JPH07138601A - High cr alloy steel powder for wear resistant sintering material and its mixture - Google Patents

High cr alloy steel powder for wear resistant sintering material and its mixture

Info

Publication number
JPH07138601A
JPH07138601A JP5289569A JP28956993A JPH07138601A JP H07138601 A JPH07138601 A JP H07138601A JP 5289569 A JP5289569 A JP 5289569A JP 28956993 A JP28956993 A JP 28956993A JP H07138601 A JPH07138601 A JP H07138601A
Authority
JP
Japan
Prior art keywords
powder
less
steel powder
alloy steel
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5289569A
Other languages
Japanese (ja)
Inventor
Minoru Nitta
稔 新田
Eiji Hatsuya
栄治 初谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5289569A priority Critical patent/JPH07138601A/en
Publication of JPH07138601A publication Critical patent/JPH07138601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high Cr alloy steel powder capable of obtaining a high density and high hardness after sintering and excellent in compressibility. CONSTITUTION:This powder is a high Cr alloy steel powder of 5-30% Cr, and high compressibility is attained by controlling O, N, C, Si, Mn, and P to <=0.3%, <=0.3%, <=0.1%, <=0.1%, <=1.5%, and <=0.1% respectively. Further, graphite powder and iron-phosphorus powder are mixed and the resulting powder mixture is subjected to liquid phase sintering. By this method, the Cr alloy steel powder, useful for a sliding material for internal combustion engine, etc., can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関など摺動材と
して使用される耐摩耗焼結材用の高Cr合金鋼粉に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high Cr alloy steel powder for wear-resistant sintered materials used as sliding materials for internal combustion engines.

【0002】[0002]

【従来の技術】内燃機関のバブルロッカーアーム、カム
シャフト、タペットなどの摺動材は高面圧に対する耐摩
耗性が要求される。また、加工費、材料費の低減と軽量
化を図るため摺動部材に高Cr合金鋼粉の焼結材を使用す
る。この耐摩耗性の高Cr合金鋼粉焼結材は、Fe(Cr)-C系
またはFe(Cr)-P-C系の共晶反応による液相発生を利用し
た焼結で真密度または真密度近傍にまで緻密化し、Fe(C
r)-P-C系の共晶反応による液相発生を利用しCr炭化物や
ステダイトを析出・晶出させて高硬度化することによっ
て製造される。
2. Description of the Related Art A sliding material such as a bubble rocker arm, a cam shaft and a tappet of an internal combustion engine is required to have wear resistance against a high surface pressure. In addition, a sintered material of high Cr alloy steel powder is used for the sliding member in order to reduce processing cost, material cost and weight reduction. This wear-resistant high-Cr alloy steel powder sintered material is sintered at the true density or near the true density by sintering using the liquid phase generation by the eutectic reaction of Fe (Cr) -C system or Fe (Cr) -PC system. To Fe (C
r) -PC It is produced by precipitating and crystallizing Cr carbide and steadite by utilizing the liquid phase generation by eutectic reaction to increase the hardness.

【0003】原料粉末として、Cr源としてステンレス鋼
粉およびFe-Cr 鋼粉が用いられ、Fe(Cr)-C系またはFe(C
r)-P-C系の共晶反応による液相発生には、C 源として黒
鉛粉が用いられ、P 源としてFe-P( 鉄燐) 粉が用いられ
る。また、P とCrの共有源としてP 合金化ステンレス鋼
粉、またはFe-P粉混合ステンレス鋼粉が用いられる。こ
れらの各種粉末のうち、使用量比最大の主原料粉末はス
テンレス鋼粉、P 合金化ステンレス鋼粉、またはFe-P粉
混合ステンレス鋼粉であり、冷間金型成形が良好な水ア
トマイズ鋼粉を用いる。
As raw material powder, stainless steel powder and Fe-Cr steel powder are used as a Cr source, and Fe (Cr) -C system or Fe (C
For the liquid phase generation by the r) -PC eutectic reaction, graphite powder is used as the C source and Fe-P (iron phosphorus) powder is used as the P source. In addition, P alloyed stainless steel powder or Fe-P powder mixed stainless steel powder is used as a shared source of P and Cr. Of these various powders, the main raw material powder with the largest usage ratio is stainless steel powder, P-alloyed stainless steel powder, or Fe-P powder mixed stainless steel powder, which is a water atomized steel with good cold mold forming. Use flour.

【0004】従来、水アトマイズで製造する、ステンレ
ス鋼粉として特公昭59-1761 号公報および特公昭62-271
12号公報があり、P 合金化ステンレス鋼粉として特公平
2-13001 号公報があり、またFe-P粉混合ステンレス鋼粉
として特開平1-275703号公報が知られている。
Conventionally, as stainless steel powder produced by water atomizing, Japanese Patent Publication No. 59-1761 and Japanese Patent Publication No. 62-271.
Japanese Patent No. 12 has been published as a special alloy for P-alloyed stainless steel powder.
2-13001, and Japanese Patent Laid-Open No. 1-275703 is known as Fe-P powder mixed stainless steel powder.

【0005】[0005]

【発明が解決しようとする課題】特公昭59-1761 号公報
に記載の粉末冶金用ステンレス鋼粉末において、C:0.04
% 以下、Si:0.5〜1.5%、Mn:0.4% 以下、O:0.4%以下とす
る技術が開示されている。水アトマイズによるステンレ
ス鋼粉はステンレス鋼組成の溶鋼を水ジェットで噴霧す
る際に水の分解で生じるO2によって酸化される。そこで
Si含有量を通常のステンレス鋼より高くして、その高温
での酸化被膜作用により溶鋼の噴霧時の表面酸化を抑制
し、かつ高温酸化しやすいMn含有量を低くすることによ
り粉末の酸素量を粉末冶金用として使用可能な程度にま
で低くすることにあるとされている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the stainless steel powder for powder metallurgy described in Japanese Patent Publication No. 59-1761, C: 0.04
%, Si: 0.5 to 1.5%, Mn: 0.4% or less, and O: 0.4% or less are disclosed. The stainless steel powder produced by water atomization is oxidized by O 2 generated by the decomposition of water when molten steel having a stainless steel composition is sprayed with a water jet. Therefore
The Si content is higher than that of ordinary stainless steel, the surface oxidation at the time of spraying molten steel is suppressed by its oxide film action at high temperature, and the Mn content, which easily oxidizes at high temperature, is reduced to reduce the oxygen content of the powder. It is said that it should be made as low as possible for powder metallurgy.

【0006】そして、特公昭62-27112号公報に記載の高
Cr(11.0 〜31.0%)ステンレス鋼粉は、C およびN が残留
オーステナイトを固溶硬化することに着目して、上記技
術と同様にC を0.04% 以下、Siを0.5 〜1.5%または2%以
下、Mnを0.4%または0.6%以下とした上、さらにN を0.03
% 以下に限定して水アトマイズしたステンレス鋼粉であ
る。しかし、これらの技術をもってしても水アトマイズ
後の鋼粉はなお硬いため、圧縮性が十分でなく、ステン
レス鋼としての耐食性などの特性を得るに必要な焼結体
密度を得ることができなかった。
[0006] And, the high described in Japanese Patent Publication No. 62-27112
Cr (11.0 to 31.0%) stainless steel powder is similar to the above technology in that C and N solid-solution harden residual austenite, so that C is 0.04% or less and Si is 0.5 to 1.5% or 2% or less. , Mn is 0.4% or less than 0.6%, and N is 0.03
% Of water-atomized stainless steel powder. However, even with these techniques, the steel powder after water atomization is still hard, so the compressibility is not sufficient, and it is not possible to obtain the sintered body density necessary to obtain the characteristics such as corrosion resistance as stainless steel. It was

【0007】特開平1-275703号公報に記載の技術は、オ
ーステナイト系ステンレス鋼粉についてであり、Fe-P(
鉄燐) 微粉を混合することにより、低融点の液相焼結に
よる高密度化を意図したものである。C が0.03% 以下、
Siが1.5%以下( 下限量の記載がない) 、Mnが0.3%以下に
限定して、水アトマイズ時の酸化抑制と圧縮性の確保を
意図したものであるが、オーステナイト系ステンレス鋼
粉が硬いため、液相焼結材の緻密化と硬化が十分達せら
れなかった。
The technique described in Japanese Patent Application Laid-Open No. 1-275703 relates to austenitic stainless steel powder, and Fe-P (
Iron Phosphorus) By mixing fine powder, it is intended to achieve high density by liquid phase sintering with a low melting point. C is 0.03% or less,
Si is limited to 1.5% or less (the lower limit is not stated), Mn is limited to 0.3% or less, and it is intended to suppress oxidation and secure compressibility during water atomization, but austenitic stainless steel powder is hard Therefore, the densification and hardening of the liquid phase sintered material could not be sufficiently achieved.

【0008】特公平2-13001 号公報に記載の7.5 〜30.0
% Cr鋼に0.1 〜1.0%のP を合金化した鋼粉( ステンレス
鋼粉の1 種) は、水アトマイズしたままの状態の粉末で
は硬くて圧粉密度が低く、その液相焼結材は緻密化と硬
度が十分達成されないという問題がある。そこで、この
P が0.1 〜1.0%、Crが7.0 〜30.0% のP 含有水アトマイ
ズ鋼粉を、例えば非酸化性雰囲気( H2、N2、Ar、減圧真
空など)中で800 ℃以上の温度に加熱して脱酸、脱炭と
焼鈍をして、その圧縮性向上を図ろうとすると、P によ
る焼結が進んで粉末への粉砕が困難であるといった問題
を生ずる。
7.5 to 30.0 described in Japanese Patent Publication No. 2-13001
Steel powder (a kind of stainless steel powder) alloyed with 0.1 to 1.0% P in% Cr steel is hard and has a low green compact density in the as-water-atomized powder. There is a problem that densification and hardness are not sufficiently achieved. So this
P-containing water atomized steel powder with P of 0.1 to 1.0% and Cr of 7.0 to 30.0% is heated to a temperature of 800 ° C or more in a non-oxidizing atmosphere (H 2 , N 2 , Ar, vacuum vacuum, etc.). If deoxidation, decarburization, and annealing are performed to improve the compressibility, sintering with P proceeds and it becomes difficult to pulverize into powder.

【0009】したがって、このP が0.1 〜1.0%、Crが7.
0 〜30.0% のCr含有水アトマイズ鋼粉は、その溶鋼のC
量を0.02% 台にする溶解法として、低C 含Crステンレス
のスクラップを誘導電気炉で溶解する方法とか、溶鋼C
量が0.02% より多い場合は減圧真空またはAr雰囲気中で
脱炭する溶鋼処理方法が必要であるといった制約や問題
がある。また、溶鋼のSi量を0.6%以上にして水アトマイ
ズ時の酸化を抑制しなければならず、SiおよびP の固溶
硬化とMo、W 、V 、Nbなどの炭化物形成元素を合金化し
たときはそれらの元素の固溶硬化とで圧縮性が一層低下
するといった問題もある。
Therefore, P is 0.1 to 1.0% and Cr is 7.
The water atomized steel powder containing 0 to 30.0% Cr contains C of the molten steel.
As a melting method for adjusting the amount to the 0.02% level, a method of melting scrap of low C Cr-containing stainless steel in an induction electric furnace,
If the amount is more than 0.02%, there are restrictions and problems such as the need for a molten steel treatment method that decarburizes in a vacuum or Ar atmosphere. In addition, the amount of Si in the molten steel must be 0.6% or more to suppress the oxidation during water atomization, and when solid solution hardening of Si and P and alloying carbide forming elements such as Mo, W, V, and Nb are performed. There is also a problem that the solid solution hardening of these elements further lowers the compressibility.

【0010】本発明は、上記問題点を解決した、C が0.
1%以下、Siが0.1%以下、Mnが1.5%以下、Crが5 〜30% 、
P が0.1%以下、O が0.3%以下、N が0.3%以下および、さ
らに、Ni、Co、Cu、Zr、Ta、Nb、V 、W 、Moを合金化し
た高圧縮性の水アトマイズ高Cr合金鋼粉を提供すること
を目的とする。またさらに本発明は、焼結したときにFe
(Cr)-CまたはFe(Cr)-P-Cの液相を発生して十分な緻密化
と高硬度化を達成できるように、黒鉛粉または黒鉛粉と
Fe-P(鉄燐) 粉とを混合した高圧縮性の耐摩耗焼結材用
の水アトマイズ高Cr合金鋼粉の混合物を提供することを
目的とする。
The present invention solves the above-mentioned problems, and C is 0.
1% or less, Si 0.1% or less, Mn 1.5% or less, Cr 5-30%,
P is 0.1% or less, O is 0.3% or less, N is 0.3% or less, and Ni, Co, Cu, Zr, Ta, Nb, V, W, and Mo are highly alloyed and highly compressible water atomized high Cr. The purpose is to provide alloy steel powder. Still further, the present invention relates to Fe when sintered.
In order to generate a liquid phase of (Cr) -C or Fe (Cr) -PC and achieve sufficient densification and high hardness, graphite powder or graphite powder
An object of the present invention is to provide a mixture of water atomized high Cr alloy steel powder for a highly compressible wear-resistant sintered material mixed with Fe-P (iron phosphorus) powder.

