JP2000125310A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JP2000125310A
JP2000125310A JP10289051A JP28905198A JP2000125310A JP 2000125310 A JP2000125310 A JP 2000125310A JP 10289051 A JP10289051 A JP 10289051A JP 28905198 A JP28905198 A JP 28905198A JP 2000125310 A JP2000125310 A JP 2000125310A
Authority
JP
Japan
Prior art keywords
light
color
light receiving
receiving element
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10289051A
Other languages
Japanese (ja)
Other versions
JP2000125310A5 (en
Inventor
Kazuya Oda
和也 小田
Takashi Misawa
岳志 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP10289051A priority Critical patent/JP2000125310A/en
Publication of JP2000125310A publication Critical patent/JP2000125310A/en
Publication of JP2000125310A5 publication Critical patent/JP2000125310A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state image pickup device capable of supplying an image with satisfactory color balance, without causing troublesome problems of switching of mechanical filters and color S/N ratio. SOLUTION: The ratio of sensitivity balance of each color is made e.g. to set at S(R):S(G):S(B)=1:1:1 so as to uniformize the S/N ratio of each color by adjusting the shape of micro lenses 12, that is adjusting the curvatures in the order r(R), r(G), r(B), located in front of light-receiving elements 16a in response to a photoelectric conversion efficiency different from each color of the light-receiving elements 16a, caused by interposing color filters 14 in this solid-stage image pickup device 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被写界からの入射
光を三原色RGB に色分解して得られた光を撮像手段で光
電変換しカラー画像を提供する固体撮像装置に関し、特
に、たとえば電荷結合素子を2次元配列した撮像手段を
含む固体撮像装置に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device for providing a color image by photoelectrically converting light obtained by subjecting incident light from a field into three primary colors, RGB, by an imaging means, and more particularly to, for example, the present invention. The present invention is suitably applied to a solid-state imaging device including an imaging unit in which charge-coupled devices are two-dimensionally arranged.

【0002】[0002]

【従来の技術】従来から固体撮像装置の受光素子が、カ
ラー撮像する場合、カラーフィルタを透過させた、被写
界からの入射光を受光して光電変換を行っている。この
場合、どのように被写体の色再現がされるかが問題にな
る。この色再現には、被写体に当てる光や照明の種類等
が重要な要素として関わっている。これらに対する要素
は、一般に色温度で表される。
2. Description of the Related Art Conventionally, when a light receiving element of a solid-state image pickup device performs color image pickup, it performs photoelectric conversion by receiving incident light from an object scene transmitted through a color filter. In this case, a problem is how to reproduce the color of the subject. In this color reproduction, the light applied to the subject, the type of illumination, and the like are involved as important factors. The factor for these is generally expressed in color temperature.

【0003】ところで、カラー撮像する場合、固体撮像
装置は、忠実に3色(RGB )に色分解して色を再現して
いる。このため、屋外の太陽光の下で撮像する場合と室
内の白色ランプの照明下では、当然色バランスが特に考
慮されていないので、色バランスが変わってくる。実際
に、たとえば、通常5000K 〜6000K の色温度の入射光が
入射させ、固体撮像装置に電荷結合素子(CCD )が用い
られた場合、色バランスは、得られる各色RGB 毎の撮像
信号において、レベル比がR:G:B=0.7:1:0.8 という関係
にあることが知られている。このように、色バランスが
異なっているので、後段の信号処理部で白バランスをと
るとき、この撮像信号の各色RGB 毎にレベル比をR:G:B=
1:1:1 になるようにゲイン調整が行われる。
In the case of color imaging, solid-state imaging devices faithfully reproduce colors by separating them into three colors (RGB). For this reason, when an image is captured under sunlight outdoors and under illumination of a white lamp indoors, the color balance is naturally changed because the color balance is not particularly considered. In practice, for example, when incident light having a color temperature of 5000K to 6000K is normally incident and a charge-coupled device (CCD) is used in a solid-state imaging device, the color balance is determined by the level of the obtained imaging signal for each RGB of each color. It is known that the ratio has a relationship of R: G: B = 0.7: 1: 0.8. As described above, since the color balances are different, when the white balance is obtained by the signal processing unit at the subsequent stage, the level ratio is set to R: G: B =
The gain is adjusted so that it becomes 1: 1: 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たゲイン調整によって特定の色のノイズ成分が強調され
ることになる。この色毎にS/N 比の異なる画像は、色S/
N の悪い画像になってしまうという問題が生じる。カラ
ー撮影の度に色温度に合わせて色の補正が必要になる。
この問題に対して光学的に色の補正を行う場合、カラー
フィルタの濃度を調整した各種の色温度変換フィルタが
用いられる。この色温度変換フィルタは、撮像レンズの
前にはめ込むタイプや撮像レンズと色分解フィルタの間
に内蔵されていてターレットを回転させて所望の特性を
選択するタイプがある。しかしながら、これらの方法
は、メカニカルに色温度変換フィルタを変える煩わしさ
がある。
However, a noise component of a specific color is emphasized by the above-described gain adjustment. Images with different S / N ratios for each color
There is a problem that the image becomes bad in N. Each time a color image is taken, it is necessary to correct the color according to the color temperature.
When color correction is performed optically for this problem, various color temperature conversion filters in which the density of a color filter is adjusted are used. This color temperature conversion filter includes a type that is fitted in front of the imaging lens and a type that is built in between the imaging lens and the color separation filter and that rotates the turret to select desired characteristics. However, these methods have the trouble of mechanically changing the color temperature conversion filter.

