JPH07138676A - Alloy powder for conductive paste and its production - Google Patents

Alloy powder for conductive paste and its production

Info

Publication number
JPH07138676A
JPH07138676A JP5284938A JP28493893A JPH07138676A JP H07138676 A JPH07138676 A JP H07138676A JP 5284938 A JP5284938 A JP 5284938A JP 28493893 A JP28493893 A JP 28493893A JP H07138676 A JPH07138676 A JP H07138676A
Authority
JP
Japan
Prior art keywords
powder
conductive paste
alloy
grinding
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5284938A
Other languages
Japanese (ja)
Inventor
Osamu Kato
理 加藤
Tamotsu Nishinakagawa
保 西中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5284938A priority Critical patent/JPH07138676A/en
Publication of JPH07138676A publication Critical patent/JPH07138676A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the inexpensive alloy power for conductive paste which has a low electric resistance, excellent oxidation resistance and excellent migration resistance, and is free from a catalyst effect. CONSTITUTION:The chemical compsn. of this alloy power for conductive paste consists of 5 to 90% Au, 10 to 95% Cu and others, such as inevitable impurities. The process for production of the alloy power for conductive paste includes a stage for mixing Au power and Cu powder, a stage for grinding the powder mixture by a mechanical pulverizing means, a stage for heating the ground power in a non-oxidating atmosphere of 200 to 600 deg.C and a stage for grinding the heated powder by the mechanical pulverizing means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ベアチップIC、フリ
ップチップIC等のチップオンボード(COB)実装、
その他の微細電子回路の製造に用いる導電性ペースト用
合金粉末およびその製造方法に関するものである。
The present invention relates to chip-on-board (COB) mounting of bare chip ICs, flip chip ICs, etc.
The present invention relates to an alloy powder for a conductive paste used for manufacturing other fine electronic circuits and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、COB実装等に用いる導電性
ペースト用合金粉末としては、Agのマイグレーション
の問題から、Ag−Pd合金粉末あるいはAg−Cu合
金粉末等が用いられている。ここにAgのマイグレーシ
ョンとは、Agがイオン化して移動し、移動先において
電荷を失ってそこで析出する現象であって、このような
マイグレーションが生じると、最終的には回路が短絡
し、電子部品として機能しなくなる。
2. Description of the Related Art Conventionally, Ag-Pd alloy powder or Ag-Cu alloy powder has been used as a conductive paste alloy powder used for COB mounting or the like because of the problem of Ag migration. Here, the migration of Ag is a phenomenon in which Ag ionizes and moves, loses electric charge at the destination and precipitates there. Eventually, when such migration occurs, the circuit is short-circuited and the electronic component Will not function as.

【0003】これらの導電性ペースト用合金粉末は、エ
ポキシあるいはポリエステル等の樹脂、およびブチルカ
ルビトールアセテートのような溶剤と混合してペースト
状とされ、スクリ−ン印刷等の方法により基板上にパタ
ーン形成されるか、転写等の方法により接合部に塗布さ
れたのち、溶剤が除去されて固化する。このようにして
形成された基板は、さらに大きい基板に搭載されてマル
チチップモジュ−ルとされることもあるが、このとき、
基板間の接続には半田付けが用いられるため、基板は2
00℃以上の温度に曝されることとなる。
These alloy powders for conductive paste are mixed with a resin such as epoxy or polyester and a solvent such as butyl carbitol acetate to form a paste, which is patterned on a substrate by a method such as screen printing. After being formed or applied to the bonding portion by a method such as transfer, the solvent is removed and solidified. The substrate thus formed may be mounted on a larger substrate to form a multi-chip module. At this time,
Since soldering is used to connect the boards,
It will be exposed to a temperature of 00 ° C. or higher.

【0004】Ag−Pd合金粉末を導電性ペースト用粉
末として用いた場合、上記の半田付け温度においてPd
が触媒作用をなし、固化剤として添加してある樹脂を分
解してしまうため、十分に固化しないという不都合を生
じる。また、導電性ペースト用粉末としてAg−Cu合
金を用いた場合は、Agリッチな合金ではマイグレーシ
ョンの問題があり、Cuリッチな合金では上記の半田付
けの温度での耐酸化性が十分でないため、電子部品の寿
命の安定性を損うという不都合がある。Auは化学的に
安定であり、導電性も導電材料として十分に良好である
が高価である。
When Ag-Pd alloy powder is used as a powder for conductive paste, Pd is used at the above soldering temperature.
Acts as a catalyst and decomposes the resin added as a solidifying agent, resulting in the inconvenience of insufficient solidification. When an Ag-Cu alloy is used as the conductive paste powder, the Ag-rich alloy has a problem of migration, and the Cu-rich alloy has insufficient oxidation resistance at the soldering temperature. There is an inconvenience that the stability of the life of the electronic component is impaired. Au is chemically stable and has good conductivity as a conductive material, but is expensive.

