JPH0867901A - Alloy powder for conductive paste and its production - Google Patents

Alloy powder for conductive paste and its production

Info

Publication number
JPH0867901A
JPH0867901A JP23832194A JP23832194A JPH0867901A JP H0867901 A JPH0867901 A JP H0867901A JP 23832194 A JP23832194 A JP 23832194A JP 23832194 A JP23832194 A JP 23832194A JP H0867901 A JPH0867901 A JP H0867901A
Authority
JP
Japan
Prior art keywords
powder
alloy
powders
heating
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23832194A
Other languages
Japanese (ja)
Inventor
Osamu Kato
理 加藤
Tamotsu Nishinakagawa
保 西中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23832194A priority Critical patent/JPH0867901A/en
Publication of JPH0867901A publication Critical patent/JPH0867901A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

PURPOSE: To obtain allay powder for a paste which has excellent oxidation resistance and migration resistance and is suitable for production of fine electronic circuits by specifying the compsn. ratio, of an Au-Ag alloy. CONSTITUTION: The alloy compsn. is composed, by weight, of 5 to 90% Au, 10 to 95% Ag and the balance inevitable impurities. Production of the alloy powder for the paste is executed by the following stages : (l) The Au and Ag powders having a prescribed average grain size, preferably <=10μM are mixed at the prescribed compsn. ratio. (2) The mixture is frictionally crushed by mechanical pulverizing means, such as ball mills. At this time, the Au and Ag powders are made into finer flaky state and are made into the state of shortening the distance between the atoms by laminating and tightly adhering the Au and the Ag to as to easily alloy both in the next heating stage. (3) While the heating time for alloying by heating the flaky powders to 200 to 800 deg.C varies with the grain sizes of the flaky powders, the heating time may be about 10 to 180 minutes. (4) The powders subjected to the heating treatment are frictionally ground again by the mechanical pulverizing means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ベアチップIC,フリ
ップチップIC等のチップオンポード(COB)実装、
その他の微細電子回路の製造に用いる導電ペースト用合
金粉末およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to chip-on-board (COB) mounting of bare chip ICs, flip chip ICs, etc.
The present invention relates to an alloy powder for a conductive paste used for manufacturing other fine electronic circuits and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、COB実装等に用いる導電性
ペースト用合金粉末としては、Agのマイグレーション
の問題から、Ag−Pd合金粉末あるいはAg−Cu合
金粉末が用いられている。ここにAgのマイグレーショ
ンとは、Agがイオン化して移動し、移動先において電
荷を失ってそこで析出する現象であって、このようなマ
イグレーションが生じると、最終的には回路が短絡し、
電子部品として機能しなくなる。
2. Description of the Related Art Conventionally, Ag-Pd alloy powder or Ag-Cu alloy powder has been used as a conductive paste alloy powder used for COB mounting or the like due to the problem of Ag migration. Here, the migration of Ag is a phenomenon in which Ag ionizes and moves, loses electric charge at the destination and precipitates there. When such migration occurs, the circuit eventually short-circuits,
It will no longer function as an electronic component.

【0003】これらの導電性ペースト用微粉末は、エポ
キシあるいはポリエステル等の樹脂、およびブチルカル
ビトールアセテートのような溶剤と混合してペースト状
とされ、スクリーン印刷等の方法により基板上にパター
ン形成するか、転写等の方法により接合部に塗布された
のち、溶剤が除去されて固化する。このように形成され
た基板は、さらに大きい基板に搭載されてマルチチップ
モジュールとされることもあるが、このとき、基板間の
接続にははんだ付けが用いられるため、基板は200℃
以上の温度に曝されることになる。
These fine powders for conductive paste are mixed with a resin such as epoxy or polyester and a solvent such as butyl carbitol acetate to form a paste, and a pattern is formed on a substrate by a method such as screen printing. Alternatively, after being applied to the joint portion by a method such as transfer, the solvent is removed and it is solidified. The substrate thus formed may be mounted on a larger substrate to form a multi-chip module. At this time, since the soldering is used for the connection between the substrates, the substrate is kept at 200 ° C.
It will be exposed to the above temperature.

