Ltd Manufacture of solid-state image sensing device
JPH11150254A (en) * 1997-11-17 1999-06-02 Asahi Optical Co Ltd Solid-state image-pickup element
JP2000036587A (en) * 1998-07-21 2000-02-02 Sony Corp Solid-state image pickup element
JP2001189442A (en) * 1999-12-28 2001-07-10 Nikon Corp Solid-state image pickup device, manufacturing method therefor, and digital camera
JP2002040145A (en) * 2000-07-25 2002-02-06 Shimadzu Corp X-ray detector
JP2003101884A (en) * 2001-09-21 2003-04-04 Fuji Photo Film Co Ltd Shading correcting device and method
JP2004064796A (en) * 2002-07-29 2004-02-26 Hewlett-Packard Development Co Lp Electronic imaging device
JP2006324354A (en) * 2005-05-17 2006-11-30 Fujifilm Holdings Corp Imaging device and imaging apparatus
JP2009088382A (en) * 2007-10-02 2009-04-23 Dainippon Printing Co Ltd Solid state image sensing element and image pick-up device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097884A1 (en) * 2012-12-18 2014-06-26 富士フイルム株式会社 Solid-state image pickup device
JP2015230950A (en) * 2014-06-04 2015-12-21 住友電気工業株式会社 Array type photodetector
JP2017225665A (en) * 2016-06-23 2017-12-28 株式会社ユニバーサルエンターテインメント Game machine

Also Published As

Publication number Publication date
JP5402249B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US8988593B2 (en) Image sensor and image capturing apparatus with focus detection pixels
CN107068702B (en) Solid-state imaging device and electronic apparatus
US10051213B2 (en) Solid-state image sensor, ranging apparatus and imaging apparatus with pixels having in-pixel memories
US8896736B2 (en) Solid-state imaging device, imaging apparatus and signal reading method having photoelectric conversion elements that are targets from which signals are read in the same group
US20130128086A1 (en) Imaging device
US10681322B2 (en) Solid state imaging device and imaging apparatus having a plurality of addition read modes
JP2017216648A (en) Imaging device, imaging apparatus and imaging signal processing method
KR20170000686A (en) Apparatus for detecting distance and camera module including the same
JP6525687B2 (en) Imaging device and imaging device
CN106506997B (en) Image sensor including phase difference detection pixels
JP5402249B2 (en) Solid-state imaging device and imaging apparatus
US11716554B2 (en) Solid-state imaging device and method for driving the same, and electronic apparatus
JP5750918B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2007267278A (en) Imaging apparatus and imaging method
JP2012075050A (en) Solid-state imaging element, imaging device, and black level decision method
JP2011071927A (en) Imaging apparatus
JP2008005137A (en) Solid-state imaging device and imaging system
JP2020136965A (en) Imaging device and control method thereof
JP2009124524A (en) Imaging apparatus, and captured pixel data correcting method and program
JP2008085623A (en) Shading correcting method and imaging device
JP2007195114A (en) Imaging apparatus
JP2015161905A (en) Imaging apparatus
KR20140114734A (en) Optical system of electrical equipment, electrical equipment, and camera
JP2016051987A (en) Imaging apparatus and imaging method
JP2006262192A (en) Image device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees