JPH07140480A - Anisotropically conductive and adhesive film - Google Patents

Anisotropically conductive and adhesive film

Info

Publication number
JPH07140480A
JPH07140480A JP31284693A JP31284693A JPH07140480A JP H07140480 A JPH07140480 A JP H07140480A JP 31284693 A JP31284693 A JP 31284693A JP 31284693 A JP31284693 A JP 31284693A JP H07140480 A JPH07140480 A JP H07140480A
Authority
JP
Japan
Prior art keywords
particles
conductive
adhesive film
fine particles
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31284693A
Other languages
Japanese (ja)
Inventor
Yukihisa Hirozawa
幸寿 廣沢
Hiroshi Matsuoka
寛 松岡
Koji Kobayashi
宏治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP31284693A priority Critical patent/JPH07140480A/en
Publication of JPH07140480A publication Critical patent/JPH07140480A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enhance a resolving power and to improve reliability of connection by uniformly dispersing conductive particulates formed by coating the surfaces of spherical polymer particulates having rugged shapes on surfaces with a metal and specifying the average grain size thereof to a specific range into an insulating adhesive. CONSTITUTION:The conductive particulates 5 having an average grain size of 2 to 20mum formed by coating the spherical polymer particulates having the rugged shapes on the surfaces with the metal are used for the anisotropically conductive and adhesive film formed by uniformly dispersing the conductive particulates 5 into the insulating adhesive 6. The rugged shapes on the surfaces of the particles are preferably such that the specific surface area of these spherical particles is about 1.3 to 5 times the truly spherical particles having the same average grain size. The film of 0.05 to 0.5mum of nickel, etc., is formed by an electroless plating method on such spherical polymer particles. The conductive particulates 5 formed in such a manner are added at 0.1 to 15 pts.wt. to 100 pts.wt. insulating adhesive. As a result, the reliability of connection to counter electrodes 2, 4 per 1 piece of the conductive particulate is enhanced and the anisotropically conductive and adhesive film having high fineness is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示モジュール等
の電極と相対峙させた回路基板の電極を接続固定するの
に用いられる異方導電性接着フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive adhesive film used for connecting and fixing an electrode of a liquid crystal display module or the like and an electrode of a circuit board which is placed opposite to the electrode.

【0002】[0002]

【従来の技術】近年、電子部品の小型化、薄型化、高性
能化が進んでおり、それと共に経済的な高密度実装技術
の開発が活発に行われている。これらの微細回路の接続
には、従来のハンダやゴムコネクター等では対応が困難
であることから、分解能に優れた異方導電性の接着フィ
ルムが多用されるようになってきた。この方法は、液晶
表示モジュール(LCD)とTAB(Tape Automated B
onding)若しくはFPC(Flexible Print Circuit)基板
等の微細電極同士を接続するに際し、導電性微粒子を所
定量含有した接着剤よりなる異方導電性接着フィルムを
相対峙させた電極間に挟み、加熱加圧することにより複
数の電極を一括接続するものである。
2. Description of the Related Art In recent years, electronic parts have become smaller, thinner, and have higher performance, and along with this, economical high-density mounting technology has been actively developed. Since it is difficult to connect these fine circuits with a conventional solder or rubber connector, an anisotropic conductive adhesive film having excellent resolution has been widely used. This method uses a liquid crystal display module (LCD) and a TAB (Tape Automated B).
When connecting fine electrodes such as onding) or FPC (Flexible Print Circuit) substrates, an anisotropic conductive adhesive film made of an adhesive containing a predetermined amount of conductive fine particles is sandwiched between the electrodes, and heated. A plurality of electrodes are collectively connected by applying pressure.

【0003】ここで使用されている導電性微粒子は、従
来より金属微粉末、プラスチック微粒子に金属被覆した
もの等が用いられている。
As the conductive fine particles used here, fine metal powders, plastic fine particles coated with metal, and the like have been conventionally used.