【0005】[0005]

【発明が解決しようとする課題】以上の現状に鑑みて、
本発明が解決しようとする課題は、導電性ペースト用と
して十分なほどに電気抵抗が低く、半田付け程度の温度
での加熱において耐酸化性に優れ、また触媒作用がな
く、耐マイグレーション性に優れ、かつ安価な導電性ペ
ースト用合金粉末とその製造方法を提供することにあ
る。
In view of the above situation,
The problem to be solved by the present invention is that the electric resistance is low enough for a conductive paste, the oxidation resistance is excellent when heated at a temperature of soldering, and there is no catalytic action, and the migration resistance is excellent. Another object is to provide an inexpensive alloy powder for conductive paste and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
の本発明による導電性ペースト用合金粉末は、 (1)化学組成が重量%で、Au:5〜90%、Cu:
10〜95%、その他不可避的不純物よりなることを特
徴とする。 (2)上記導電性ペースト用合金粉末の製造方法とし
て、Au粉末およびCu粉末を混合する工程と、前記の
混合粉末を機械的粉砕手段で摩砕する工程と、前記の摩
砕した粉末を温度200〜600℃の非酸化性雰囲気中
において加熱する工程と、前記の加熱した粉末を機械的
粉砕手段で摩砕する工程とを含むことを特徴とする。
MEANS FOR SOLVING THE PROBLEMS An alloy powder for a conductive paste according to the present invention for achieving the above object is as follows: (1) Chemical composition is wt%, Au: 5 to 90%, Cu:
It is characterized by comprising 10 to 95% and other unavoidable impurities. (2) As a method for producing the alloy powder for conductive paste, a step of mixing Au powder and Cu powder, a step of grinding the mixed powder with a mechanical crushing means, and a temperature of the ground powder. The method is characterized by including a step of heating in a non-oxidizing atmosphere at 200 to 600 ° C. and a step of grinding the heated powder with a mechanical grinding means.

【0007】本発明の導電性ペースト用合金粉末では、
Au−Cu系合金とすることによってAgにおけるマイ
グレーションの問題を回避し、導電ペースト用として十
分なほどに電気抵抗を低くし、かつ、価額を低減するこ
とができる。Auの含有率が5%未満では耐酸化性が十
分でなく、また90%を超えてAuを含有しても前記の
効果が飽和し、いたずらに価格を高めるだけなのでAu
含有率の上限を90%とする。
In the alloy powder for conductive paste of the present invention,
By using an Au-Cu-based alloy, the problem of migration in Ag can be avoided, the electric resistance can be made low enough for a conductive paste, and the price can be reduced. If the content of Au is less than 5%, the oxidation resistance is not sufficient, and even if the content of Au exceeds 90%, the above effect is saturated and the price is unnecessarily increased.
The upper limit of the content rate is 90%.

【0008】本発明の導電性ペースト用合金粉末の製造
方法では、まず、所定の平均粒径をもつAu粉末と同じ
く所定の平均粒径をもつCu粉末を目的とする組成とな
る割合で混合し、次いで、機械的粉砕手段、例えばボー
ルミルによって摩砕する。このとき、Au粉末とCu粉
末はボールによって一層微細に粉砕されて好ましいフレ
ーク状になると同時に、得られるフレーク粉において
は、そのフレ−ク粉内部でAu微細粉末とCu微細粉末
とが積層して互いが物理的に密着した状態で接触するこ
とになり、お互の原子間距離は極めて短縮した状態とな
る。
In the method for producing an alloy powder for a conductive paste according to the present invention, first, an Au powder having a predetermined average particle diameter and a Cu powder having a predetermined average particle diameter are mixed at a ratio to achieve a target composition. Then, it is ground by mechanical grinding means, for example a ball mill. At this time, the Au powder and the Cu powder are more finely pulverized by the balls to form a preferable flake shape, and at the same time, in the obtained flake powder, the Au fine powder and the Cu fine powder are laminated inside the flake powder. They come into contact with each other in a state where they are physically in close contact with each other, and the interatomic distance between them becomes extremely short.