【0004】Ag−Pd合金粉末を導電性ペースト用粉
末として用いた場合、上記のはんだ付け温度において、
Pdが触媒作用をなし、固化剤として添加してある樹脂
を分解してしまうため、十分に固化しないという不都合
を生じる。また、導電性ペースト用粉末としてAg−C
u合金粉末を用いた場合は、Agリッチな合金ではAg
マイグレーションの問題があり、Cuリッチな合金では
上記のはんだ付の温度での耐酸化性が十分でないため、
電子部品の寿命の安定性を損なうという不都合がある。
When Ag-Pd alloy powder is used as the powder for conductive paste, at the above soldering temperature,
Since Pd acts as a catalyst and decomposes the resin added as a solidifying agent, there is a disadvantage that it does not solidify sufficiently. In addition, as a powder for conductive paste, Ag-C
When u alloy powder is used, Ag is used in Ag-rich alloys.
There is a problem of migration, and since the Cu-rich alloy does not have sufficient oxidation resistance at the soldering temperature,
There is the inconvenience of impairing the stability of the life of electronic components.

【0005】[0005]

【発明が解決しようとする課題】以上の現状に鑑みて、
本発明が解決しようとする課題は、導電ペースト用とし
て十分なほどに電気抵抗が小さく、はんだ付程度の温度
での加熱において耐酸化性に優れ、また、触媒作用がな
く、Agの耐マイグレーション性に優れ、かつ、安定な
導電性ペースト用合金粉末とその製造方法を提供するこ
とにある。そこでAgとの各種合金系について調査した
結果Au−Ag合金粉末は導電性ペースト用合金粉末と
しての上記問題点を解消できることを確認した。
In view of the above situation,
The problem to be solved by the present invention is that the electric resistance is sufficiently small for a conductive paste, the oxidation resistance is excellent in heating at a temperature of about soldering, and there is no catalytic action, and the migration resistance of Ag is high. (EN) An excellent and stable alloy powder for conductive paste and a method for producing the same. Therefore, as a result of investigating various alloy systems with Ag, it was confirmed that the Au-Ag alloy powder can solve the above problems as the alloy powder for the conductive paste.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
の本発明による導電性ペースト用合金粉末は、 1.合金組成が重量%で、Au:5〜90%、Ag:1
0〜95%,その他不可逆的不純物よりなることを特徴
とする。 2.上記導電性ペースト用合金粉末の製造方法として、
Au粉末およびAg粉末を混合する工程と、前記の混合
粉末を機械的粉砕手段で摩砕する工程と、前記の摩砕し
た粉末を温度200〜800℃で加熱する工程と、前記
の加熱した粉末を機械的粉砕手段で摩砕する工程とを含
むことを特徴とする。
The alloy powder for a conductive paste according to the present invention for achieving the above object comprises: Alloy composition is wt%, Au: 5 to 90%, Ag: 1
It is characterized by 0 to 95% and other irreversible impurities. 2. As a method for producing the alloy powder for the conductive paste,
A step of mixing the Au powder and the Ag powder, a step of grinding the mixed powder with a mechanical grinding means, a step of heating the ground powder at a temperature of 200 to 800 ° C., and the heated powder Is ground by a mechanical grinding means.

【0007】本発明の導電ペースト用合金粉末では、A
u−Ag系合金とすることによってAgにおけるマイグ
レーションの問題を回避し、導電性ペースト用として十
分なほどに電気抵抗を小さく、かつ、はんだ付け温度
(200〜220℃)での耐酸化性も十分保有する導電
ペースト用合金粉末を提供できる。
In the alloy powder for conductive paste of the present invention, A
By using a u-Ag-based alloy, the problem of Ag migration is avoided, the electrical resistance is low enough for conductive paste, and the oxidation resistance at soldering temperature (200-220 ° C) is also sufficient. The possessed alloy powder for conductive paste can be provided.