【0005】本発明はこのような従来技術の欠点を解消
し、煩わしいメカニカル的なフィルタ切換や色S/N の問
題を生じることなく、色バランスの良好な画像を供給で
きる固体撮像装置を提供することを目的とする。
The present invention solves the drawbacks of the prior art and provides a solid-state imaging device capable of supplying an image with a good color balance without causing troubles of troublesome mechanical filter switching and color S / N. The purpose is to:

【0006】[0006]

【課題を解決するための手段】本発明は上述の課題を解
決するために、入射光に応じた電気信号を生成する複数
の受光素子が2次元に配列された撮像手段と、前記複数
の受光素子のそれぞれに対応して分解色に応じて配列さ
れた色分解フィルタセグメントを有し、この色フィルタ
セグメントのそれぞれは、被写界からの入射光を各分解
色の内のいずれかの色の入射光に分解して複数の受光素
子のそれぞれに入射させる色分解フィルタと、受光素子
の入射光の側に配設され、受光素子の分解色のそれぞれ
の光電変換効率に応じた形状を有する導光部材とを含む
ことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an image pickup means in which a plurality of light receiving elements for generating an electric signal corresponding to incident light are two-dimensionally arranged; Each of the elements has a color separation filter segment arranged in accordance with the separation color, and each of the color filter segments converts incident light from the object scene to one of the colors in each of the separation colors. A color separation filter that is decomposed into incident light and is incident on each of the plurality of light receiving elements; and a color separation filter that is disposed on the side of the light receiving element on the side of the incident light and has a shape corresponding to each photoelectric conversion efficiency of the separated color of the light receiving element. And an optical member.

【0007】ここで、導光部材は、前記受光素子の感度
が最も低い分解色での前記入射光を最も多くする形状に
し、他の各分解色の感度が高くなるにつれて前記入射光
の照射量を少なくする形状にすることが好ましい。たと
えば、原色信号に色分解する場合、受光素子の感度に応
じて色R での入射光が最も多く得られる形状にし、色B,
Gの順に前記入射光の照射量を少なくする形状にすると
よい。これにより、得られる各RGB 信号はバランスを均
一にできる。
Here, the light guide member is shaped so as to maximize the amount of the incident light in the separation color in which the sensitivity of the light receiving element is the lowest, and the irradiation amount of the incident light increases as the sensitivity of each of the other separation colors increases. Is preferable. For example, in the case of color separation into primary color signals, the color R, B, and B should be shaped so that the most incident light can be obtained according to the sensitivity of the light receiving element.
It is preferable that the shape is such that the irradiation amount of the incident light is reduced in the order of G. Thereby, the obtained RGB signals can be evenly balanced.

【0008】また、導光部材は、色分解フィルタの入射
光の側に受光素子に対応して入射光を集光する集光手段
であって、集光手段の形状を分解色の入射光に対するそ
れぞれの受光素子の感度に応じて形成された集光手段を
用いることが望ましい。これから、受光素子への入射光
量が分解色毎に調整されるので、結果的に、感度制御が
行われる。
The light guide member is a light condensing means for condensing the incident light on the side of the incident light of the color separation filter corresponding to the light receiving element. It is desirable to use light condensing means formed according to the sensitivity of each light receiving element. From this, since the amount of light incident on the light receiving element is adjusted for each separation color, as a result, sensitivity control is performed.

【0009】さらに、導光部材は、撮像手段を遮光する
とともに、前記受光素子の受光領域だけ開口させた遮光
部材を用い、遮光部材は、受光素子の感度が最も低い分
解色での前記受光領域の開口率を最大にし、他の各分解
色の感度が高くなるにつれて開口率を小さくすると有利
である。たとえば、原色信号に色分解する場合、受光素
子の感度に応じて受光領域の開口率を色R で最も大きく
して入射光の光量を通常の光量よりも多くし、色B, Gの
順に光量を少なくするとよい。これにより、上述したよ
うに入射光の光量が色毎に調整されるので、感度制御が
行われる。
Further, the light guide member uses a light shielding member that shields the image pickup means and opens only the light receiving region of the light receiving element, and the light shielding member is the light receiving region in the separated color having the lowest sensitivity of the light receiving element. It is advantageous to maximize the aperture ratio and to decrease the aperture ratio as the sensitivity of each of the other separated colors increases. For example, when performing color separation into primary color signals, the aperture ratio of the light receiving area is maximized with the color R according to the sensitivity of the light receiving element, the light quantity of the incident light is made larger than the normal light quantity, and the light quantity is increased in the order of the colors B and G. Should be reduced. As a result, the amount of incident light is adjusted for each color as described above, and thus sensitivity control is performed.