【0009】機械的粉砕手段による摩砕の条件は、例え
ばボ−ルミルの場合、ボ−ルミルの形式やボールの径、
ボールミルの内径や回転速度、また粉末の混合割合や粒
径などの要因によって適宜に選択されるので、一義的に
決めるわけにはいかない。前述のフレーク粉における原
子間距離を短縮することは後述する熱処理時にフレーク
粉の合金化を促進するので、用いるAu粉末とCu粉末
の平均径は10μm以下であることが好ましい。
Grinding conditions by the mechanical grinding means are, for example, in the case of a ball mill, the type of ball mill, the diameter of balls,
Since it is appropriately selected depending on factors such as the inner diameter and rotation speed of the ball mill, the powder mixing ratio, and the particle size, it cannot be uniquely determined. Since shortening the interatomic distance in the flake powder promotes alloying of the flake powder during the heat treatment described later, the average diameter of the Au powder and Cu powder used is preferably 10 μm or less.

【0010】また、ボールミル等による摩砕時に、混合
粉に対し0.1〜5重量%程度のステアリン酸や適当量
のアセトンを添加しておくと、粉砕−フレーク化の処理
を円滑に進めることができて好適である。上記の摩砕処
理によって得られたフレーク粉は、次に非酸化性雰囲気
中で加熱される。この加熱により、フレーク化粉内部で
積層しているAuとCuは、互いの接触界面で相互拡散
してAu−Cu合金に転化し、Au−Cu合金フレーク
粉になる。
Further, when milling with a ball mill or the like, if 0.1 to 5% by weight of stearic acid or an appropriate amount of acetone is added to the mixed powder, the crushing-flaking process can proceed smoothly. It is possible because it is possible. The flake powder obtained by the above grinding treatment is then heated in a non-oxidizing atmosphere. By this heating, Au and Cu laminated inside the flake powder are interdiffused at their contact interfaces and converted into Au-Cu alloy to become Au-Cu alloy flake powder.

【0011】適用する非酸化性雰囲気としては、例え
ば、窒素雰囲気やアルゴン雰囲気が好適である。前述の
摩砕処理によってAu粉末とCu粉末とにおけるAu−
Cuの原子間距離が短縮しているので、温度200℃と
いった比較的低い温度での加熱によって相互の合金化が
可能である。600℃を超える高い温度で加熱するとフ
レーク粉が焼結して解粒が困難となるので熱処理温度の
上限を600℃とする。
As the non-oxidizing atmosphere to be applied, for example, a nitrogen atmosphere or an argon atmosphere is suitable. Au- in Au powder and Cu powder by the above-mentioned milling treatment
Since the interatomic distance of Cu is shortened, they can be alloyed with each other by heating at a relatively low temperature of 200 ° C. When heated at a high temperature exceeding 600 ° C., the flake powder sinters and it becomes difficult to disintegrate, so the upper limit of the heat treatment temperature is set to 600 ° C.

【0012】加熱時間は、加熱温度やフレーク粉の粒径
によっても変るが、概ね10〜180分程度で十分であ
る。加熱処理した粉末を再びボールミルのような機械的
粉砕手段によって摩砕することによって微細なフレーク
粉とする。
Although the heating time varies depending on the heating temperature and the particle size of the flake powder, about 10 to 180 minutes is generally sufficient. The heat-treated powder is ground again by a mechanical grinding means such as a ball mill to obtain fine flake powder.

【0013】[0013]

【実施例】平均粒径1μmのAu粉末、平均粒径1μm
のCu粉末、市販のAg粉末およびPd粉末を表1の粉
末組成の欄に示す組成となるように配合し、それぞれそ
の25gを取り、これにステアリン酸0.75gおよび
アセトン100gを加え、直径5mmのSUJ2製のボ
ール100gと一緒に、内径95mm、長さ130mm
の工具鋼製のボールミルに入れて、60rpmで50時
間ボールミルを運転した。その後ボールと粉末とを分離
し、粉末をアルゴン雰囲気中において表1の熱処理の欄
に示す条件で加熱処理し、さらにボールミルで10時間
摩砕して合金粉末を得た。なお、比較例2では原料粉を
混合、磨砕後650℃で加熱処理したところ、焼結して
しまい解粒することができなかったので、この後の試験
は行わなかった。
Example: Au powder having an average particle size of 1 μm, average particle size of 1 μm
Cu powder, commercially available Ag powder and Pd powder were blended so as to have the composition shown in the column of powder composition in Table 1, 25 g of each was taken, 0.75 g of stearic acid and 100 g of acetone were added thereto, and the diameter was 5 mm. 95mm inner diameter, 130mm length with 100g SUJ2 ball
The ball mill was operated for 50 hours at 60 rpm in a ball mill made of tool steel. After that, the balls and the powder were separated, and the powder was heat-treated in an argon atmosphere under the conditions shown in the column of heat treatment in Table 1 and further ground for 10 hours in a ball mill to obtain an alloy powder. In Comparative Example 2, when the raw material powders were mixed and ground and then heat-treated at 650 ° C., the powder was sintered and could not be disintegrated, so the subsequent test was not performed.

