JPS6136043B2 - - Google Patents
Info
- Publication number
- JPS6136043B2 JPS6136043B2 JP55061301A JP6130180A JPS6136043B2 JP S6136043 B2 JPS6136043 B2 JP S6136043B2 JP 55061301 A JP55061301 A JP 55061301A JP 6130180 A JP6130180 A JP 6130180A JP S6136043 B2 JPS6136043 B2 JP S6136043B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- steel
- phase
- steel powder
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 171
- 229910000831 Steel Inorganic materials 0.000 claims description 112
- 239000010959 steel Substances 0.000 claims description 112
- 239000002245 particle Substances 0.000 claims description 40
- 229910045601 alloy Inorganic materials 0.000 claims description 39
- 239000000956 alloy Substances 0.000 claims description 39
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 229910052799 carbon Inorganic materials 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 2
- 239000011651 chromium Substances 0.000 claims 2
- 239000011733 molybdenum Substances 0.000 claims 2
- 239000001301 oxygen Substances 0.000 claims 2
- 239000010703 silicon Substances 0.000 claims 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 2
- 239000010937 tungsten Substances 0.000 claims 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 238000000034 method Methods 0.000 description 46
- 239000000463 material Substances 0.000 description 30
- 238000005275 alloying Methods 0.000 description 29
- 238000002844 melting Methods 0.000 description 25
- 230000008018 melting Effects 0.000 description 24
- 238000005245 sintering Methods 0.000 description 23
- 229910000851 Alloy steel Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 19
- 238000009792 diffusion process Methods 0.000 description 17
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- 238000009692 water atomization Methods 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 15
- 238000002156 mixing Methods 0.000 description 14
- 238000000137 annealing Methods 0.000 description 11
- 230000001788 irregular Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 6
- 238000010587 phase diagram Methods 0.000 description 6
- 238000004663 powder metallurgy Methods 0.000 description 6