【0010】集光手段の形状は、集光手段の集光面の曲
率または集光手段を透過する入射断面積の大きさで規定
するとよい。
The shape of the light-collecting means may be defined by the curvature of the light-collecting surface of the light-collecting means or the size of the cross-sectional area of the incident light passing through the light-collecting means.

【0011】ところで、受光素子は、受光素子の幾何学
的な形状の中心を行方向および列方向にピッチの半分ず
らして配置されている、いわゆるハニカム配置に適用し
てもよい。
Incidentally, the light receiving element may be applied to a so-called honeycomb arrangement in which the center of the geometrical shape of the light receiving element is shifted by half the pitch in the row direction and the column direction.

【0012】本発明の固体撮像装置は、色分解フィルタ
セグメントにおける各色分解フィルタを介すことによっ
て生じる受光素子の各色毎に異なる光電変換効率に応じ
て導光部材の形状が考慮された導光部材を形成し、この
導光部材を受光素子の前面に配することにより、各色の
感度バランスの比率を、たとえば、S(R):S(G):S(B)=1:
1:1にして各色毎のS/N 比も均一にすることができるよ
うにしている。
The solid-state imaging device according to the present invention is a light-guiding member in which the shape of the light-guiding member is taken into consideration in accordance with the photoelectric conversion efficiency different for each color of the light-receiving element caused by passing through each color separation filter in the color separation filter segment. By forming this light guide member on the front surface of the light receiving element, the ratio of the sensitivity balance of each color, for example, S (R): S (G): S (B) = 1:
The S / N ratio of each color is made 1: 1 so that it can be made uniform.

【0013】[0013]

【発明の実施の形態】次に添付図面を参照して本発明に
よる固体撮像装置の実施例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the solid-state imaging device according to the present invention will be described below in detail with reference to the accompanying drawings.

【0014】本発明の固体撮像装置は、撮像部(受光素
子の前面)に配置される、たとえば、オンチップレンズ
としてのマイクロレンズや遮蔽部材等の形状を色分解フ
ィルタを介した色に応じて異なる受光素子の感度に逆比
例した入射光量が受光されるように異ならせることによ
り、色毎の感度を均一なものにすることに特徴がある。
In the solid-state imaging device according to the present invention, for example, a shape of a micro lens as an on-chip lens, a shielding member, or the like, which is arranged on an imaging unit (the front surface of the light receiving element), is changed according to a color through a color separation filter. It is characterized in that the sensitivity for each color is made uniform by making the incident light amount in inverse proportion to the sensitivity of the different light receiving elements different so as to be received.

【0015】固体撮像装置10には、光学系の一部をなす
マイクロレンズ12、カラーフィルタ14、撮像部16の他に
カラー信号処理部(図示せず)が備えられている。カラ
ー信号処理部には、ガンマ変換部、A/D 変換部、信号処
理部が含まれている。本実施例は、本発明の特徴を含む
撮像部16とその周辺の部材について説明する。なお、固
体撮像装置10は、撮像部16の受光素子が、たとえば、電
荷結合素子(CCD )や金属酸化型半導体(MOS )等のい
ずれのイメージセンサでもよい。
The solid-state imaging device 10 is provided with a color signal processing unit (not shown) in addition to the microlens 12, the color filter 14, and the imaging unit 16, which form part of an optical system. The color signal processing section includes a gamma conversion section, an A / D conversion section, and a signal processing section. In the present embodiment, the imaging unit 16 including the features of the present invention and members around the imaging unit 16 will be described. In the solid-state imaging device 10, the light receiving element of the imaging unit 16 may be any image sensor such as a charge coupled device (CCD) or a metal oxide semiconductor (MOS).

【0016】マイクロレンズ12は、光学系を透過してき
た入射光を各受光素子に効率よく供給するように集光す
る素子毎に配設されたレンズである。マイクロレンズ12
は、図1(a) に示す破断線A-A に沿った断面(図1(b)
を参照)で示されるように透明部材18の表面18a 上に設
ける。マイクロレンズ12は、本実施例において、日中で
の撮影の色温度(5000K 〜6000K )やストロボ撮影に用
いられるタングステン(W )ライトの色温度(6000K )
という最も撮影頻度の高い色温度でRGB 毎に得られる信
号の感度比S がそれぞれ0.7, 1, 0.8 にあることから、
感度比S の大きさ(S(G)>S(B)>S(R))と逆にレンズの曲
率r (r(R)>r(B)>r(G))を順に小さくするように形成す
る(図1(b) を参照)。このレンズの曲率関係は、大き
な曲率のレンズほど大型のレンズを形成することにな
る。すなわち、図2に示すように色R のマイクロレンズ
12が最も大きく形成され、色G のマイクロレンズ12が最
も小さい。このレンズは、従来から行われている方法と
同様にレンズ部材20を配し、このレンズ部材20に加熱処
理を施して透明部材18の表面18a 上に形成される。
The micro lens 12 is a lens provided for each element for condensing incident light transmitted through the optical system so as to efficiently supply the light to each light receiving element. Micro lens 12
Is a cross section taken along the breaking line AA shown in FIG. 1 (a) (FIG. 1 (b)
On the surface 18a of the transparent member 18 as shown in FIG. In this embodiment, the microlens 12 is used for color temperature of daytime photographing (5000K to 6000K) and color temperature of tungsten (W) light used for strobe photographing (6000K).
Since the sensitivity ratio S of the signal obtained for each RGB at the color temperature at which shooting is most frequent is 0.7, 1, 0.8, respectively,
Contrary to the magnitude of the sensitivity ratio S (S (G)> S (B)> S (R)), make the lens curvature r (r (R)> r (B)> r (G)) smaller in order. (See FIG. 1 (b)). The curvature relationship of this lens is such that a lens having a larger curvature forms a larger lens. That is, as shown in FIG.
12 is the largest, and the micro lens 12 of the color G is the smallest. This lens is formed on the surface 18a of the transparent member 18 by arranging the lens member 20 in the same manner as in a conventional method and subjecting the lens member 20 to a heat treatment.