【0004】金属微粉末については、一般に粒度分布が
広く、導電性、絶縁性、接続メカニズムによる影響等に
より接続信頼性に問題がある。また、プラスチック微粒
子に金属被覆した導電性微粒子では、粒度分布の狭いも
のが得られるが、凝集しやすい欠点があり、更にまた電
極同士の接続時における接触面積が小さく、両電極への
保持力も小さい為、凝集を起こさない添加量で高精細化
に対応することは極めて困難な状況である。
The fine metal powder generally has a wide particle size distribution, and there is a problem in connection reliability due to the effects of conductivity, insulation, and connection mechanism. In addition, the conductive fine particles obtained by metal-coating the plastic fine particles can have a narrow particle size distribution, but they have a drawback that they easily aggregate, and the contact area when connecting electrodes is small, and the holding power to both electrodes is also small. Therefore, it is extremely difficult to cope with high definition with an addition amount that does not cause aggregation.

【0005】一方、近年液晶表示モジュール等の高精細
化、高信頼性化が進み、従来の電極ピッチ200μm
(5本/mm)程度から100μm以下(10本/mm
以上)が要求されてきており、今後更なる高分解能化が
求められている。これに伴い異方導電性接着フィルム中
に添加される導電性微粒子に関しても、電極同士の接続
信頼性において特性の向上が求められている。
On the other hand, in recent years, liquid crystal display modules have become finer and more reliable, and the conventional electrode pitch is 200 μm.
(5 lines / mm) to 100 μm or less (10 lines / mm
The above) are required, and further higher resolution is required in the future. Along with this, the conductive fine particles added to the anisotropic conductive adhesive film are also required to have improved characteristics in connection reliability between electrodes.

【0006】[0006]

【発明が解決しようとする課題】従来の高分解能化に対
する考え方は、隣接回路との絶縁性を確保するために導
電性微粒子の粒径を回路間の絶縁部分よりも小さくし、
併せて導電性微粒子同士が接触しない程度に添加量を調
整し、回路接続部の導通性を得ることであった。しかし
ながら導電性微粒子の粒径を小さくすると、粒子数の著
しい増加と表面積の増加により、粒子は2次凝集を起こ
して隣接回路との絶縁性が保持できなくなる。また、粒
子の添加量を減少すると接続すべき回路上の導電性微粒
子の数が減少することから接触点数が不足し、回路接続
部の導通性が得られにくくなるために、接続信頼性を保
ちながら高分解能化することは極めて困難であった。
The conventional approach to high resolution is to make the particle size of the conductive fine particles smaller than that of the insulating portion between the circuits in order to secure the insulating property with the adjacent circuit.
At the same time, the addition amount was adjusted so that the conductive fine particles did not come into contact with each other, and the conductivity of the circuit connecting portion was obtained. However, when the particle diameter of the conductive fine particles is reduced, the number of particles is remarkably increased and the surface area is increased, so that the particles cause secondary agglomeration and the insulating property from an adjacent circuit cannot be maintained. In addition, if the amount of added particles is reduced, the number of conductive fine particles on the circuit to be connected decreases, so the number of contact points becomes insufficient, and it becomes difficult to obtain conductivity at the circuit connecting portion, so that the connection reliability is maintained. However, it was extremely difficult to increase the resolution.

【0007】本発明は、かかる状況に鑑みなされたもの
で、電極同士の接続時における保持力が優れ、接触面積
の大きな導電性微粒子を接着剤中に所定量添加すること
により、高分解能であり接続信頼性の優れた異方導電性
接着フィルムを提供することを目的とするものである。
The present invention has been made in view of the above situation, and has a high resolving power by adding a predetermined amount of conductive fine particles having a large holding area when the electrodes are connected to each other and having a large contact area to the adhesive. It is an object to provide an anisotropic conductive adhesive film having excellent connection reliability.