- 238000005261 decarburization Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- ZEKANFGSDXODPD-UHFFFAOYSA-N glyphosate-isopropylammonium Chemical compound CC(C)N.OC(=O)CNCP(O)(O)=O ZEKANFGSDXODPD-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- -1 C: 1.0 to 3.0% Substances 0.000 description 3
- 229910017060 Fe Cr Inorganic materials 0.000 description 3
- 229910002544 Fe-Cr Inorganic materials 0.000 description 3
- 229910000805 Pig iron Inorganic materials 0.000 description 3
- 229910001327 Rimmed steel Inorganic materials 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 3
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000004881 precipitation hardening Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 229910017116 Fe—Mo Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 1
- 229910001145 Ferrotungsten Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910001353 gamma loop Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
この発明は、高合金水アトマイズ鋼粉、とくに
純鉄粉を代表例とする基地母材に対し適切な配合
量で、必要により分散媒、黒鉛粉さらには各種金
属または合金粉などとともに配合し、いわゆる混
粉法として粉末冶金焼結体の製造に有利に使用す
ることができるように配慮を加えた、合金成分の
高率含有になる水アトマイズ鋼粉の改良を提案す
るものである。
この発明の高合金水アトマイズ鋼粉は、水アト
マイズ工程を経ただけで、またその後に非酸化性
もしくは還元雰囲気中における脱酸、脱窒さらに
は脱炭などを伴う焼なましを加え、とくにその脱
炭によつて炭素含有量を0.4重量%(以下%表示
について同じ)以下に低減させる場合を含め、γ
相もしくはγ相とδ相との混相<以下(γ+δ)
相という>、またはγ主体相もしくはγ主体相と
δ主体相との混相<以下(γ+δ)主体相であら
わす>あるいはこれらに若干の炭化物を含むよう
な相状態である鋼粉として、上記の用途に適合す
る。
この発明は、水アトマイズ法により不規則粒子
形状を有し、それによる圧縮性改善の下で、α相
形成元素の拡散性を損わずに、γ相形成元素の拡
散により、この発明による高合金水アトマイズ鋼
粉を用いた粉末冶金製品の機械的性質、とくに耐
熱性、耐摩耗性の向上を図つたものである。
この発明による高合金水アトマイズ鋼粉は、基
地母材すなわち純鉄粉、低合金鋼粉またはステン
レス鋼粉に配合して粉末冶金に用いるがその配合
量は、通常10ないし50%とする。
この発明のアトマイズ粉を原料粉末とする焼結
体は、たとえば近年、高出力化の著しい内燃機関
において無鉛ガソリンや、LPGの使用により従来
よりははるかにか酷な条件にさらされて通常400
〜500℃をこえるような高温下の弁操作の度毎に
はげしい熱間衝撃を受けながら摺動して充分な耐
摩耗性が必要とされ、しかも弁との接触面で損傷
や損耗を与え、また受けないことがのぞまれる弁
座部材を典型例として、その他パワーステアリン
グのカムリングやローターあるいはギヤートラン
スミツシヨン部分ないしは高温度軸受材料部分な
どの用途における適合を目指すものである。
一般にこの種の高強度機械部品類の焼結体の製
造には、プレミツクス法、プレアロイ法、さらに
最近に至つては硬質粒子の配合について開発が進
められている。
プレミツクス法(単粉混合法)は、従来鉄粉に
Cu、Mn、Cr、Ni、Mo、Coなどの単体金属粉
や、製鋼精錬過程で脱酸剤や合金剤として用いら
れるフエロアロイの機械的破砕粉、またはそれら
のアトマイズ粉などを黒鉛粉や潤滑剤とともに、
最終製品に要求される特性や組成に応じ配合して
用いるが、焼結中に成分元素の拡散が不十分なた
め優れた特性は得られ難く、その故に高温長時間
の焼結処理が必要となつてそれに起因する変形や
品質のばらつきなどに問題がある。
プレアロイ法(予合金鋼粉法)は、圧縮性の観
点でCを抜いた組成に合金鋼粉を調製するが、耐
熱性および強度上の要求特性を満たすために二成
分以上の複合組成においてそれらの合金量を高く
するので、成形性、圧縮性にやはり問題があり、