【0017】カラーフィルタ14は、たとえば、三原色RG
B に色分解をするフィルタが各受光素子に対応して2次
元配列されている。図1(a) のカラーフィルタ14はRGB
縦ストライプのパターンの場合を示している。各受光素
子に対応するカラーフィルタは、すべて同一の大きさに
してある(図1(b) を参照)。なお、図1(a) の平面図
には、図面の煩雑さを避けるためマイクロレンズ12は図
示していない。
The color filters 14 are, for example, three primary colors RG
Filters B for color separation are two-dimensionally arranged corresponding to each light receiving element. The color filter 14 in FIG.
The case of a vertical stripe pattern is shown. The color filters corresponding to the respective light receiving elements are all of the same size (see FIG. 1B). The microlenses 12 are not shown in the plan view of FIG. 1A in order to avoid complication of the drawing.

【0018】撮像部16は、2次元配列した受光素子16a
がカラーフィルタ14の直下に配設形成されている。この
場合、各受光素子16a は、遮光部材17の開口部17a に対
応して配設されている。この場合、図1(b) の開口部17
a は、色に限定されることなく、すべて同じ開口面積に
なっている。この開口部17a の領域以外は、すべて遮光
されている。したがって、遮光部材17は、各受光素子16
a からの信号電荷を垂直転送路16d に転送させる転送ゲ
ート16a 、転送ゲート16a および垂直転送路16d にタイ
ミング信号(駆動信号)を供給する電極部16c ならびに
垂直転送路16dをすべて遮光している。遮光部材17は、
アルミニウム等の材質が用いられている。
The imaging unit 16 includes a two-dimensionally arranged light receiving element 16a.
Are formed immediately below the color filters. In this case, each light receiving element 16a is provided corresponding to the opening 17a of the light shielding member 17. In this case, the opening 17 shown in FIG.
a have the same opening area without being limited to the color. Except for the area of the opening 17a, all light is shielded. Therefore, the light shielding member 17 is
The transfer gate 16a for transferring the signal charges from a to the vertical transfer path 16d, the electrode section 16c for supplying a timing signal (drive signal) to the transfer gate 16a and the vertical transfer path 16d, and the vertical transfer path 16d are all shielded from light. The light blocking member 17
A material such as aluminum is used.

【0019】このように構成することにより、撮像部16
の受光素子16a に、たとえば、同一の光量がマイクロレ
ンズ12を介して供給された場合、受光素子16a は、マイ
クロレンズ12により供給される光量を調節できるので、
カラーフィルタ12の色の違いによって生じていた信号電
荷の差をなくすことができる。均一の信号電荷を発生さ
せた各受光素子16a は、電極部16c からの駆動信号に応
じて信号電荷を転送ゲート16b を介して垂直転送路16d
に出力する。垂直転送路16d は、電極部16c からの駆動
信号に応じて信号電荷を図1(a) に示す水平転送路16e
に送る。水平転送路16e は、駆動信号に応じて信号電荷
をカラー信号処理部に供給する。カラー信号処理部での
色毎の信号処理に差がないならば、本来、受光素子16a
で得られた信号電荷に差がないので、得られるRGB の信
号は、均一な色バランスのとれた信号になる。このた
め、得られたRGB 信号は、これまで行われてきたように
色毎の差に応じて信号増幅したりする必要がなくなる。
これにより、色バランスをとるために生じていた色S/N
比の低下を起こす虞れを完全になくすことができる。
With such a configuration, the imaging unit 16
For example, when the same light amount is supplied to the light receiving element 16a via the microlens 12, the light receiving element 16a can adjust the light amount supplied by the microlens 12, so that
The difference in signal charge caused by the difference in color of the color filter 12 can be eliminated. Each light receiving element 16a that has generated a uniform signal charge transfers a signal charge according to a drive signal from the electrode section 16c via a transfer gate 16b to a vertical transfer path 16d.
Output to The vertical transfer path 16d transfers signal charges in accordance with the drive signal from the electrode section 16c to the horizontal transfer path 16e shown in FIG.
Send to The horizontal transfer path 16e supplies signal charges to the color signal processing unit according to the drive signal. If there is no difference in signal processing for each color in the color signal processing unit, the light receiving element 16a
Since there is no difference in the signal charges obtained in step (1), the obtained RGB signals have uniform color balance. For this reason, it is not necessary to amplify the obtained RGB signal according to the difference for each color as has been performed so far.
As a result, the color S / N generated to balance the color
It is possible to completely eliminate the possibility that the ratio will decrease.