【0014】これらの粉末について耐酸化性を評価し
た。耐酸化性は、大気中で昇温しつつ、熱天秤により重
量変化を測定し重量変化の生じる温度によって評価し
た。上記の各粉末70重量部に対して、固化剤としてエ
ポキシ樹脂30重量部、溶剤としてブチールカルビトー
ルアセテート10重量部を加えて混合し、ペースト状と
した。粒ゲージを用いてこのペースト中の粉末の粒径を
測定したところ、最大径、平均径はそれぞれ、3μm、
2μmであった。
The oxidation resistance of these powders was evaluated. The oxidation resistance was evaluated by measuring the weight change with a thermobalance while raising the temperature in the atmosphere and measuring the temperature at which the weight change occurred. To 70 parts by weight of each of the above powders, 30 parts by weight of an epoxy resin as a solidifying agent and 10 parts by weight of butyl carbitol acetate as a solvent were added and mixed to form a paste. When the particle diameter of the powder in this paste was measured using a particle gauge, the maximum diameter and average diameter were 3 μm,
It was 2 μm.

【0015】このペーストについて耐熱性、電気抵抗、
耐マイグレーション性を評価した。耐熱性の評価法はつ
ぎの通りである。端面の面積4mm2 のAu端子の端面
にペーストを塗布し、対向する端子の端面に押しつけた
まま溶剤を蒸発させて固化し、これを150℃で60分
間加熱して試験片とした。端子面に対して垂直方向に引
張力を負荷して破断時の引張力を測定した。
About this paste, heat resistance, electric resistance,
The migration resistance was evaluated. The heat resistance evaluation method is as follows. The paste was applied to the end surface of the Au terminal having an end surface area of 4 mm 2, the solvent was evaporated and solidified while being pressed against the end surface of the opposing terminal, and this was heated at 150 ° C. for 60 minutes to obtain a test piece. A tensile force was applied in the direction perpendicular to the terminal surface, and the tensile force at break was measured.

【0016】電気抵抗はメタルマスク印刷によって、ガ
ラスエポキシ基板上に膜厚20μmの膜を形成し、4探
針法によって測定した。耐マイグレーション性の評価法
はつぎの通りである。メタルマスクを用いてペーストを
ガラスエポキシ基板上に印刷し、溶剤を蒸発させて固化
し、マイグレーション測定用電極を形成した。電極間に
脱イオン水を20μl滴下した後、直流電圧5Vをか
け、電極間に電流が流れ始めるまでの時間を測定して、
これをマイグレーション時間とした。
The electrical resistance was measured by a 4-probe method after forming a film with a film thickness of 20 μm on a glass epoxy substrate by metal mask printing. The evaluation method of migration resistance is as follows. The paste was printed on a glass epoxy substrate using a metal mask, and the solvent was evaporated to solidify to form a migration measurement electrode. After dropping 20 μl of deionized water between the electrodes, apply a DC voltage of 5 V and measure the time until the current starts to flow between the electrodes.
This was taken as the migration time.

【0017】これらの評価結果を比較例の結果とともに
表1に示す。なお、比較例3および比較例5の粉末は、
Ag粉末およびCu粉末をそのまま、あるいはペ−スト
化して試験に供した。
The results of these evaluations are shown in Table 1 together with the results of the comparative examples. The powders of Comparative Example 3 and Comparative Example 5 were
The Ag powder and the Cu powder were used as they were or after being formed into a paste and tested.

【表1】 表1において耐熱性の○印は破断引張力300gf以
上、×印は300gf未満を示し、耐酸化性の○印は重
量増加開始温度250℃以上、×印は250℃未満を示
し、耐マイグレーション性の○印はマイグレーション時
間600秒以上、×印は600秒未満を示す。
[Table 1] In Table 1, the heat-resistant ◯ mark indicates a tensile strength at break of 300 gf or more, and the x mark indicates less than 300 gf, and the oxidation resistance ◯ mark indicates a weight increase starting temperature of 250 ° C. or higher, and the x mark indicates less than 250 ° C. The circle mark indicates a migration time of 600 seconds or longer, and the cross mark indicates a migration time of less than 600 seconds.