【0008】[0008]

【課題を解決するための手段】本発明は上記の目的を達
成するためになされた。本発明者らは本課題を解決する
ために異方導電性接着フィルムによる接続メカニズムに
ついて詳細に検討した。現在、実際に供試されている異
方導電性接着フィルムは、20μm程度の膜厚をもつエ
ポキシ系等の樹脂中に5〜10μm程度の表面が比較的
平滑な球状の導電性微粒子を分散させたものが多い。こ
れを液晶表示モジュール等の基板上に形成された薄膜電
極(ITO、Al等)とTAB、FPC等の回路基板の
電極との間に挟持し、両基板の電極の位置合わせを行っ
た後、熱圧着するプロセスが一般的である。このとき回
路基板の電極としては、厚さ18〜35μm程度の銅箔
にスズ等のめっきを施したものが多用されている。図1
に本発明の異方導電性接着フィルム、図2に従来の異方
導電性接着フィルムを用いた場合の接続方法の説明図に
ついて示した。図1の(a)及び図2の(a)は、各
々、本発明の異方導電性接着フィルム(図1の(a))
及び従来の異方導電性接着フィルム(図2の(a))を
回路基板と表示モジュール基板の間に挟持した状態を示
す。接着剤6中に導電性微粒子5を分散させた異方導電
性フィルムの熱圧着時において、加圧が進み回路基板3
の電極部分4と表示モジュール基板1上の薄膜電極2と
の距離が導電性微粒子5の粒径と同じになると、導電性
微粒子5は両電極(2,4)間の加圧力により電極間に
保持される。図1の(b)及び図2の(b)はこの状態
を示すものであり、図1の(c)及び図2の(c)は、
各々、図1の(b)及び図2の(b)の部分拡大図であ
る。このとき、従来用いていた表面が比較的平滑な球状
の導電性微粒子では、両電極への導電性微粒子のくい込
み等がなく良好な接触状態が期待できず、また導電性微
粒子1個当りの接触面積も小さいため、接続信頼性を保
ちながら高分解能化することが困難であることが明らか
になった。そこで本発明者らは、表面に凹凸形状を有す
る導電性微粒子を絶縁性接着剤中に所定量含有させるこ
とにより、所望の目的を達成することを見いだし、本発
明を完成するに至った。
The present invention has been made to achieve the above object. In order to solve this subject, the present inventors examined in detail the connection mechanism by an anisotropic conductive adhesive film. Currently, the anisotropic conductive adhesive film that has been actually tested is obtained by dispersing spherical conductive particles having a relatively smooth surface of about 5 to 10 μm in a resin such as an epoxy resin having a film thickness of about 20 μm. There are many things. After sandwiching this between a thin film electrode (ITO, Al, etc.) formed on a substrate such as a liquid crystal display module and an electrode of a circuit substrate such as TAB, FPC, etc., the electrodes of both substrates are aligned, The process of thermocompression bonding is common. At this time, as an electrode of the circuit board, a copper foil having a thickness of about 18 to 35 μm plated with tin or the like is often used. Figure 1
FIG. 2 shows an explanatory diagram of a connecting method when the anisotropic conductive adhesive film of the present invention is used and FIG. 2 is a conventional anisotropic conductive adhesive film. 1A and 2A are respectively the anisotropic conductive adhesive film of the present invention (FIG. 1A).
2 shows a state in which a conventional anisotropic conductive adhesive film ((a) in FIG. 2) is sandwiched between a circuit board and a display module board. During thermocompression bonding of the anisotropic conductive film in which the conductive fine particles 5 are dispersed in the adhesive 6, pressurization proceeds and the circuit board 3
When the distance between the electrode portion 4 of the and the thin film electrode 2 on the display module substrate 1 becomes the same as the particle diameter of the conductive fine particles 5, the conductive fine particles 5 are applied between the electrodes (2, 4) due to the pressure applied between the electrodes. Retained. 1B and 2B show this state, and FIG. 1C and FIG. 2C show
FIG. 3 is a partially enlarged view of FIG. 1B and FIG. 2B, respectively. At this time, in the case of spherical conductive fine particles having a relatively smooth surface which has been conventionally used, a good contact state cannot be expected because the conductive fine particles do not bite into both electrodes, and contact per conductive fine particle Since the area is also small, it became clear that it is difficult to achieve high resolution while maintaining connection reliability. Therefore, the present inventors have found that a desired purpose can be achieved by incorporating a predetermined amount of conductive fine particles having an uneven surface on the insulating adhesive, and have completed the present invention.