【0020】なお、上述した実施例において、マイクロ
レンズ12の形状は、曲率r で規定されることを例示した
が、この形状は曲率r だけに限定されるものでなく、マ
イクロレンズ12の入射光が透過する断面積の大きさで規
定してもよい。
In the above-described embodiment, the shape of the microlens 12 has been described as being defined by the curvature r. However, the shape is not limited to the curvature r. May be defined by the size of the cross-sectional area through which.

【0021】また、固体撮像装置10の他の実施例につい
て説明する。共通する部分には、同じ参照符号を付し、
説明を省略する。本実施例では、マイクロレンズ12は、
同じ大きさに形成する。このため、同一の光量が入射し
た場合、各受光素子16a には、図3に示すように同じ幅
の光束が供給されるのもかかわらず、前述したように受
光素子16a に達する光の強度が色によって異なる。した
がって、色毎に得られる信号電荷に差が生じる。この受
光素子16a の色毎にカラーフィルタ12を介しても同一の
信号電荷を発生させるように遮光部材17の開口部17a の
大きさを調整する。開口部17a の大きさは、開口面積A
あるいは開口率Apで表すことができる。
Next, another embodiment of the solid-state imaging device 10 will be described. Common parts are given the same reference numerals,
Description is omitted. In the present embodiment, the micro lens 12 is
Form the same size. Therefore, when the same amount of light is incident, the light intensity reaching the light receiving element 16a is increased as described above, despite the fact that the light beams having the same width are supplied to the respective light receiving elements 16a as shown in FIG. Depends on color. Therefore, a difference occurs in the signal charges obtained for each color. The size of the opening 17a of the light shielding member 17 is adjusted so that the same signal charge is generated even through the color filter 12 for each color of the light receiving element 16a. The size of the opening 17a is determined by the opening area A
Alternatively, it can be represented by the aperture ratio Ap.

【0022】この開口部17a の大きさは、前述したと同
様に最も撮影頻度の高い色温度でRGB 毎に得られる信号
の感度比S がそれぞれ0.7, 1, 0.8 にあることから、感
度比の大きさ(S(G)>S(B)>S(R))と逆に開口面積(A(R)
>A(B)>A(G))を順に小さくするように形成する。このよ
うにマイクロレンズ12の大きさを同一にした場合に図1
(a) の撮像部16と同じ破断線A-A で切った断面を図3に
示す。この断面では、直接的に開口面積A の大きさを示
すことはできないが、各色に対応して開口部17a の一辺
の長さL で表すと、長さL はL(R)>L(B)>L(G))を順に短
くなっていることが判る。このように開口部17a の大き
さを調整することによっても、前述したマイクロレンズ
12の曲率を調整して形成した場合と同様に感度比の差を
なくすように光電変換が行われるようになる。このよう
に同じ光量が均一に照射された場合、発生する信号電荷
が色によって異なることがなくなるので、電気的に信号
処理によって色バランスを調整する必要がなくなる。こ
れまで問題となっていた色S/N の差がなくなるから、こ
のようにして得られた画像をバランスのよい画像にして
提供することができる。
The size of the opening 17a is the same as described above, since the sensitivity ratios S of the signals obtained for each RGB at the color temperature at which the photographing frequency is highest are 0.7, 1, 0.8, respectively. Contrary to the size (S (G)> S (B)> S (R)), the opening area (A (R)
> A (B)> A (G)). When the size of the microlenses 12 is made the same in this way, FIG.
FIG. 3 shows a cross section taken along the same breaking line AA as the imaging section 16 in FIG. In this cross section, the size of the opening area A cannot be directly shown, but when the length L of one side of the opening 17a is represented by L for each color, the length L is L (R)> L (B )> L (G)). By adjusting the size of the opening 17a in this manner, the micro lens
As in the case of forming by adjusting the curvature of 12, the photoelectric conversion is performed so as to eliminate the difference in the sensitivity ratio. When the same amount of light is uniformly irradiated as described above, the generated signal charges do not differ depending on the color, so that it is not necessary to electrically adjust the color balance by signal processing. Since the difference in color S / N, which has been a problem in the past, is eliminated, the image thus obtained can be provided as a well-balanced image.