【0008】本発明におけるAu含有率の限定理由は以
下の通りである。5%未満ではAgのマイグレーション
を回避できないためであり、5%以上の添加は不可避で
ある。Au添加量が多いほど耐マイグレーション性は向
上するが、90%以上ではその効果も飽和するため90
%以下とした。
The reason for limiting the Au content in the present invention is as follows. If it is less than 5%, migration of Ag cannot be avoided, and addition of 5% or more is inevitable. The migration resistance is improved as the added amount of Au is increased, but if 90% or more, the effect is saturated and 90
% Or less.

【0009】本発明の導電性ペースト用合金粉末の製造
方法では、まず、所定の平均粒径を持つAu粉末と同じ
く所定の平均粒径を持つAg粉末を目的とする組成とな
る割合で混合し、次いで、機械的粉砕手段、例えば、ボ
ールミルによって摩砕する。このとき、Au粉末とAg
粉末はボールミルによって一層微細に粉砕されて好まし
いフレーク状になると同時に、得られるフレーク粉にお
いては、そのフレーク粉末内部でAu微細粉末とAg微
細粉末とが積層して互いが物理的に密着した状態で接触
することになり、お互いの原子間距離は極めて短縮した
状態となる。
In the method for producing an alloy powder for a conductive paste according to the present invention, first, an Au powder having a predetermined average particle size and an Ag powder having a predetermined average particle size are mixed at a ratio to achieve a desired composition. Then, it is ground by mechanical grinding means, for example a ball mill. At this time, Au powder and Ag
The powder is more finely pulverized by a ball mill into a preferable flake shape, and at the same time, in the obtained flake powder, Au fine powder and Ag fine powder are laminated inside the flake powder so that they are physically adhered to each other. As they come into contact with each other, the interatomic distance between them becomes extremely short.

【0010】機械的粉砕手段による摩砕の条件は、例え
ば、ボールミルの場合、ボールミルの形式やボールの
径、ボールミルの内径や回転速度、また粉末の混合割合
や粒径などの要因によって適宜に選択されるので、一義
的に決めるわけにはいかない。前述のフレーク粉におけ
る原子間距離を短縮することは後述する熱処理時にフレ
ーク粉の合金化を促進するので、用いるAu粉末とAg
粉末の平均粒径は10μm以下であることが好ましい。
In the case of a ball mill, for example, the conditions of grinding by mechanical crushing means are appropriately selected depending on factors such as the type of ball mill, the diameter of the ball, the inner diameter and rotation speed of the ball mill, and the mixing ratio and particle size of the powder. Because it is done, it cannot be decided unequivocally. Since shortening the interatomic distance in the above flake powder promotes alloying of the flake powder during the heat treatment described below, the Au powder and Ag used
The average particle size of the powder is preferably 10 μm or less.

【0011】また、ボールミル等による摩砕時に、混合
粉末に対し0.1〜5重量%程度のステアリン酸や適当
量のアセトンを添加しておくと、粉砕−フレーク化の処
理を円滑に進めることができて好適である。 上記の摩
砕処理によって得られたフレーク粉は、次ぎに加熱され
る。この加熱により、フレーク粉内部で積層しているA
uとAgは、互いの接触界面で相互拡散してAu−Ag
合金に転化し、Au−Ag合金フレーク粉末になる。
Further, when milling with a ball mill or the like, if 0.1 to 5% by weight of stearic acid or an appropriate amount of acetone is added to the mixed powder, the crushing-flaking process can proceed smoothly. It is possible because it is possible. The flake powder obtained by the above grinding treatment is then heated. By this heating, A stacked inside the flake powder
u and Ag interdiffuse at the contact interface of each other and Au-Ag
It is converted to an alloy and becomes Au-Ag alloy flake powder.