【0011】またさらに本発明は、入手したまま成形で
きるように金属石鹸粉、樟脳粉およびワックスを混合し
た、黒鉛粉または黒鉛粉とFe-P( 鉄燐) 粉を配合してい
る高圧縮性の耐摩耗焼結材用の水アトマイズ高Cr合金鋼
粉の混合物を提供することを目的とする。
Furthermore, the present invention has a high compressibility in which graphite powder or graphite powder and Fe-P (iron-phosphorus) powder are mixed in which metal soap powder, camphor powder and wax are mixed so that they can be molded as they are obtained. An object of the present invention is to provide a mixture of water atomized high Cr alloy steel powders for wear-resistant sintered materials.

【0012】[0012]

【課題を解決するための手段】本発明は、Crが5 〜30%
の耐摩耗焼結材用高Cr合金鋼粉において、Siを0.1%以
下、Mnを1.5%以下、P を0.1%以下とし、焼鈍によりO を
0.3%以下、N を0.3%以下、C を0.1%以下とすることによ
り焼鈍時の焼結を防ぎ、圧縮性の向上を図るものであ
る。
According to the present invention, Cr is 5 to 30%.
In the high Cr alloy steel powder for wear-resistant sintered material, Si is 0.1% or less, Mn is 1.5% or less, P is 0.1% or less, and O 2 is annealed by annealing.
By setting 0.3% or less, N 3 to 0.3% or less, and C to 0.1% or less, sintering during annealing is prevented and the compressibility is improved.

【0013】また本発明は、Crが5 〜30% の耐摩耗焼結
材用高Cr合金鋼粉において、Siを0.1%以下、Mnを1.5%以
下、P を0.1%以下としてMnおよびSiなどの易酸化元素お
よびP のような固溶硬化元素の低減を図り、還元焼鈍に
よりO を0.3%以下、N を0.3%以下、C を0.1%以下として
C 、N などの強化元素を低減することによって、高Cr合
金鋼粉の圧縮性の向上を図るものである。
Further, the present invention is a high Cr alloy steel powder for wear-resistant sintered material having Cr of 5 to 30%, with Si of 0.1% or less, Mn of 1.5% or less, and P of 0.1% or less such as Mn and Si. In order to reduce the easily oxidizable elements and solid solution hardening elements such as P, the reduction annealing reduced O to 0.3% or less, N to 0.3% or less, and C to 0.1% or less.
By reducing the strengthening elements such as C and N, the compressibility of high Cr alloy steel powder is improved.

【0014】そして得られた圧縮性の優れた鋼粉に、黒
鉛粉またはFe-P( 鉄燐) 粉と黒鉛粉とを混合することに
より、焼結時にFe(Cr)-C系またはFe(Cr)-P-C系の共晶液
相を発生して緻密化し、Cr炭化物を析出・晶出させて焼
結体の高硬度化を図るものである。またさらに本発明
は、Crが5 〜30% の耐摩耗焼結材用高Cr合金鋼粉におい
て、Ni、Co、Cuは液相焼結時に緻密化を促進し、Mn、V
、Ti、Mo、Zr、Ta、Nbはそれらの炭化物を析出・晶出
させて一層の高硬度化を図るものである。
Then, by mixing graphite powder or Fe-P (iron-phosphorus) powder and graphite powder with the obtained steel powder having excellent compressibility, an Fe (Cr) -C system or Fe ( A Cr) -PC eutectic liquid phase is generated to densify it, and Cr carbide is precipitated and crystallized to increase the hardness of the sintered body. Furthermore, the present invention is a high Cr alloy steel powder for wear-resistant sintered material, in which Cr is 5 to 30%, Ni, Co and Cu promote densification during liquid phase sintering, and Mn and V
, Ti, Mo, Zr, Ta and Nb are intended to further harden by precipitating and crystallizing their carbides.

【0015】さらにまた本発明は、溶鋼精錬─水アトマ
イズ─還元焼鈍─成形─焼結といった一連の各工程につ
いて得られた、以下に記載の知見に基づいている。本発
明は、高Cr溶鋼においても、0.1%以上のC を含有させた
溶鋼はSi合金量を0.1%以下にしても、Crを初めとするM
n、V 、Ti、Mo、Zr、Ta、Nbなどの易酸化元素の酸化物
の析出を防止でき、その酸化物が溶鋼ノズルを閉塞する
ことがなく水アトマイズできる、という知見にもとづい
ている。
Furthermore, the present invention is based on the findings described below obtained for each of a series of steps of molten steel refining-water atomizing-reduction annealing-forming-sintering. The present invention, even in high Cr molten steel, the molten steel containing 0.1% or more of C, even if the Si alloy content is 0.1% or less, Cr and other M
It is based on the knowledge that oxides of easily oxidizable elements such as n, V, Ti, Mo, Zr, Ta and Nb can be prevented from precipitating and the oxides can be water atomized without blocking the molten steel nozzle.

【0016】また本発明は、水アトマイズしたままの状
態の鋼粉は、溶鋼が水アトマイズ時に水の分解で発生す
るO2ガスで酸化して酸化膜で覆われるが、非酸化性雰囲
気(H2、N2、Ar、減圧真空など)中で800 ℃以上の温度
に加熱することにより、予め溶鋼に含有させたC でCOガ
スとして脱酸できるという知見に基づいている。また本
発明は、Siを0.1%以下、P を0.1%以下とし、C 、Si、M
n、V 、Ti、Mo、Zr、Ta、Nbなどを合金化した高Crの水
アトマイズのままの鋼粉を非酸化性雰囲気( H2、N2、A
r、減圧真空など)中で800 ℃以上の温度に加熱して脱
酸、脱炭および焼鈍し、、C を0.1%以下とすることによ
り圧縮性の良好な高Cr合金鋼粉を製造できるという知見
に基づいている。
Further, according to the present invention, the steel powder in the state of being atomized with water is covered with an oxide film by oxidizing the molten steel with O 2 gas generated by decomposition of water at the time of atomizing water, but the non-oxidizing atmosphere (H It is based on the knowledge that C, which is contained in molten steel in advance, can be deoxidized as CO gas by heating to a temperature of 800 ° C. or higher in ( 2 , N 2 , Ar, reduced pressure vacuum, etc.). Further, the present invention, Si is 0.1% or less, P is 0.1% or less, C, Si, M
n, V, Ti, Mo, Zr, Ta, Nb, and other alloyed high-Cr water-atomized steel powder in a non-oxidizing atmosphere (H 2 , N 2 , A
It is said that high Cr alloy steel powder with good compressibility can be produced by heating to a temperature of 800 ° C or higher (in a vacuum, vacuum, etc.) to deoxidize, decarburize, and anneal, and make C 0.1% or less. Based on knowledge.