【0023】前述した実施例は、カラーフィルタ14と受
光素子16a が対応して正方配置している場合について説
明したが、本発明はこの配置に限定されるものでなく、
受光素子16a の幾何学的な形状の中心を行方向および列
方向にピッチの半分ずらして配置されている、いわゆる
ハニカム配置においても適用することができる(図4を
参照)。図4に示すように、マイクロレンズ12の大きさ
を調整することにより受光素子16a を高感度受光素子と
低感度受光素子にすることができる。このとき、カラー
フィルタ14(図示せず)による光量の低下を考慮して高
感度受光素子と低感度受光素子を配置するとよい。具体
的には、たとえば、色R, Bに対応する位置に高感度受光
素子を配し、色G にに対応する位置に低感度受光素子を
配するとよい。また、このハニカム配置においても受光
素子16a の開口率Apを色毎の感度に応じて変えてもよ
い。得られた信号電荷は、それぞれ高感度受光素子と低
感度受光素子の横位置に受光素子16a の配置を妨げない
ように蛇行した高感度受光素子用と低感度受光素子用の
垂直転送路16H, 16Lを介して読み出される。このように
信号電荷を読み出すことにより、ハニカム配置の撮像部
16から得られた画像を色バランスのよい画像にして提供
することができる。
In the above-described embodiment, the case where the color filter 14 and the light receiving element 16a are arranged in a corresponding square is described, but the present invention is not limited to this arrangement.
The present invention can also be applied to a so-called honeycomb arrangement in which the centers of the geometric shapes of the light receiving elements 16a are shifted by half the pitch in the row and column directions (see FIG. 4). As shown in FIG. 4, by adjusting the size of the microlens 12, the light receiving element 16a can be made into a high sensitivity light receiving element and a low sensitivity light receiving element. At this time, a high-sensitivity light-receiving element and a low-sensitivity light-receiving element are preferably arranged in consideration of a decrease in the amount of light due to the color filter 14 (not shown). Specifically, for example, a high-sensitivity light-receiving element may be disposed at a position corresponding to the colors R and B, and a low-sensitivity light-receiving element may be disposed at a position corresponding to the color G. Also in this honeycomb arrangement, the aperture ratio Ap of the light receiving element 16a may be changed according to the sensitivity for each color. The obtained signal charges are vertically transferred for the high-sensitivity light-receiving element and the low-sensitivity light-receiving element, respectively, so as not to disturb the arrangement of the light-receiving element 16a at the horizontal position of the high-sensitivity light-receiving element and the low-sensitivity light-receiving element. Read via 16L. By reading out the signal charges in this manner, an image pickup unit having a honeycomb arrangement is provided.
The image obtained from 16 can be provided as an image with good color balance.

【0024】以上のように構成することにより、受光素
子の前面に配する部材の形状を調整して色毎に異なる感
度比のばらつきを改善し、この結果、色バランスを均一
化させることができるようになる。この均一な色バラン
スが部材の形状等によって得られることにより、最も頻
度の高い色温度におけるバランス調整で行っていたゲイ
ン調整を不要にすることができる。さらに、得られた信
号の色バランスが取れているので、色毎のゲイン調整に
よって生じていた色S/N 比のばらつきもなくすことがで
きるようになり、画質のよい画像を提供できるようにな
る。
With the above-described configuration, the variation of the sensitivity ratio which differs for each color is improved by adjusting the shape of the member disposed on the front surface of the light receiving element, and as a result, the color balance can be made uniform. Become like Since this uniform color balance is obtained by the shape of the members, the gain adjustment that has been performed in the most frequent color balance adjustment can be eliminated. Further, since the obtained signals are balanced in color, it is possible to eliminate variations in the color S / N ratio caused by gain adjustment for each color, and to provide a high-quality image. .

【0025】なお、前述した実施例は、いずれも原色の
色分解フィルタの中で三原色RGB を用いた場合について
説明したが、本発明は、前述した実施例に限定されるも
のでなく、たとえば、補色等の色分解フィルタでも同様
に各色分解フィルタに伴って受光素子の異なる光電効率
に応じて導光部材の形状を異ならせることにより、実際
に得られる各色毎の電気信号のレベルを同じにして色バ
ランスの差をなくすようにすることができる。
In each of the embodiments described above, the case where the three primary colors RGB are used in the primary color separation filters has been described. However, the present invention is not limited to the above-described embodiments. By making the shape of the light guide member different according to the different photoelectric efficiency of the light receiving element along with each color separation filter also in the color separation filters such as complementary colors, the electric signal level of each color actually obtained is made the same. The difference in color balance can be eliminated.

【0026】[0026]

【発明の効果】このように本発明によれば、色分解フィ
ルタセグメントにおける各色分解フィルタを介すことに
よって生じる受光素子の各色毎に異なる光電変換効率に
応じて導光部材の形状が考慮された導光部材を形成し、
この導光部材を受光素子の前面に配することにより、各
色の感度バランスの比率を均一にすることができるよう
になるので、ゲインを補正しても補正結果が色毎に差の
ない、色毎のバランスが同じ信号を供給することができ
る。また、これにより、撮影に際しての色変換フィルタ
の装着等の煩雑な操作を行うこともなく、色S/N 比の良
好な画像を容易に得ることができる。
As described above, according to the present invention, the shape of the light guide member is considered in accordance with the photoelectric conversion efficiency different for each color of the light receiving element caused by passing through each color separation filter in the color separation filter segment. Forming a light guide member,
By disposing this light guide member on the front surface of the light receiving element, the sensitivity balance ratio of each color can be made uniform, so that even if the gain is corrected, the correction result does not differ for each color. Each balance can provide the same signal. In addition, an image having a good color S / N ratio can be easily obtained without performing a complicated operation such as mounting a color conversion filter at the time of photographing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る固体撮像装置の撮像部に適用され
たマイクロレンズの配置およびその形状を説明する模式
図である。
FIG. 1 is a schematic diagram illustrating an arrangement and a shape of a microlens applied to an imaging unit of a solid-state imaging device according to the present invention.