【0009】すなわち、本発明は導電性微粒子を絶縁性
接着剤中に均一分散してなる異方導電性接着フィルムに
おいて、粒子表面に凹凸形状を有する球状ポリマー微粒
子上に金属を被覆した平均粒径が2〜20μmの導電性
微粒子を用いることを特徴とする異方導電性接着フィル
ムを提供するものである。
That is, the present invention provides an anisotropic conductive adhesive film in which conductive fine particles are uniformly dispersed in an insulating adhesive, and an average particle size of a spherical polymer fine particle having irregularities on the particle surface coated with a metal. 2 to 20 μm of conductive fine particles are used to provide an anisotropic conductive adhesive film.

【0010】粒子表面に凹凸形状を有する球状ポリマー
微粒子を得る方法としては、懸濁重合、乳化重合、分散
重合、シード重合等により合成された表面が比較的平滑
な球状粒子を機械的若しくは化学的方法により極度に粗
面化する方法も可能であるが、任意に粒子形状を決めに
くいことや製造コストが高いことから、ポリマー微粒子
製造時に球状ポリマー微粒子の表面が凹凸形状となる製
造方法を用いることが好ましい。例えば、水系分散媒中
に分散したシードポリマー粒子に、非架橋性不飽和単量
体と架橋性不飽和単量体とを混合した油溶性不飽和単量
体を吸収させ、油溶性重合開始剤の存在下で油溶性不飽
和単量体を重合させる単分散粒子の製造法において、添
加する油溶性不飽和単量体の重量をシードポリマー粒子
重量に対して0.5〜8倍とすることにより目的とする
粒子を得ることが出来る。またこのとき添加する油溶性
不飽和単量体の重量及び非架橋性不飽和単量体と架橋性
不飽和単量体の混合比率を変えることにより粒子の形状
を制御できる。
As a method for obtaining spherical polymer fine particles having irregularities on the particle surface, spherical particles having a relatively smooth surface synthesized by suspension polymerization, emulsion polymerization, dispersion polymerization, seed polymerization, etc. are mechanically or chemically treated. Although it is also possible to extremely roughen the surface by a method, it is difficult to arbitrarily determine the particle shape and the manufacturing cost is high.Therefore, use a manufacturing method in which the surface of the spherical polymer particles has an uneven shape during the production of the polymer particles. Is preferred. For example, seed polymer particles dispersed in an aqueous dispersion medium, absorb the oil-soluble unsaturated monomer mixed with a non-crosslinkable unsaturated monomer and a crosslinkable unsaturated monomer, oil-soluble polymerization initiator In the method for producing monodisperse particles in which an oil-soluble unsaturated monomer is polymerized in the presence of, the weight of the oil-soluble unsaturated monomer added is 0.5 to 8 times the weight of the seed polymer particles. Thus, the target particles can be obtained. The shape of the particles can be controlled by changing the weight of the oil-soluble unsaturated monomer added at this time and the mixing ratio of the non-crosslinkable unsaturated monomer and the crosslinkable unsaturated monomer.

【0011】粒子表面の凹凸形状は特に限定されるもの
ではないが、好ましくは凹凸形状を有する球状粒子の比
表面積が同じ平均粒径を有する真球粒子の比表面積に対
して1.3倍〜5倍程度であることが好ましい。
The irregular shape of the particle surface is not particularly limited, but preferably the specific surface area of spherical particles having irregularities is 1.3 times the specific surface area of the true spherical particles having the same average particle diameter. It is preferably about 5 times.

【0012】このようにして得られた粒子表面に凹凸形
状を有する球状ポリマー微粒子に、めっき等により金属
を被覆し、平均粒径が2〜20μmの導電性微粒子を得
る。めっき法としては、例えば無電解めっき法等が挙げ
られ、ニッケル、金、銅などの被膜を容易に形成するこ
とができる。被膜の厚さは0.05μm〜0.5μmと
することが好ましい。
The thus-obtained spherical polymer fine particles having an uneven surface are coated with a metal by plating or the like to obtain conductive fine particles having an average particle diameter of 2 to 20 μm. Examples of the plating method include an electroless plating method and the like, and a coating film of nickel, gold, copper or the like can be easily formed. The thickness of the coating is preferably 0.05 μm to 0.5 μm.