【0017】また本発明は、高Cr合金鋼粉において、Si
を0.1%以下、P を0.1%以下とし、焼鈍によりC を0.1%以
下としているために、75μm 以下でかつ45μm 以下が60
% 以上の粒径のFe-P( 鉄燐) 粉と黒鉛粉とを混合しても
高圧縮性を維持できるという知見に基づいている。すな
わち本発明は、重量% で、C が0.1%以下、Siが0.1%以
下、Mnが1.5%以下、Crが5 〜30% 、P が0.1%以下、O が
0.3%以下、N が0.3%以下および残部がFeと不可避的不純
物であることを特徴とする耐摩耗材用高Cr合金鋼粉であ
り、また本発明は、重量% で、NiおよびCoの1 種または
2 種の合計が5%以下を含むことを特徴とする上記の耐摩
耗焼結材用高Cr合金鋼粉であり、また本発明は、重量%
で、Cuが5%以下を含むこと特徴とする上記のいずれかの
耐摩耗焼結材用高Cr合金鋼粉であり、また本発明は、重
量% で、Zr、Ta、Nb、Ti、V 、W 、Moの1 種または2 種
以上の合計が10% 以下を含むことを特徴とする耐摩耗焼
結材用高Cr合金鋼粉であり、また本発明は、上記いずれ
かの鋼粉に粒径が75μm 以下でかつ45μm 以下が60% 以
上の鉄燐粉をP 分量として重量% で0.3 〜1.5%混合した
ことを特徴とす耐摩耗焼結材用高Cr合金鋼粉の混合物で
あり、また本発明は、上記のいずれかの鋼粉に黒鉛粉を
C 分量として重量% で1 〜3.5%混合したことを特徴とす
る耐摩耗焼結材用高Cr合金鋼粉の混合物であり、また本
発明は、上記のいずれかの鋼粉に金属石鹸粉、樟脳粉お
よびワックスの1 種または2 種以上の合計が重量% で0.
3 〜2%混合したことを特徴とする耐摩耗焼結材用高Cr合
金鋼粉の混合物である。
The present invention also provides a high Cr alloy steel powder containing Si
Is less than 0.1%, P is less than 0.1%, and C is less than 0.1% by annealing.
It is based on the finding that high compressibility can be maintained even if Fe-P (iron-phosphorus) powder having a particle size of not less than 10% and graphite powder are mixed. That is, the present invention is, by weight%, C is 0.1% or less, Si is 0.1% or less, Mn is 1.5% or less, Cr is 5 to 30%, P is 0.1% or less, and O is
A high Cr alloy steel powder for wear-resistant materials, characterized in that it is 0.3% or less, N is 0.3% or less, and the balance is Fe and unavoidable impurities.The present invention is also one of Ni and Co in weight%. Or
A high Cr alloy steel powder for wear-resistant sintered material as described above, characterized in that the total of the two types contains 5% or less, and the present invention is
In addition, Cu is a high Cr alloy steel powder for wear-resistant sintered materials, characterized in that Cu contains 5% or less, and the present invention, in% by weight, Zr, Ta, Nb, Ti, V , W, Mo is a high Cr alloy steel powder for wear-resistant sintered materials, characterized in that the total of one or more of W, Mo is 10% or less. This is a mixture of high Cr alloy steel powders for wear-resistant sintered materials, characterized in that iron-phosphorus powders having a particle size of 75 μm or less and 45 μm or less and 60% or more were mixed by 0.3 to 1.5% by weight as P content. In addition, the present invention, graphite powder to any of the above steel powder
The amount of C is 1 to 3.5% by weight of 1 to 3.5% is a mixture of high Cr alloy steel powder for wear-resistant sintered material, the present invention is also one of the above steel powder metal soap powder, One or two or more of camphor powder and wax is 0% by weight.
It is a mixture of high Cr alloy steel powder for wear-resistant sintered material, characterized by being mixed in an amount of 3 to 2%.

【0018】[0018]

【作用】つぎに本発明の耐摩耗焼結材用高Cr合金鋼粉の
限定理由について述べる。 O:0.3%以下 0.3%を超えると、133 ×10-3Paの真空雰囲気中において
1050から1250℃の温度でのFe(Cr)-C系またはFe(Cr)-P-C
系の共晶反応による液相焼結を行っても液相が濡れ難い
酸化物を生じてその周りに空孔が残留し、焼結材の硬度
が低下するので0.3%以下とする。 N:0.3%以下 0.3%を超えると鋼粉を固溶硬化させ、圧縮性を低下させ
るので0.3%以下とする。 C:0.1%以下 0.1%を超えると鋼粉を固溶硬化させ、圧縮性を低下させ
るので0.1%以下とする。 Si:0.1% 以下 0.1%を超えると鋼粉を固溶硬化させ、圧縮性が低下する
ことのほか、133 ×10 -3Paの真空雰囲気中において、10
50から1250℃の温度でのFe(Cr)-C系またはFe(Cr)-P-C系
の共晶反応による液相焼結を行っても液相が濡れ難い酸
化物とその周りに空孔が残留し、焼結材の硬度が低下す
るので0.1%以下とする。 Mn:1.5% 以下 1.5%を超えると鋼粉を固溶硬化させ圧縮性を低下させる
ことのほか、133 ×10 -3Paの真空雰囲気中において、10
50から1250℃の間の温度でのFe(Cr)-C系またはFe(Cr)-P
-C系の共晶反応による液相焼結を行っても液相が濡れ難
い酸化物とその周りに空孔が残留し、焼結材の硬度が低
下するので1.5%以下とする。 P:0.1%以下 0.1%を超えると鋼粉を固溶硬化させて圧縮性を低下さ
せ、焼結材の残留空孔が多くなって焼結材の硬度が低下
するので0.1%以下とする。
[Function] Next, the high Cr alloy steel powder for wear resistant sintered material of the present invention
The reason for limitation will be described. O: 0.3% or less When 0.3% is exceeded, 133 x 10-3In a vacuum atmosphere of Pa
Fe (Cr) -C system or Fe (Cr) -P-C at temperature from 1050 to 1250 ℃
Liquid phase is difficult to wet even if liquid phase sintering is performed by eutectic reaction of the system
Hardness of the sintered material due to the generation of oxides and residual holes around them.
Is less than 0.3%. N: 0.3% or less When it exceeds 0.3%, the steel powder is solid-solution hardened and the compressibility is lowered.
Therefore, it should be 0.3% or less. C: 0.1% or less When it exceeds 0.1%, the steel powder is solid-solution hardened to reduce the compressibility.
Therefore, it should be 0.1% or less. Si: 0.1% or less If over 0.1%, the steel powder is solid-solution hardened, and the compressibility decreases.
Besides, 133 x 10 -3In a vacuum atmosphere of Pa, 10
Fe (Cr) -C system or Fe (Cr) -P-C system at temperatures from 50 to 1250 ℃
Acid which is hard to wet the liquid phase even if liquid phase sintering by eutectic reaction of
Compound and voids around it reduce the hardness of the sintered material.
Therefore, it should be 0.1% or less. Mn: 1.5% or less If it exceeds 1.5%, the steel powder undergoes solid solution hardening to reduce the compressibility.
Besides, 133 x 10 -3In a vacuum atmosphere of Pa, 10
Fe (Cr) -C system or Fe (Cr) -P at temperatures between 50 and 1250 ° C
-Liquid phase is difficult to wet even if liquid phase sintering is performed by eutectic reaction of C system
The hardness of the sintered material is low due to the residual oxides and holes around them.
Since it will be lowered, it should be 1.5% or less. P: 0.1% or less When it exceeds 0.1%, the steel powder is solid-solution hardened and the compressibility is reduced.
As a result, the residual pores in the sintered material increase and the hardness of the sintered material decreases.
Therefore, it should be 0.1% or less.