【図2】図1のマイクロレンズに着目して撮像部を上部
から見たマイクロレンズを模式的に示す平面図である。
FIG. 2 is a plan view schematically showing the microlens when the imaging unit is viewed from above, focusing on the microlens of FIG. 1;

【図3】図1の撮像部を破断線A-A に沿って切断した際
の撮像部を模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically illustrating the imaging unit when the imaging unit in FIG. 1 is cut along a break line AA.

【図4】図1のマイクロレンズをハニカム配置の撮像部
に適用した際の配置関係を模式的に示す平面図である。
FIG. 4 is a plan view schematically showing an arrangement relationship when the microlens of FIG. 1 is applied to an imaging unit having a honeycomb arrangement.

【符号の説明】[Explanation of symbols]

10 固体撮像装置 12 マイクロレンズ 14 カラーフィルタ 16 撮像部 17 遮光部材 18 透明部材 20 レンズ部材 16a 受光素子 16b 転送ゲート 16c 電極部 16d 垂直転送路 10 Solid-state imaging device 12 Micro lens 14 Color filter 16 Imaging unit 17 Light shielding member 18 Transparent member 20 Lens member 16a Light receiving element 16b Transfer gate 16c Electrode unit 16d Vertical transfer path

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5C024 AA01 DA01 EA04 EA08 FA01 GA11 GA31 5C065 AA01 AA03 BB01 CC01 DD01 EE05 EE06 EE11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5C024 AA01 DA01 EA04 EA08 FA01 GA11 GA31 5C065 AA01 AA03 BB01 CC01 DD01 EE05 EE06 EE11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 入射光に応じた電気信号を生成する複数
の受光素子が2次元に配列された撮像手段と、 前記複数の受光素子のそれぞれに対応して分解色に応じ
て配列された色分解フィルタセグメントを有し、該色フ
ィルタセグメントのそれぞれは、被写界からの入射光を
各分解色の内のいずれかの色の入射光に分解して前記複
数の受光素子のそれぞれに入射させる色分解フィルタ
と、 前記受光素子の入射光の側に配設され、前記受光素子の
分解色のそれぞれの光電変換効率に応じた形状を有する
導光部材とを含むことを特徴とする固体撮像装置。
1. An image pickup means in which a plurality of light receiving elements for generating an electric signal according to incident light are two-dimensionally arranged, and a color arranged in accordance with a separation color corresponding to each of the plurality of light receiving elements. Each of the color filter segments has a separation filter segment, and each of the color filter segments separates incident light from the object field into incident light of any one of the separated colors and makes the light incident on each of the plurality of light receiving elements. A solid-state imaging device comprising: a color separation filter; and a light guide member disposed on the side of the incident light of the light receiving element and having a shape according to each photoelectric conversion efficiency of the separated color of the light receiving element. .
【請求項2】 請求項1に記載の装置において、前記導
光部材は、前記受光素子の感度が最も低い分解色での前
記入射光を最も多くする形状にし、他の各分解色の感度
が高くなるにつれて前記入射光の照射量を少なくする形
状にすることを特徴とする固体撮像装置。
2. The apparatus according to claim 1, wherein the light guide member has a shape that maximizes the amount of the incident light in the separated color having the lowest sensitivity of the light receiving element, and has a sensitivity of each of the other separated colors. A solid-state imaging device having a shape in which the irradiation amount of the incident light decreases as the height increases.
【請求項3】 請求項1に記載の装置において、前記導
光部材は、前記色分解フィルタの入射光の側に前記受光
素子に対応して前記入射光を集光する集光手段であっ
て、 前記集光手段の形状を前記分解色の入射光に対するそれ
ぞれの受光素子の感度に応じて形成された集光手段を用
いることを特徴とする固体撮像装置。
3. The device according to claim 1, wherein the light guide member is a light condensing unit that condenses the incident light on the side of the incident light of the color separation filter corresponding to the light receiving element. A solid-state imaging device comprising: a light-collecting unit that is formed in accordance with the sensitivity of each light-receiving element to incident light of the separated color.
【請求項4】 請求項1に記載の装置において、前記導
光部材は、前記撮像手段を遮光するとともに、前記受光
素子の受光領域だけ開口させた遮光部材を用い、 前記遮光部材は、前記受光素子の感度が最も低い分解色
での前記受光領域の開口率を最大にし、他の各分解色の
感度が高くなるにつれて開口率を小さくすることを特徴
とする固体撮像装置。
4. The device according to claim 1, wherein the light guide member uses a light shielding member that shields the imaging unit and opens only in a light receiving region of the light receiving element. A solid-state imaging device wherein the aperture ratio of the light receiving region in the separated color having the lowest sensitivity of the element is maximized, and the aperture ratio is reduced as the sensitivity of each of the other separated colors increases.
【請求項5】 請求項3に記載の装置において、前記集
光手段の形状は、前記集光手段の集光面の曲率または前
記集光手段を透過する入射断面積の大きさで規定するこ
とを特徴とする固体撮像装置。
5. The apparatus according to claim 3, wherein the shape of the light-collecting means is defined by a curvature of a light-collecting surface of the light-collecting means or a size of an incident cross-sectional area passing through the light-collecting means. A solid-state imaging device characterized by the above-mentioned.
【請求項6】 請求項1に記載の装置において、前記受
光素子は、前記受光素子の幾何学的な形状の中心を行方
向および列方向にピッチの半分ずらして配置されている
ことを特徴とする固体撮像装置。
6. The apparatus according to claim 1, wherein the light receiving elements are arranged such that the centers of the geometric shapes of the light receiving elements are shifted by half a pitch in a row direction and a column direction. Solid-state imaging device.
JP10289051A 1998-10-12 1998-10-12 Solid-state image pickup device Pending JP2000125310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10289051A JP2000125310A (en) 1998-10-12 1998-10-12 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10289051A JP2000125310A (en) 1998-10-12 1998-10-12 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JP2000125310A true JP2000125310A (en) 2000-04-28
JP2000125310A5 JP2000125310A5 (en) 2005-06-09