【0018】表1から明らかなように、本発明になる合
金粉末は導電性ペーストとして十分に低い電気抵抗の値
をもち、耐熱性、耐酸化性、耐マイグレーション性も優
れていることが判る。
As is clear from Table 1, the alloy powder according to the present invention has a sufficiently low electric resistance value as a conductive paste and is excellent in heat resistance, oxidation resistance and migration resistance.

【0019】[0019]

【発明の効果】以上説明したように、本発明によると、
導電ペースト用として十分なほどに電気抵抗が低く、半
田付け程度の温度での加熱において耐酸化性に優れ、ま
た触媒作用がなく、耐マイグレーション性に優れ、かつ
安価な導電性ペースト用合金粉末とその製造方法を提供
することができるという効果がある。
As described above, according to the present invention,
Electrical resistance low enough for conductive paste, excellent in oxidation resistance when heated at a temperature of soldering, no catalytic action, excellent migration resistance, and inexpensive conductive paste alloy powder There is an effect that the manufacturing method can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が重量%で、Au:5〜90
%、Cu:10〜95%、その他不可避的不純物よりな
ることを特徴とする導電性ペースト用合金粉末。
1. A chemical composition of, by weight, Au: 5 to 90.
%, Cu: 10 to 95%, and other unavoidable impurities, an alloy powder for a conductive paste.
【請求項2】 Au粉末およびCu粉末を混合する工程
と、 前記の混合粉末を機械的粉砕手段で摩砕する工程と、 前記の摩砕した粉末を温度200〜600℃の非酸化性
雰囲気中において加熱する工程と、 前記の加熱した粉末を機械的粉砕手段で摩砕する工程と
を含むことを特徴とする請求項1記載の導電性ペースト
用合金粉末の製造方法。
2. A step of mixing Au powder and Cu powder, a step of grinding the mixed powder with a mechanical grinding means, and a step of grinding the ground powder in a non-oxidizing atmosphere at a temperature of 200 to 600 ° C. The method for producing an alloy powder for a conductive paste according to claim 1, further comprising a step of heating in step 1 and a step of grinding the heated powder with a mechanical grinding means.
JP5284938A 1993-11-15 1993-11-15 Alloy powder for conductive paste and its production Pending JPH07138676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5284938A JPH07138676A (en) 1993-11-15 1993-11-15 Alloy powder for conductive paste and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5284938A JPH07138676A (en) 1993-11-15 1993-11-15 Alloy powder for conductive paste and its production

Publications (1)

Publication Number Publication Date
JPH07138676A true JPH07138676A (en) 1995-05-30

Family

ID=17685015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284938A Pending JPH07138676A (en) 1993-11-15 1993-11-15 Alloy powder for conductive paste and its production

Country Status (1)

Country Link
JP (1) JPH07138676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028368A (en) * 2000-10-09 2002-04-17 김수경 Conductor of manufacturing method using gold and ceramic compound matter and the Conductor thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028368A (en) * 2000-10-09 2002-04-17 김수경 Conductor of manufacturing method using gold and ceramic compound matter and the Conductor thereof

Similar Documents

Publication Publication Date Title
US4122232A (en) Air firable base metal conductors
RU2082237C1 (en) Compound
WO2006109573A1 (en) Conductive filler and solder material
JPH0334162B2 (en)
JPH01192781A (en) Thick film copper conductor composition
EP2822000B1 (en) Thick print copper pastes for aluminium nitride substrates
JP7317397B2 (en) COPPER OXIDE PASTE AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT
JPH07138676A (en) Alloy powder for conductive paste and its production
JP2795467B2 (en) Good adhesive metal paste
JPH05128910A (en) Conductor paste
JPH0867901A (en) Alloy powder for conductive paste and its production
JP3861648B2 (en) Copper conductor paste composition, method for producing the same, and electronic component using the same
JP4285315B2 (en) Ru-MO powder, method for producing the same, and thick film resistor composition using the same
JPH0259563B2 (en)
JPS59224111A (en) Metal electrode powder used for producing monolithic ceramiccapacitor, method of producing same and method of producing monolithic capacitor
JP4089368B2 (en) Conductive paste
JP2631010B2 (en) Thick film copper paste
TWI789698B (en) Copper oxide paste and method for producing electronic parts
JP2004362862A (en) Conductive paste composition for thick-film conductor
JPH05151818A (en) Conductor paste
JPH0137429B2 (en)
JP2899607B2 (en) Manufacturing method of chip type thermistor
JPH05128908A (en) Conductor paste
JPH079841B2 (en) Method of manufacturing thick film resistor
JPH05151819A (en) Conductor paste