【0019】このほかに、P が0.1%を超えると水アトマ
イズしたままのCrが5 〜30% の耐摩耗焼結材用高Cr合金
鋼粉の焼鈍したケーキの粉砕を困難にし、また溶解精錬
炉、取鍋およびタンディッシュの炉壁の耐火材、スラグ
およびノロに残留して次の溶鋼を汚染するので0.1%以下
が好ましい。 Cr:5〜30% Fe(Cr)-C系またはFe(Cr)-P-C系の共晶反応による液相焼
結で、Cr炭化物を析出・晶出させて耐摩耗材として有用
な HRCで50以上の硬度を確保するために5%以上添加する
必要がある。しかし多すぎると鋼粉が固溶硬化とσ相析
出硬化により圧縮性が低下し、焼結材の残留空孔が多く
なって硬度が低下するので30% 以下に限定する。 Ni、Coのうちの1 種または2 種の合計が5%以下 Fe(Cr)-C系またはFe(Cr)-P-C系の共晶反応による液相焼
結で、緻密化を促進して焼結体密度を向上させるが、多
すぎると鋼粉が固溶硬化し、かえって圧縮性が低下し、
焼結材の残留空孔が多くなって硬度が低下するので5%以
下とする。 Cu:5% 以下 Fe(Cr)-C系またはFe(Cr)-P-C系の共晶反応による液相焼
結で、緻密化を促進して焼結体密度を向上させ、微細析
出して焼結材の硬度を向上させるが、多すぎると鋼粉が
固溶硬化し、かえって圧縮性が低下し、焼結材の残留空
孔が多くなって硬度が低下するので5%以下とする。 Zr、Ta、Nb、Ti、V 、W 、Moの1 種または2 種以上の合
計: 10% 以下 Fe(Cr)-C系またはFe(Cr)-P-C系の共晶反応による液相焼
結で、Crより炭化物生成傾向が強いためこれらの元素の
炭化物を生成して焼結材の硬度を一段と向上させるが、
多すぎると鋼粉が固溶硬化し、かえって圧縮性が低下
し、焼結材の残留空孔が多くなって硬度が低下するので
10% 以下とする。 鉄燐粉の粒径:75 μm 以下で45μm 以下が60% 以上 混合する鉄燐粉の粒径が粗大すぎると圧粉密度が低下
し、Fe(Cr)-P-C系の共晶反応による液相焼結で粗大空孔
を残留させるので、75μm 以下で45μm 以下が60% 以上
の粉末を使用する必要がある。 鉄燐粉の添加量: P 分量で0.3 〜1.5% 焼結時にFe(Cr)-P-C系の共晶反応による液相焼結により
緻密化を促進して焼結体の密度と硬度を向上させるため
には、P 分量で0.3%以上添加する必要がある。しかしP
を過剰に添加しても圧縮性が低下し、焼結材の残留空孔
が多くなって硬度が低下するのでP 分量で1.5%以下に限
定する。 黒鉛粉: C 分量で1 〜3.5% Fe(Cr)-C系またはFe(Cr)-P-C系の共晶反応による液相焼
結で、緻密化を促進して焼結体密度を向上させ、かつCr
炭化物を析出・晶出させて耐摩耗材として有用なH RC
50以上の硬度を確保するためには、C 分量で1%以上添加
する必要がある。しかしC を過剰に添加しても圧縮性が
低下し、焼結材の残留空孔が多くなって硬度が低下する
のでC 分量で3.5%以下に限定する。 金属石鹸粉、樟脳およびワックス:1種または2 種の合計
が0.3 〜1.5% 黒鉛粉をC 分量で1 〜3.5%混合または黒鉛粉をC 分量で
1 〜3.5%と鉄燐粉をP分量で0.3 〜1.5%混合したCrを5
〜30% 含む耐摩耗焼結材用高Cr鋼粉は、金型成形での圧
縮性を確保するために0.3%以上の金属石鹸粉、樟脳粉お
よびワックスが必要である。しかし過剰に混合しすぎる
と圧縮性が低下し、焼結材の残留空孔が多くなって硬度
が低下するので1.5%以下に限定する。
In addition, if P exceeds 0.1%, it becomes difficult to crush the cake of annealed cake of high Cr alloy steel powder for wear-resistant sintered material with 5 to 30% of Cr in the water atomized state, and it is also melt-refined. 0.1% or less is preferable because it remains in the refractory material, slag and slag of the furnace wall of the furnace, ladle and tundish and contaminates the next molten steel. Cr: at 5~30% Fe (Cr) -C system or Fe (Cr) -PC-based eutectic liquid phase sintering by reaction, by out precipitation and crystallization of Cr carbides useful H RC as wear resistant material 50 In order to secure the above hardness, it is necessary to add 5% or more. However, if the content is too large, the compressibility decreases due to solid solution hardening and σ-phase precipitation hardening of the steel powder, and the residual pores in the sintered material increase and the hardness decreases, so the content is limited to 30% or less. The total of one or two of Ni and Co is 5% or less. Liquid phase sintering by eutectic reaction of Fe (Cr) -C system or Fe (Cr) -PC system promotes densification and sintering. Improves the solid density, but if it is too large, the steel powder will undergo solid solution hardening, which in turn reduces the compressibility,
Since the residual pores of the sintered material increase and the hardness decreases, it is set to 5% or less. Cu: 5% or less Liquid phase sintering by Fe (Cr) -C system or Fe (Cr) -PC system eutectic reaction promotes densification to improve the density of the sintered body, and fine precipitation and firing Although the hardness of the binder is improved, if it is too much, the steel powder is solid-solution hardened, rather the compressibility is lowered, the residual pores of the sintered material are increased, and the hardness is lowered. Total of 1 or 2 or more of Zr, Ta, Nb, Ti, V, W and Mo: 10% or less Liquid phase sintering by Fe (Cr) -C system or Fe (Cr) -PC system eutectic reaction However, since the carbide formation tendency is stronger than Cr, carbides of these elements are generated to further improve the hardness of the sintered material.
If it is too large, the steel powder will undergo solid solution hardening, which will rather reduce the compressibility, and the residual pores in the sintered material will increase, decreasing the hardness.
10% or less. Iron Phosphorus powder particle size: 75 μm or less and 45 μm or less 60% or more If the particle size of the iron phosphorus powder to be mixed is too coarse, the green density decreases and the liquid phase due to the eutectic reaction of the Fe (Cr) -PC system Since coarse pores remain by sintering, it is necessary to use powder of 75 μm or less and 45 μm or less of 60% or more. Addition amount of iron-phosphorus powder: 0.3 to 1.5% in P content During sintering, liquid phase sintering by eutectic reaction of Fe (Cr) -PC system promotes densification and improves density and hardness of sintered body Therefore, it is necessary to add 0.3% or more of P content. But P
If P is added excessively, the compressibility will decrease, the residual voids in the sintered material will increase, and the hardness will decrease, so the P content is limited to 1.5% or less. Graphite powder: 1-3.5% in C content Liquid phase sintering by eutectic reaction of Fe (Cr) -C system or Fe (Cr) -PC system to promote densification and improve sintered body density, And Cr
With H RC, which is useful as a wear resistant material by precipitating and crystallizing carbide
In order to secure a hardness of 50 or more, it is necessary to add C in an amount of 1% or more. However, even if C is added excessively, the compressibility decreases, the residual pores in the sintered material increase, and the hardness decreases, so the C content is limited to 3.5% or less. Metal soap powder, camphor and wax: 1 or 2 total 0.3-1.5% graphite powder in C content 1-3.5% mixed or graphite powder in C content
1-3.5% and iron-phosphorus powder in a P content of 0.3-1.5% are mixed in 5% Cr.
High Cr steel powder for wear-resistant sintered material containing ~ 30% requires 0.3% or more of metal soap powder, camphor powder and wax to secure compressibility in mold forming. However, if the mixture is excessively mixed, the compressibility deteriorates, the residual pores in the sintered material increase, and the hardness decreases, so the content is limited to 1.5% or less.