Family

ID=17738197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10289051A Pending JP2000125310A (en) 1998-10-12 1998-10-12 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JP2000125310A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268356A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Solid state imaging element
JP2006093456A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Solid-state imaging device, its manufacturing method and camera
JP2006270364A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Solid-state image pickup element and solid-state image pickup device, and driving method thereof
JP2007324321A (en) * 2006-05-31 2007-12-13 Fujifilm Corp Color filter, method of manufacturing the filter, solid-state image sensing device using the filter, and method of manufacturing the device
CN102098456A (en) * 2009-12-15 2011-06-15 株式会社东芝 Solid-state imaging device which can expand dynamic range
WO2013047050A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Color imaging apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268356A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Solid state imaging element
JP2006093456A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Solid-state imaging device, its manufacturing method and camera
JP4546797B2 (en) * 2004-09-24 2010-09-15 パナソニック株式会社 Solid-state imaging device, manufacturing method thereof, and camera
JP2006270364A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Solid-state image pickup element and solid-state image pickup device, and driving method thereof
JP2007324321A (en) * 2006-05-31 2007-12-13 Fujifilm Corp Color filter, method of manufacturing the filter, solid-state image sensing device using the filter, and method of manufacturing the device
JP2011130022A (en) * 2009-12-15 2011-06-30 Toshiba Corp Solid-state imaging device
CN102098456A (en) * 2009-12-15 2011-06-15 株式会社东芝 Solid-state imaging device which can expand dynamic range
US8610186B2 (en) 2009-12-15 2013-12-17 Kabushiki Kaisha Toshiba Solid-state imaging device which can expand dynamic range
US8884348B2 (en) 2009-12-15 2014-11-11 Kabushiki Kaisha Toshiba Solid-state imaging device which can expand dynamic range
WO2013047050A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Color imaging apparatus
CN103828354A (en) * 2011-09-26 2014-05-28 富士胶片株式会社 Color imaging apparatus
JP5636509B2 (en) * 2011-09-26 2014-12-03 富士フイルム株式会社 Color imaging device
US8913165B2 (en) 2011-09-26 2014-12-16 Fujifilm Corporation Color image pickup device
CN103828354B (en) * 2011-09-26 2016-01-06 富士胶片株式会社 Color image pickup apparatus

Similar Documents

Publication Publication Date Title
US7952623B2 (en) Solid state imaging device and image pickup apparatus
JP4018820B2 (en) Solid-state imaging device and signal readout method
JP4421793B2 (en) Digital camera
US8872950B2 (en) Image sensor and image-capturing apparatus with imaging pixel and focusing pixel having light shield layers including openings
JP2600250B2 (en) Solid-state imaging device and video camera
WO2013147199A1 (en) Image sensor, imaging method, and imaging device
US20100091161A1 (en) Solid-state image sensor and imaging apparatus equipped with solid-state image sensor
US20040090550A1 (en) Image sensing means for digital camera and digital camera adopting the same
JP4291793B2 (en) Solid-state imaging device and solid-state imaging device
JPH05227468A (en) Solid state image pickup device
TWI235606B (en) Solid state image pick up device
US5028970A (en) Image sensor
EP0188711B1 (en) Spectrally filtered lens producing plural f-numbers with different spectral characteristics
JP2009049525A (en) Imaging apparatus and method for processing signal
JP2002170944A (en) Solid state imaging device
JP4350924B2 (en) Solid-state imaging device and driving method thereof
JP2001210812A (en) Solid-state image pickup device and solid-state image pickup system provided with the same
JP2000125310A (en) Solid-state image pickup device
JP4170131B2 (en) Imaging control method and imaging control apparatus
JPH0637289A (en) Solid-state image sensing device
JP4909965B2 (en) Imaging device
JP2009049524A (en) Imaging apparatus and method for processing signal
JP2000125310A5 (en)
JPH07143411A (en) Solid-state image pickup element
US6812963B1 (en) Focus and exposure measurement in digital camera using charge binning

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071022

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071214