【0013】このようにして得られた導電性微粒子を絶
縁性接着材中に均一分散させると異方導電性接着フィル
ムが得られる。導電性微粒子の量は絶縁性接着剤100
重量部に対して0.1〜15重量部とすることが好まし
い。異方導電性接着フィルムの厚みは、70μm以下が
好ましく、良好な接続信頼性を得るためには15〜35
μmとすることが更に好ましい 絶縁性接着剤としては、絶縁シート等に用いられている
熱可塑性材料や、熱や光により硬化性を示す材料が広く
適用できるが、接続後の耐熱性や耐湿性に優れているこ
とから、硬化性材料の適用が好ましい。中でもエポキシ
系接着剤は、短時間硬化が可能で接続作業性が良く、ま
た分子構造上接着性に優れる等の特長があることから好
ましく適用できる。
An anisotropic conductive adhesive film can be obtained by uniformly dispersing the conductive fine particles thus obtained in an insulating adhesive material. The amount of conductive fine particles is 100
It is preferably 0.1 to 15 parts by weight with respect to parts by weight. The thickness of the anisotropic conductive adhesive film is preferably 70 μm or less, and is 15 to 35 in order to obtain good connection reliability.
As the insulating adhesive, thermoplastic materials used for insulating sheets and materials curable by heat or light can be widely applied as the insulating adhesive, but the heat resistance and moisture resistance after connection are high. It is preferable to use a curable material because of its excellent properties. Among them, the epoxy adhesive is preferably applied because it has a feature that it can be cured in a short time, has good workability in connection, and has excellent adhesiveness due to its molecular structure.

【0014】エポキシ系接着剤は、例えば高分子エポキ
シ、固形エポキシと液状エポキシ、フェノキシ樹脂と液
状エポキシ、ウレタンやポリエステル、NBR等を混合
したエポキシを主成分とし、これに潜在性硬化剤やカッ
プリング剤等の各種変成剤、触媒等を添加した系からな
るものが一般的である。。
Epoxy adhesives are mainly composed of polymer epoxy, solid epoxy and liquid epoxy, phenoxy resin and liquid epoxy, epoxy mixed with urethane, polyester, NBR and the like, and a latent curing agent and a coupling agent. It is generally composed of a system to which various modifying agents such as agents and catalysts are added. .

【0015】[0015]

【実施例】以下、本発明について、実施例をもとに更に
詳細に説明する。
EXAMPLES The present invention will now be described in more detail based on examples.

【0016】実施例1 分散重合により作製された平均粒径が約2.5μmの未
架橋ポリスチレンのシード粒子10重量部、H2 O 4
00重量部、界面活性剤としてラウリル硫酸ナトリウム
0.3重量部を混合し、超音波振動を与えシードポリマ
ー粒子を分散させた。更にその中に3重量%ポリビニル
アルコール水溶液を、粒子の凝集防止剤として550重
量部加えた。この溶液に、スチレンモノマー15重量部
と55重量%ジビニルベンゼン2重量部を混合し、開始
剤として過酸化ベンゾイル1重量部を溶解させたものを
2雰囲気中で加え、30℃で1時間攪拌を行った。そ
の後70℃に昇温し8時間重合を行った。得られた粒子
は図3に示すような球状粒子表面に凹凸形状を有するも
のであった。この粒子の粒度分布をコールターマルチサ
イザー(コールター社製)で測定したところ平均径5.
0μm、粒子径分布4.0〜6.0μmであった。更
に、この粒子の比表面積をGEMINI2360(島津
製作所製)で測定したところ、2.2×104cm2/g
であった。
Example 1 An average particle size of about 2.5 μm prepared by dispersion polymerization
Cross-linked polystyrene seed particles 10 parts by weight, H2 O 4
00 parts by weight, sodium lauryl sulfate as a surfactant
Mix 0.3 parts by weight and apply ultrasonic vibration to the seed polymer.
-The particles were dispersed. Furthermore, 3% by weight of polyvinyl
Aqueous alcohol solution is used as a particle coagulation inhibitor at 550 weights.
A part was added. Add 15 parts by weight of styrene monomer to this solution.
And 2 parts by weight of 55% by weight divinylbenzene are mixed and started.
A solution prepared by dissolving 1 part by weight of benzoyl peroxide as an agent
N2The mixture was added in the atmosphere and stirred at 30 ° C. for 1 hour. So
After that, the temperature was raised to 70 ° C. and polymerization was carried out for 8 hours. Particles obtained
Has unevenness on the surface of spherical particles as shown in FIG.
It was. The particle size distribution of this particle is
When measured with an Iser (manufactured by Coulter), the average diameter is 5.
The particle size distribution was 0 μm and the particle size distribution was 4.0 to 6.0 μm. Change
In addition, the specific surface area of these particles was determined by GEMINI 2360 (Shimadzu
2.2 × 10 when measured by the factory)Fourcm2/ G
Met.