【0020】[0020]

【実施例】本発明の耐摩耗焼結材用高Cr合金鋼粉につい
て実施例により以下に説明する。 実施例1 溶鋼を水アトマイズし、減圧真空中で還元焼鈍して製造
した高Cr合金鋼粉の製造条件を表1に示す。また、製造
した高Cr合金鋼粉の化学組成を表2に示す。
EXAMPLES The high Cr alloy steel powder for wear-resistant sintered material of the present invention will be described below with reference to examples. Example 1 Table 1 shows the production conditions of high Cr alloy steel powder produced by atomizing molten steel with water and performing reduction annealing in a reduced pressure vacuum. Table 2 shows the chemical composition of the produced high Cr alloy steel powder.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】表2に示した化学組成の各高Cr合金鋼粉を
用い、C 分量で2.5%の天然黒鉛粉と、潤滑剤としてステ
アリン酸亜鉛粉を1%混合し、JSPM 1─64にもとづいて49
0MPaで測定した圧粉密度、その圧粉体の焼結後の中央C
方向断面を画像解析して測定した空孔面積率および硬度
を表3に示す。なお、焼結は133 ×10-3Paの減圧真空中
で1230℃の温度に加熱し0.5 時間保持した。
Using each high Cr alloy steel powder having the chemical composition shown in Table 2, 2.5% natural graphite powder by C content and 1% zinc stearate powder as a lubricant were mixed, and based on JSPM 1-64. 49
Compact density measured at 0 MPa, center C after sintering of the compact
Table 3 shows the void area ratio and hardness measured by image analysis of the directional cross section. The sintering was performed by heating to a temperature of 1230 ° C. in a vacuum of 133 × 10 −3 Pa and holding for 0.5 hour.

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】実施例2 表2に示した化学組成の各高Cr合金鋼粉を用い、C 分量
で2.5%の天然黒鉛粉と、P 分量で0.6%の粒径が75μm 以
下で45μm 以下が90% 以上のFe3P粉と、潤滑剤としてス
テアリン酸亜鉛粉を1%混合し、JSPM 1─64にもとづいて
490MPaで測定した圧粉密度、その焼結後の中央C 方向断
面を画像解析して測定した空孔面積率および硬度を表4
に示す。なお、焼結は133 ×10-3Paの減圧真空中で1150
℃の温度に加熱し0.5 時間保持して行った。
Example 2 Using each high Cr alloy steel powder having the chemical composition shown in Table 2, 2.5% natural graphite powder in C content and 0.6% P content in particle size of 75 μm or less and 45 μm or less were 90% or less. % Fe 3 P powder and 1% zinc stearate powder as a lubricant, and based on JSPM 1-64.
Table 4 shows the powder density measured at 490MPa, and the void area ratio and hardness measured by image analysis of the cross section in the central C direction after sintering.
Shown in. The sintering was 1150 in a vacuum of 133 × 10 -3 Pa.
It was heated to a temperature of ℃ and held for 0.5 hour.

【0029】[0029]

【表7】 [Table 7]

【0030】[0030]

【表8】 [Table 8]

【0031】表3および表4の結果から明らかなよう
に、圧縮性が高い高Cr合金鋼粉は、Fe(Cr)-C系またはFe
(Cr)-P-C系の共晶反応による液相焼結材の残留空孔が少
なく、硬度も高い傾向を示すが、耐摩耗材として有用な
H RCで50以上の硬度を確保するためには、高Cr合金鋼粉
のO は0.3%以下、N は0.3%以下、C は0.1%以下、Siは0.
1%以下、Mnは1.5%以下、P は0.1%以下、Crは5 〜30% で
あることが必要である。
As is clear from the results shown in Tables 3 and 4, the high-Cr alloy steel powder having high compressibility is Fe (Cr) -C system or Fe.
(Cr) -PC-based eutectic reaction, liquid phase sintered material has few residual pores and tends to have high hardness, but it is useful as a wear resistant material.
In order to secure hardness of 50 or more in H RC , O of high Cr alloy steel powder is 0.3% or less, N is 0.3% or less, C is 0.1% or less, and Si is 0.
It is necessary that 1% or less, Mn is 1.5% or less, P is 0.1% or less, and Cr is 5 to 30%.