【0012】前述の摩砕処理によってAu粉末とAg粉
末におけるAu−Agの原子間距離が短縮しているの
で、温度200℃といった比較的低い温度での加熱によ
って相互の合金化が可能である。800℃を越える高い
温度での加熱するとフレーク粉が焼結して解粒が困難と
なるので熱処理温度の上限を800℃とする。
Since the Au-Ag interatomic distance in the Au powder and the Ag powder is shortened by the above-mentioned milling treatment, mutual alloying is possible by heating at a relatively low temperature of 200 ° C. When heated at a high temperature exceeding 800 ° C., the flake powder sinters and it becomes difficult to disintegrate, so the upper limit of the heat treatment temperature is set to 800 ° C.

【0013】加熱時間は、加熱温度やフレーク粉の粒径
によっても変わるが、概ね10〜180分程度で十分で
ある。加熱処理した粉末を再びボールミルのような機械
的粉砕手段によって摩砕することによって微細なフレー
ク粉とする。
Although the heating time varies depending on the heating temperature and the particle size of the flake powder, about 10 to 180 minutes is sufficient. The heat-treated powder is ground again by a mechanical grinding means such as a ball mill to obtain fine flake powder.

【0014】[0014]

【実施例】平均粒径1μmのAu粉末、1μmのAg粉
末、CuおよびPd粉末を表1の組成欄に示す組成とな
るように配合し、それぞれその25gを取り、これにス
テアリン酸0.75gおよびアセトン100gを加え、
直径5mmのSUJ2製のボール100gと一緒に、内
径95mm、長さ130mmの工具鋼製のボールミルに
入れて、60rpmで50時間ボールミルを運転した。
その後ボールと粉末を分離し、粉末をアルゴン雰囲気中
において表1の熱処理の欄に示す条件で加熱処理し、さ
らにボールミルで10時間摩砕して合金粉末を得た。な
お、比較例2では原料粉を混合、摩砕後850℃で加熱
処理したところ、焼結してしまい解粒することができな
かったので、この後の試験は行わなかった。
EXAMPLE An Au powder having an average particle size of 1 μm, an Ag powder having an average particle size of 1 μm, Cu and Pd powder were blended so as to have the composition shown in the composition column of Table 1. And 100 g of acetone are added,
A ball mill made of tool steel having an inner diameter of 95 mm and a length of 130 mm was put together with 100 g of SUJ2 balls having a diameter of 5 mm, and the ball mill was operated at 60 rpm for 50 hours.
Thereafter, the ball and the powder were separated, the powder was heat-treated in an argon atmosphere under the conditions shown in the column of heat treatment in Table 1, and further ground for 10 hours in a ball mill to obtain an alloy powder. In Comparative Example 2, when the raw material powders were mixed and ground and then heat-treated at 850 ° C., the powder was sintered and could not be disintegrated, so the subsequent test was not performed.

【0015】これらの粉末について、はんだ付け温度に
おける耐酸化性を評価した。耐酸化性は、大気中で昇温
しつつ、熱天秤により重量変化を測定し重量変化の生じ
る温度によって評価した。その結果は第1表に見られる
ごとく比較例5,6を除き250℃以上の温度を示して
おり、はんだ付け温度(200〜220℃)において良
好な耐酸化性を示すことを確認した。上記の各粉末70
重量部に対して、固化剤としてエポキシ樹脂30重量
部、溶剤としてブチルカルビトールアセテート10重量
部を加えて混合し、ペースト状とした。粒ゲージを用い
てこのペースト中の粉末の粒径を測定したところ、最大
径、平均径はそれぞれ3μm、2μmであった。
The oxidation resistance of these powders at the soldering temperature was evaluated. The oxidation resistance was evaluated by measuring the weight change with a thermobalance while raising the temperature in the atmosphere and measuring the temperature at which the weight change occurred. As shown in Table 1, except for Comparative Examples 5 and 6, the results showed a temperature of 250 ° C. or higher, and it was confirmed that good oxidation resistance was exhibited at the soldering temperature (200 to 220 ° C.). Each of the above powder 70
30 parts by weight of an epoxy resin as a solidifying agent and 10 parts by weight of butyl carbitol acetate as a solvent were added to and mixed with parts by weight to form a paste. When the particle size of the powder in this paste was measured using a particle gauge, the maximum diameter and the average diameter were 3 μm and 2 μm, respectively.