【0017】このようにして得られたポリマー微粒子表
面にNi、Auめっきを施し平均粒径5.3μmの導電
性微粒子とした。
The surfaces of the polymer fine particles thus obtained were plated with Ni and Au to obtain conductive fine particles having an average particle size of 5.3 μm.

【0018】この導電性微粒子を潜在性硬化材を含むエ
ポキシ系接着剤ワニスに、ワニスの固形分体積比で2%
の割合で配合してなる厚さ20μmの接着フィルムを、
離型フィルム上に流延成形して異方導電性接着フィルム
を作製した。
The conductive fine particles were added to an epoxy adhesive varnish containing a latent curing material in an amount of 2% by volume based on the solid content of the varnish.
An adhesive film with a thickness of 20 μm prepared by mixing
An anisotropic conductive adhesive film was produced by casting on a release film.

【0019】この異方導電性接着フィルムをガラス基板
上のITO電極と、ピッチ50μm厚さ35μmの銅回
路にスズめっきを施したFPC間に挟んで、170℃−
20kgf/cm2 −20秒の熱圧着条件で接続した。
This anisotropic conductive adhesive film is used as a glass substrate.
The upper ITO electrode and a copper layer with a pitch of 50 μm and a thickness of 35 μm
170 ° C- sandwiched between the tinned FPCs
20 kgf / cm2 Connection was made under thermocompression bonding conditions of -20 seconds.

【0020】この回路の接続抵抗は、隣接回路間を測定
電流1mAの定電圧を印加し測定した。絶縁抵抗は、隣
接回路間に100Vの電圧を印加し測定した。信頼性試
験としては、−40℃/30分、25℃/5分、80℃
/30分、25℃/5分の温度サイクル試験を250サ
イクル行った後、隣接回路間の接続抵抗を測定した。得
られた結果を表1に示す。
The connection resistance of this circuit was measured by applying a constant voltage of a measuring current of 1 mA between adjacent circuits. The insulation resistance was measured by applying a voltage of 100 V between adjacent circuits. As a reliability test, -40 ° C / 30 minutes, 25 ° C / 5 minutes, 80 ° C
After conducting a temperature cycle test of / 30 minutes and 25 ° C / 5 minutes for 250 cycles, the connection resistance between adjacent circuits was measured. The results obtained are shown in Table 1.

【0021】実施例2 導電性微粒子をワニスの固形体積分比で1%の割合で配
合した以外は実施例1と同様にして、異方導電性接着フ
ィルムの作製及びその評価を行った。得られた結果を表
1に示す。
Example 2 An anisotropic conductive adhesive film was prepared and evaluated in the same manner as in Example 1 except that the conductive fine particles were mixed at a solid volume ratio of 1%. The results obtained are shown in Table 1.

【0022】比較例1 スチレンモノマー200重量部と55重量%ジビニルベ
ンゼン16重量部を混合し重合開始剤として過酸化ベン
ゾイル14重量部を溶解させたものを、H2O350重
量部及び分散安定剤として10重量%リン酸三カルシウ
ム水溶液350重量部からなる混合物中に加え、ホモミ
キサーで高速せん断を行いモノマー滴の微粒子化を行っ
た。これを70℃で1時間保持した後、重合槽に移し8
0℃で7時間重合を行った。得られた粒子は図4に示す
ように表面平滑な球状粒子であった。
Comparative Example 1 200 parts by weight of a styrene monomer and 16 parts by weight of 55% by weight divinylbenzene were mixed and 14 parts by weight of benzoyl peroxide were dissolved as a polymerization initiator, and 350 parts by weight of H 2 O and a dispersion stabilizer were prepared. The mixture was added to a mixture of 350 parts by weight of a 10% by weight tricalcium phosphate aqueous solution, and the mixture was subjected to high-speed shearing with a homomixer to atomize the monomer droplets. After keeping it at 70 ° C for 1 hour, it was transferred to a polymerization tank.
Polymerization was carried out at 0 ° C for 7 hours. The obtained particles were spherical particles having a smooth surface as shown in FIG.