【0032】また Ni およびCoの1 種または2 種の合計
が5%以下、Cuが5%以下、Zr、Ta、Nb、Ti、V 、W 、Moの
1 種または2 種以上の合計が10% 以下のときこれらの合
金組成の組み合わせにおいて、それらの液相焼結材は耐
摩耗焼結材として有用なH RCで50以上の硬度を確保でき
る。 実施例3 表2No.3の本発明の組成条件を満足するO:0.15% 、N:0.
04% 、C :0.01%、Si:0.07%、Mn:0.15%、P:0.01% 、S:0.
01% 、Cr:8.5% の化学組成の高Cr合金鋼粉を用い、Fe3P
粉のP 分量、Fe3P粉の粒度、天然黒鉛粉のC 分量、潤滑
剤としてのステアリン酸亜鉛(ZnSt)粉量、樟脳量および
ワックス量をそれぞれ変えて混合し、JSPM 1─64にもと
づいて490MPaで測定した圧粉密度、その焼結後の中央C
方向断面を画像解析して測定した空孔面積率および硬度
を表 5に示す。なお、焼結は133×10-3Paの減圧真空中
で1150℃の温度に加熱し0.5 時間保持した。
Further, the total of one or two of Ni and Co is 5% or less, Cu is 5% or less, and Zr, Ta, Nb, Ti, V, W and Mo are less than 5%.
When the total of one kind or two kinds or more is 10% or less, in the combination of these alloy compositions, those liquid phase sintered materials can secure a hardness of 50 or more in H RC useful as a wear resistant sintered material. Example 3 O: 0.15%, N: 0, which satisfies the composition conditions of the present invention in Table 2 No. 3
04%, C: 0.01%, Si: 0.07%, Mn: 0.15%, P: 0.01%, S: 0.
Fe 3 P with high Cr alloy steel powder with a chemical composition of 01% and Cr: 8.5%
P content of powder, particle size of Fe 3 P powder, C content of natural graphite powder, zinc stearate (ZnSt) powder as lubricant, camphor and wax, and mixed according to JSPM 1-64. Dust density measured at 490 MPa and center C after sintering
Table 5 shows the void area ratio and hardness measured by image analysis of the cross section. The sintering was performed by heating to a temperature of 1150 ° C. in a vacuum of 133 × 10 −3 Pa and holding for 0.5 hour.

【0033】[0033]

【表9】 [Table 9]

【0034】[0034]

【表10】 [Table 10]

【0035】表5の結果から明らかなように、75μm 以
下で45μm 以下が90% の粒径のFe3P粉をP 分量で0.3 〜
1.5%混合したとき、また、Fe3P粉において75μm 以下で
45μm 以下が60% 以上の粒度を混合したとき、また、黒
鉛粉をC 分量で1 〜3.5%混合したとき、また、潤滑剤と
してステアリン酸亜鉛粉、樟脳粉およびワックスの1種
または2 種の合計を0.3 〜2%混合したとき、それぞれに
ついて本発明の高Cr合金鋼粉は、そのFe(Cr)-P-C系の液
相焼結材が耐摩耗焼結剤として有用なH RCで50以上の硬
度を確保できる。
As is clear from the results shown in Table 5, Fe 3 P powder having a particle size of 75% or less and 45% or less 90% is 90% by P content.
When mixed with 1.5%, and in Fe 3 P powder at 75 μm or less
When 45 μm or less is mixed with a particle size of 60% or more, and when graphite powder is mixed in a C content of 1 to 3.5%, and as a lubricant, one or two of zinc stearate powder, camphor powder and wax is mixed. When a total of 0.3 to 2% is mixed, for each of the high Cr alloy steel powders, the Fe (Cr) -PC liquid phase sintered material is 50 or more in H RC which is useful as an abrasion resistant sintering agent. The hardness of can be secured.

【0036】実施例4 表6に示す化学組成の本発明の高Cr合金鋼粉を実施例1
に記載した条件で製造し、本発明条件でFe3P粉、黒鉛粉
および潤滑剤( ステアリン酸亜鉛粉、樟脳粉およびワッ
クスを当分重量配合) を混合した。
Example 4 The high Cr alloy steel powder of the present invention having the chemical composition shown in Table 6 was used in Example 1
The Fe 3 P powder, the graphite powder and the lubricant (zinc stearate powder, camphor powder and wax for the present weight ratio) were mixed under the conditions of the present invention.

【0037】[0037]

【表11】 [Table 11]

【0038】JSPM 1─64にもとづいて490MPaで測定した
圧粉密度、その焼結後の中央C 方向断面を画像解析して
測定した空孔面積率および硬度を表 7に示す。
Table 7 shows the green compact density measured at 490 MPa based on JSPM 1-64, and the void area ratio and hardness measured by image analysis of the cross section in the central C direction after sintering.

【0039】[0039]

【表12】 [Table 12]

【0040】なお、焼結は133 ×10-3Paの減圧真空中で
1150℃の温度に加熱し0.5 時間保持した。表7の結果か
ら明らかなように、本発明の高Cr合金鋼粉はすべて圧縮
性が良好であり、そのFe(Cr)-P-C系の液相焼結材は耐摩
耗焼結剤として優れるH RCで50以上の硬度を示す。
Sintering was carried out in a vacuum of 133 × 10 -3 Pa under reduced pressure.
It was heated to a temperature of 1150 ° C and kept for 0.5 hour. As is clear from the results in Table 7, all of the high Cr alloy steel powders of the present invention have good compressibility, and the Fe (Cr) -PC system liquid phase sintered material is excellent as an abrasion resistant sintering agent. RC shows hardness of 50 or more.

【0041】[0041]

【発明の効果】本発明は、水アトマイズしたCrを5 〜30
% 含むCr合金鋼粉を焼鈍し、O を0.30% 以下、N を0.3%
以下、C を0.1%以下、Siを0.1%以下、Mnを1.5%以下、P
を0.1%以下にしたから高圧縮性であり、Ni、CoおよびCu
の焼結促進元素を高含有量に合金化できるばかりでな
く、Zr、Ta、Nb、Ti、V 、W およびMoの炭化物生成元素
も高含有量で合金化できるようになった。
INDUSTRIAL APPLICABILITY The present invention provides water atomized Cr in an amount of 5 to 30.
Cr alloy steel powder containing 50% is annealed, O is 0.30% or less, N is 0.3%
Below, C is 0.1% or less, Si is 0.1% or less, Mn is 1.5% or less, P
Is less than 0.1%, it is highly compressible, and Ni, Co and Cu
In addition to being able to alloy a high content of the sinter-promoting element, the alloying elements of Zr, Ta, Nb, Ti, V, W and Mo can be alloyed in a high content.