【0016】このペーストについては耐熱性、電気抵
抗、耐マイグレーション性を評価した。また、各試料に
ついて電流電位曲線を求め、溶出電位を評価した。耐熱
性の評価は次の通りである。端面の面積4mmのAu
端子の端面にペーストを塗布し、対向する端子の端面に
押しつけたまま溶剤を蒸発させて固化し、これを230
℃で3分間加熱して試験片とした。端子面に対して垂直
方向に引っ張り力を負荷して破断時の引っ張り力を測定
した。その結果は第1表にみられるごとく実施例1〜7
は300g以上の破断荷重を示しており、良好な耐熱性
を有することを確認した。
The paste was evaluated for heat resistance, electric resistance and migration resistance. In addition, a current-potential curve was obtained for each sample and the elution potential was evaluated. The evaluation of heat resistance is as follows. Au with an end surface area of 4 mm 2
The paste is applied to the end faces of the terminals, and the solvent is evaporated and solidified while being pressed against the end faces of the opposing terminals.
A test piece was obtained by heating at 0 ° C. for 3 minutes. A tensile force was applied in a direction perpendicular to the terminal surface, and the tensile force at break was measured. The results are shown in Table 1, Examples 1-7.
Indicates a breaking load of 300 g or more, and it was confirmed to have good heat resistance.

【0017】電気抵抗はメタルマスク印刷によって、ガ
ラスエポキシ基板上に膜厚20μmの膜を形成し、4探
針法によって測定した。その結果を第2表に示したが、
実施例、比較例ともに5×10−4Ωcm以下の低い電
気抵抗を示すことを確認した。次に耐マイグレーション
性を評価するために以下の試験を行った。メタルマスク
を用いてペーストをガラスエポキシ基板上に印刷し、溶
剤を蒸発させて固化し、マイグレーション測定用電極を
形成した。電極間に脱イオン水を20μl滴下した後、
直流電圧5Vをかけ、電極間に電流が流れ始めるまでの
時間を測定して、これをマイグレーション時間とした。
その結果は第2表にみられるごとく実施例1〜7はいず
れも1000秒以上にても電流が流れ始めることはな
く、比較例1,3,4にくらべて良好な耐マイグレーシ
ョン性を示すことを確認した。
The electrical resistance was measured by a 4-probe method after forming a film with a film thickness of 20 μm on a glass epoxy substrate by metal mask printing. The results are shown in Table 2,
It was confirmed that both the examples and the comparative examples show a low electric resistance of 5 × 10 −4 Ωcm or less. Next, the following tests were performed to evaluate the migration resistance. The paste was printed on a glass epoxy substrate using a metal mask, and the solvent was evaporated to solidify to form a migration measurement electrode. After dropping 20 μl of deionized water between the electrodes,
A direct current voltage of 5 V was applied, and the time until the current started to flow between the electrodes was measured, and this was taken as the migration time.
As can be seen from Table 2, in Examples 1 to 7, no current started to flow even after 1000 seconds or longer, and showed good migration resistance as compared with Comparative Examples 1, 3 and 4. It was confirmed.

【0018】次に各試料について電流電位曲線をもとめ
溶出し電位を測定した結果、耐マイグレーション性の良
いものほど溶出し電位が高い傾向を示すことを確認し
た。
Next, the current-potential curve of each sample was measured for elution and the potential was measured. As a result, it was confirmed that the better the migration resistance, the higher the elution and the higher potential.

【0019】表1および表2から明らかなように、本発
明になる合金粉末は導電性ペーストとして十分に小さい
電気抵抗の値をもち、耐熱性、耐酸化性、耐マイグレー
ション性も優れていることが判る。
As is clear from Tables 1 and 2, the alloy powder according to the present invention has a sufficiently small electric resistance value as a conductive paste and is excellent in heat resistance, oxidation resistance and migration resistance. I understand.