【0023】これを4.0〜6.0μmで分級を行い、
平均径5.0μmの粒子を得た。更に、この粒子の比表
面積を測定したところ1.3×104cm2/gであっ
た。この微粒子表面上にNi、Auめっきを施し平均径
5.3μmの導電性微粒子とした。
This is classified at 4.0 to 6.0 μm,
Particles having an average diameter of 5.0 μm were obtained. Furthermore, the specific surface area of the particles was measured and found to be 1.3 × 10 4 cm 2 / g. Ni and Au plating was performed on the surface of the fine particles to obtain conductive fine particles having an average diameter of 5.3 μm.

【0024】この導電性微粒子を用いて実施例1と同様
に、異方導電性接着フィルムの作製及びその評価を行っ
た。得られた結果を表1に示す。
An anisotropic conductive adhesive film was prepared and evaluated in the same manner as in Example 1 using the conductive fine particles. The results obtained are shown in Table 1.

【0025】比較例2 比較例1で作製した導電性微粒子をワニス固形体積分比
で1%の割合で配合した以外は実施例1と同様にして、
異方導電性接着フィルムの作製及びその評価を行った。
得られた結果を表1に示す。
Comparative Example 2 The procedure of Example 1 was repeated except that the conductive fine particles prepared in Comparative Example 1 were blended at a ratio of 1% in terms of solid volume ratio of varnish.
An anisotropic conductive adhesive film was produced and evaluated.
The results obtained are shown in Table 1.

【0026】比較例3 比較例1で作製した導電性微粒子をワニス固形体積分比
で4%の割合で配合した以外は実施例1と同様にして、
異方導電性接着フィルムの作製及びその評価を行った。
得られた結果を表1に示す。
Comparative Example 3 The procedure of Example 1 was repeated, except that the conductive fine particles prepared in Comparative Example 1 were blended at a varnish solid volume ratio of 4%.
An anisotropic conductive adhesive film was produced and evaluated.
The results obtained are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、粒子表面に凹凸形状を
有する球状導電性微粒子を絶縁性接着剤中に所定量添加
することにより、導電性微粒子1個当りの対峙電極への
接続信頼性が高まり、異方導電性接着フィルム中に添加
する粒子量を増大させることなく高精細で信頼性の高い
異方導電性接着フィルムを提供できることが可能とな
る。
According to the present invention, by adding a predetermined amount of spherical conductive fine particles having irregularities on the surface of the particles to the insulating adhesive, the connection reliability of the conductive fine particles to the facing electrode can be improved. It becomes possible to provide a highly precise and highly reliable anisotropic conductive adhesive film without increasing the amount of particles added to the anisotropic conductive adhesive film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の異方導電性フィルムを用いて接続を行
う様子を示す説明図である。
FIG. 1 is an explanatory diagram showing a state in which a connection is made using the anisotropic conductive film of the present invention.

【図2】従来の異方導電性フィルムを用いて接続を行う
様子を示す説明図である。
FIG. 2 is an explanatory diagram showing a state in which a conventional anisotropically conductive film is used for connection.

【図3】本発明の一実施例として用いた導電性微粒子核
体の粒子構造の電子顕微鏡写真である。
FIG. 3 is an electron micrograph showing a particle structure of a conductive fine particle core used as an example of the present invention.

【図4】従来法の一比較例として用いた導電性微粒子核
体の粒子構造の電子顕微鏡写真である。
FIG. 4 is an electron micrograph of a particle structure of a conductive fine particle core used as a comparative example of a conventional method.