【0042】また本発明の高Cr合金鋼粉は圧縮性が良好
なので、粗い粒度の鉄燐(Fe-P)粉を使用して、黒鉛粉と
を混合して液相焼結しても残留空孔が少ない高硬度の耐
摩耗焼結材を製造できる。また、本発明の高Cr合金鋼粉
は鉄燐(Fe-P)粉、黒鉛粉および潤滑剤粉を配合している
ので入手のまま直ちに成形できる。
Further, since the high Cr alloy steel powder of the present invention has good compressibility, iron-phosphorus (Fe-P) powder having a coarse grain size is used, and remains even when mixed with graphite powder and liquid phase sintered. A high-hardness wear-resistant sintered material with few pores can be manufactured. Further, since the high Cr alloy steel powder of the present invention contains iron-phosphorus (Fe-P) powder, graphite powder and lubricant powder, it can be immediately molded as it is obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量% で、C が0.1%以下、Siが0.1%以
下、Mnが1.5%以下、Crが5 〜30% 、P が0.1%以下、O が
0.3%以下、N が0.3%以下および残部がFeと不可避的不純
物であることを特徴とする耐摩耗焼結材用高Cr合金鋼
粉。
1. By weight%, C is 0.1% or less, Si is 0.1% or less, Mn is 1.5% or less, Cr is 5 to 30%, P is 0.1% or less, and O is
High Cr alloy steel powder for wear-resistant sintered materials, characterized in that it is 0.3% or less, N 3 is 0.3% or less, and the balance is Fe and inevitable impurities.
【請求項2】 重量% で、NiおよびCoの1 種または2 種
の合計が5%以下を含むことを特徴とする請求項1 記載の
耐摩耗焼結材用高Cr合金鋼粉。
2. The high Cr alloy steel powder for wear-resistant sintered material according to claim 1, characterized in that the total content of one or two of Ni and Co is 5% or less by weight.
【請求項3】 重量% で、Cuを5%以下を含むこと特徴と
する請求項1 および請求項2 のいずれかに記載の耐摩耗
焼結材用高Cr合金鋼粉。
3. The high Cr alloy steel powder for wear-resistant sintered material according to claim 1, wherein the content of Cu is 5% or less by weight.
【請求項4】 重量% で、Zr、Ta、Nb、Ti、V 、W 、Mo
の1 種または2 種以上の合計が10% 以下を含むことを特
徴とする請求項1 、2 、3 のいずれかに記載の耐摩耗焼
結材用高Cr合金鋼粉。
4. Zr, Ta, Nb, Ti, V, W, Mo in wt%
4. The high Cr alloy steel powder for wear-resistant sintered material according to claim 1, wherein the total of one kind or two kinds or more of 10% or less is contained.
【請求項5】 請求項1 、2 、3 、4 のいずれかに記載
の鋼粉に、粒径が75μm 以下でかつ45μm 以下が60% 以
上の鉄燐粉をP 分量として重量% で0.3 〜1.5%混合した
ことを特徴とする耐摩耗焼結材用高Cr合金鋼粉の混合
物。
5. The iron powder having a particle size of 75 μm or less and 45 μm or less and 60% or more in the steel powder according to any one of claims 1, 2, 3, and 4 is 0.3% by weight as a P content. A mixture of high Cr alloy steel powder for wear-resistant sintered materials, characterized by being mixed at 1.5%.
【請求項6】 請求項1 、2 、3 、4 のいずれかに記載
の鋼粉または請求項5 に記載の混合物に、黒鉛粉をC 分
量として重量% で1 〜3.5%混合したことを特徴とする耐
摩耗焼結材用高Cr合金鋼粉の混合物。
6. The steel powder according to any one of claims 1, 2, 3 and 4 or the mixture according to claim 5, wherein 1 to 3.5% by weight of graphite powder as a C content is mixed. A mixture of high Cr alloy steel powder for wear-resistant sintered materials.
【請求項7】 請求項1 、2 、3 、4 のいずれかに記載
の鋼粉または請求項5 または6 記載の混合物に、金属石
鹸粉、樟脳粉およびワックスの1 種または2種以上の合
計が重量% で0.3 〜2%混合したことを特徴とする耐摩耗
焼結材用高Cr合金鋼粉の混合物。
7. The steel powder according to claim 1, 2, 3, or 4 or the mixture according to claim 5 or 6, and a total of one or more of metal soap powder, camphor powder and wax. Is a mixture of high Cr alloy steel powder for wear-resistant sintered materials, characterized by being mixed by 0.3 to 2% by weight.
JP5289569A 1993-11-18 1993-11-18 High cr alloy steel powder for wear resistant sintering material and its mixture Pending JPH07138601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5289569A JPH07138601A (en) 1993-11-18 1993-11-18 High cr alloy steel powder for wear resistant sintering material and its mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5289569A JPH07138601A (en) 1993-11-18 1993-11-18 High cr alloy steel powder for wear resistant sintering material and its mixture

Publications (1)

Publication Number Publication Date
JPH07138601A true JPH07138601A (en) 1995-05-30

Family

ID=17744932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5289569A Pending JPH07138601A (en) 1993-11-18 1993-11-18 High cr alloy steel powder for wear resistant sintering material and its mixture

Country Status (1)

Country Link
JP (1) JPH07138601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075951A1 (en) * 1999-06-04 2000-12-14 Matsushita Electric Industrial Co., Ltd. Gas discharge display and method for producing the same
US7045962B1 (en) 1999-01-22 2006-05-16 Matsushita Electric Industrial Co., Ltd. Gas discharge panel with electrodes comprising protrusions, gas discharge device, and related methods of manufacture
JP2012149293A (en) * 2011-01-18 2012-08-09 Taiwan Powder Technologies Co Ltd Steel powder composition and sintered compact thereof
WO2017029801A1 (en) * 2015-08-20 2017-02-23 オイレス工業株式会社 Multilayer sliding member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045962B1 (en) 1999-01-22 2006-05-16 Matsushita Electric Industrial Co., Ltd. Gas discharge panel with electrodes comprising protrusions, gas discharge device, and related methods of manufacture
WO2000075951A1 (en) * 1999-06-04 2000-12-14 Matsushita Electric Industrial Co., Ltd. Gas discharge display and method for producing the same
US6670754B1 (en) 1999-06-04 2003-12-30 Matsushita Electric Industrial Co., Ltd. Gas discharge display and method for producing the same
KR100794076B1 (en) * 1999-06-04 2008-01-10 마츠시타 덴끼 산교 가부시키가이샤 Gas discharge display and method for producing the same
JP2012149293A (en) * 2011-01-18 2012-08-09 Taiwan Powder Technologies Co Ltd Steel powder composition and sintered compact thereof
WO2017029801A1 (en) * 2015-08-20 2017-02-23 オイレス工業株式会社 Multilayer sliding member

Similar Documents

Publication Publication Date Title
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
US10926334B2 (en) Powder metal material for wear and temperature resistance applications
JP2002501122A (en) Steel powder for preparation of sintered products
CA1337468C (en) Alloyed steel powder for powder metallurgy
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JP2004501276A (en) Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel
JP3446322B2 (en) Alloy steel powder for powder metallurgy
US11248284B2 (en) Non-magnetic austenitic steel with good corrosion resistance and high hardness
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JP3957331B2 (en) Method for producing water atomized iron powder for powder metallurgy
JPH07138601A (en) High cr alloy steel powder for wear resistant sintering material and its mixture
GB1573052A (en) Method of producing high carbon hard alloys
WO2014149932A1 (en) Powder metal compositions for wear and temperature resistance applications and method of producing same
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JP2001158934A (en) Method for producing wear resistant ferrous sintered alloy
JPH08209202A (en) Alloy steel powder for high strength sintered material excellent in machinability
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JPH059501A (en) Iron powder for sintering and production thereof
JPS5947358A (en) Steel powder for wear resistant sintered alloy
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH11229001A (en) Production of high strength sintered parts
JPS6136043B2 (en)
JP2000248352A (en) Sliding member having low friction coefficient