【0020】[0020]

【発明の効果】以上説明したように、本発明の合金粉末
は、導電ペースト用として十分なほどに電気抵抗が小さ
く、かつ従来のこの種合金粉末にくらべてはんだ付程度
の温度での加熱において耐酸化性に優れ、また触媒作用
がなく、耐マイグレーション性に優れており、実用的価
値の高い導電ペースト用合金粉末である。
As described above, the alloy powder of the present invention has a sufficiently low electric resistance as a conductive paste, and when heated at a soldering temperature as compared with a conventional alloy powder of this kind. This alloy powder for conductive paste has excellent oxidation resistance, has no catalytic action, and has excellent migration resistance, and has a high practical value.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】合金組成が重量%で、Au:5〜90%,
Ag:10〜95%,その他不可逆的不純物よりなるこ
とを特徴とする導電性ペースト用合金粉末。
1. The alloy composition is wt%, Au: 5 to 90%,
Ag: 10 to 95%, other irreversible impurities alloy powder for conductive paste.
【請求項2】Au粉末およびAg粉末を混合する工程
と、前記の混合粉末を機械的粉砕手段で摩砕する工程
と、前記の摩砕した粉末を温度200〜800℃で加熱
する工程と、前記の加熱した粉末を機械的粉砕手段で摩
砕する工程からなることを特徴とする請求項1記載の導
電性ペースト用合金粉末の製造方法。
2. A step of mixing Au powder and Ag powder, a step of grinding the mixed powder by a mechanical grinding means, and a step of heating the ground powder at a temperature of 200 to 800 ° C. The method for producing an alloy powder for a conductive paste according to claim 1, comprising a step of grinding the heated powder with a mechanical grinding means.
JP23832194A 1994-08-26 1994-08-26 Alloy powder for conductive paste and its production Pending JPH0867901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23832194A JPH0867901A (en) 1994-08-26 1994-08-26 Alloy powder for conductive paste and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23832194A JPH0867901A (en) 1994-08-26 1994-08-26 Alloy powder for conductive paste and its production

Publications (1)

Publication Number Publication Date
JPH0867901A true JPH0867901A (en) 1996-03-12

Family

ID=17028478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23832194A Pending JPH0867901A (en) 1994-08-26 1994-08-26 Alloy powder for conductive paste and its production

Country Status (1)

Country Link
JP (1) JPH0867901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519696A (en) * 2011-06-14 2014-08-14 パナソニック株式会社 Solar cell and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519696A (en) * 2011-06-14 2014-08-14 パナソニック株式会社 Solar cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2006109573A1 (en) Conductive filler and solder material
JP2008212976A (en) Joining member and joining method
JPH01192781A (en) Thick film copper conductor composition
JP7317397B2 (en) COPPER OXIDE PASTE AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT
KR102040280B1 (en) Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
JPS5848987A (en) Conductor composition for porcelain iron unit base
JPH0135914B2 (en)
JPH0867901A (en) Alloy powder for conductive paste and its production
JPS59224111A (en) Metal electrode powder used for producing monolithic ceramiccapacitor, method of producing same and method of producing monolithic capacitor
JPH07138676A (en) Alloy powder for conductive paste and its production
JP2795467B2 (en) Good adhesive metal paste
JPH05128910A (en) Conductor paste
JP2560865B2 (en) Gold alloy solder paste for semiconductor devices
JP4089368B2 (en) Conductive paste
JPH0259562B2 (en)
TWI789698B (en) Copper oxide paste and method for producing electronic parts
KR102401091B1 (en) Silver powder for conductive paste with improved elasticity and method for producing the same
JP7215334B2 (en) Method for producing lead ruthenate powder
JP3408598B2 (en) Metal powder composition for metallizing, metallized substrate and method for producing the same
JP2910415B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2899607B2 (en) Manufacturing method of chip type thermistor
JPH07173555A (en) Silver-tin oxide sintered electrical contact material excellent in melt sticking and wear resistance
JP2910414B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JPH05151818A (en) Conductor paste
JPH05128908A (en) Conductor paste