【符号の説明】[Explanation of symbols]

1 表示モジュール基板 2 薄膜電極 3 回路基板 4 回路基板電極 5 導電性微粒子 6 接着剤 1 Display Module Board 2 Thin Film Electrode 3 Circuit Board 4 Circuit Board Electrode 5 Conductive Fine Particles 6 Adhesive

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性微粒子を絶縁性接着剤中に均一分
散してなる異方導電性接着フィルムにおいて、粒子表面
に凹凸形状を有する球状ポリマー微粒子上に金属を被覆
した平均粒径が2〜20μmの導電性微粒子を用いるこ
とを特徴とする異方導電性接着フィルム。
1. An anisotropic conductive adhesive film in which conductive fine particles are uniformly dispersed in an insulating adhesive, wherein spherical polymer fine particles having irregularities on the particle surface are coated with a metal to have an average particle size of 2 to 2. An anisotropic conductive adhesive film characterized by using conductive fine particles of 20 μm.
JP31284693A 1993-11-19 1993-11-19 Anisotropically conductive and adhesive film Pending JPH07140480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31284693A JPH07140480A (en) 1993-11-19 1993-11-19 Anisotropically conductive and adhesive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31284693A JPH07140480A (en) 1993-11-19 1993-11-19 Anisotropically conductive and adhesive film

Publications (1)

Publication Number Publication Date
JPH07140480A true JPH07140480A (en) 1995-06-02

Family

ID=18034140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31284693A Pending JPH07140480A (en) 1993-11-19 1993-11-19 Anisotropically conductive and adhesive film

Country Status (1)

Country Link
JP (1) JPH07140480A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172824A1 (en) * 1999-02-22 2002-01-16 Nippon Chemical Industrial Company Limited Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
US6344156B1 (en) 1998-12-25 2002-02-05 Sony Chemicals Corporation Anisotropic conductive adhesive film
US7446545B2 (en) 2003-05-08 2008-11-04 Unitechno Inc. Anisotropically conductive sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344156B1 (en) 1998-12-25 2002-02-05 Sony Chemicals Corporation Anisotropic conductive adhesive film
KR100878175B1 (en) * 1998-12-25 2009-01-12 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Anisotropic conductive adhesive film
KR101042869B1 (en) * 1998-12-25 2011-06-20 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Methods of producing anisotropic conductive adhesive film and connection
EP1172824A1 (en) * 1999-02-22 2002-01-16 Nippon Chemical Industrial Company Limited Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
EP1172824A4 (en) * 1999-02-22 2005-09-21 Nippon Chemical Ind Company Lt Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
US7446545B2 (en) 2003-05-08 2008-11-04 Unitechno Inc. Anisotropically conductive sheet

Similar Documents

Publication Publication Date Title
KR950000710B1 (en) Anisotropic conductive adhesive compositions
JP4505017B2 (en) Insulating conductive fine particles and anisotropic conductive adhesive film containing the same
KR100710103B1 (en) Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
KR100787381B1 (en) Conducting particle complex with microcapsules, preparation thereof and anisotropic conductive adhesive film used thereof
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
KR102467618B1 (en) Adhesive composition
JP5650611B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
JPH03112011A (en) Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
KR101018334B1 (en) Preparation of electroconductive nano/microparticles coated with graphene nanosheets
JPS62177082A (en) Anisotropic electrically conductive adhesive
JPH06295617A (en) Anithotropic conductive adhesive compound
US20200332156A1 (en) Anisotropic conductive film, display device including same and/or semiconductor device including same
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JPH11209714A (en) Anisotropically electroconductive adhesive
JPH07140480A (en) Anisotropically conductive and adhesive film
JPH087658A (en) Anisotropic conductive adhesive film
JP3150054B2 (en) Anisotropic conductive film
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JPH07268303A (en) Anisotropic electrically-conductive adhesive composition
JP3869785B2 (en) Insulating coating conductive fine particles and conductive connection structure
KR20090073366A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JP5511513B2 (en) Method for producing conductive particles and conductive particles produced thereby
JPH057078A (en) Anisotropically conductive bonding agent
JP5275735B2 (en) Method for producing conductive fine particles, conductive fine particles, anisotropic conductive material, and conductive connection structure