高密度高強度材の製造には困難が伴われる。
また分散硬化相に、ステライト組成の特殊合金
粉を用い基地母材中に一部拡散させる方法にあつ
ては、通常C:1.0〜3.0%、Cr:20〜40%、W:
10〜20%、およびCo:40〜60%からなり球状を
呈するアトマイズ特殊合金粉が用いられるとこ
ろ、その合金溶湯の水アトマイズの際にCOガス
の発生量が多く粒子内部に空孔や表面に通じた空
洞を生じ易く、また焼結時には、カーケンダル効
果によつて、拡散による粒子内空孔や境界に空隙
が発生し易い。そのために粒子形状をとくに球状
に整える必要があり、また合金化もしくは配合を
したCoによつて成分元素の拡散を抑制しなけれ
ば硬化相として十分機能しない欠点もある。
一方高炭素Cr合金粉、とくにFe−Cr系、Fe−
Ni−Cr系のσ相粉末を用いる方法では、サブシ
ーブ粉のような微細粉末としない限り効果がな
く、そして広範な粒度構成のσ相粉末の使用は、
はじめにのべたプレミツクス法と変らないし、ま
た高炭素Cr合金粉の配合では、通常C:6.0〜9.5
%の高硬度粒子を基地母材に分散させ耐摩耗性を
得ようとするが、アトマイズ法によると空孔や空
洞を生じるところに問題がある。
一般に金属粉末は高温長時間焼結するほど焼結
は進行する。しかし鉄粉は高温焼結しても、さほ
ど焼結は進まず緻密な焼結体が得られないが、こ
れはB.C.C.構造のα・FeよりF.C.C.構造のγ・
Feの方がFeの拡散が遅いためであり、したがつ
て焼結時にα相を安定させる元素、例えばFeと
の2元状態図で示されるγループ形成元素である
Si,Cr,Mo,W,V,Alなどを添加し、添加元
素の固溶強化をともなう強靭な焼結体を得ること
ができる。プレミツクス法(単粉混合法)、プレ
アロイ法(予合金鋼粉法)など粉末冶金的手法に
よつて高強度焼結体を得る方法は、ほとんどこの
事実に基づいている。
この発明においてもこのような基本的考え方に
基いて、純鉄粉、低合金鋼粉、ステンレス鋼粉な
どの鉄鋼粉を基地母材とし、これに配合を施す母
合金法(マザーアロイ法)に従い粉末冶金的手法
によつて機械構造部品を製造するのに好適な原料
粉末としての高合金水アトマイズ鋼粉を提供する
もので、C;0.40%以下、Si;1.50%以下、Mn;
0.40%以下、O;1.00%以下、Cr;10.0〜40.0
%、Mo;3.0〜20.0%とW;3.0〜20.0%および/
またはV;3.0〜20.0%、またはさらにNi;3.0〜
40.0%および/またはCo;3.0〜40.0%を含有
し、水アトマイズ生鋼粉のままで、あるいはC;
0.40%を超える高C水アトマイズ鋼粉につき水焼
入れ硬化相を非酸化性雰囲気中または還元雰囲気
中で900℃好ましくは1000℃以上でC;0.40%以
下好ましくはC;0.20%以下になるまで脱炭焼鈍
し、同時に脱酸、脱窒、αまたはγ結晶粒の粗大
化、炭化物の粗大化、球状化析出をさせ、80メツ
シユ篩通過粉の見掛密度が2.00〜3.20g/cm3、成
形圧力7t/cm2における圧粉密度が6.00g/cm3以上
の不規則粒子形状と圧縮性を持たせ、基地鉄鋼粉
粒子と密着させ合金元素の拡散有効面積を増大さ
せることによつて、焼結時のα相形成元素の固溶
拡散を進行させまたさらにはそれを損わずに、γ
相形成元素の拡散を良好ならしめることの相乗効
果によつて、何れも基地母材を強靭化し耐熱耐摩
耗性のいつそう向上を図つたものである。
この場合、基地鉄鋼粉に配合したこの発明の鋼
粉は完全均一組成には固溶拡散せず、残留した末
拡散鋼粉部は生成する炭化物とともに分散硬化相
としての機能を果たす。
この発明の鋼粉の製造上、水アトマイズ法は工
業的規模での量産性経済性に優れるのみならず、
水焼入れのため合金組成によつて、α′主体相、
(α+δ)主体相、γまたは(γ+δ)主体相か
らなり、さらに適宜な温度と雰囲気を選んで還元
焼鈍することによつて、α主体相、γ主体相ある
いは上記各相の混合状態からなる合金鋼粉の製造
が可能であり、表面酸化物の還元と同時に脱炭焼
鈍、溶体化処理することで炭化物、窒化物、金属
間化合物などを析出、溶体化することによつて、
圧縮性の改善を図ることができる。また水アトマ
イズ法は噴射水の動圧摩擦と急冷効果によつて見
掛密度3.20g/cm3以下の不規則状粒子製造条件範
囲が広く、粒度分布が広いことなどの粉体特性の
うえから冷間金型成形に適しており、不規則状粒
子形状なるがゆえにもたらされる粒子相互のから
み合いと密着性によつて焼結時の合金元素の拡散
性が良好な母合金鋼粉の好適な製造法といえる。
さてCは溶解、成分調整、注入、水アトマイズ
の各工程において最つとも重要な元素の1つであ
り、それというは、まず溶銑プールを形成し可及
的速やかに溶銑温度を1600℃以上、好ましくは
1700℃以上に加熱保持することによつて、Cの優
先酸化による還元状態での他合金元素の溶解を行
ない、Si、Crの酸化を抑制するとともに、水ア
トマイズ時の粒子表面酸化を抑制するのに役立つ
からである。
水アトマイズ粉は注入溶湯のC含有量が増加す
るにつれて、空孔や空洞を持つ粒子が多くなつて
このような中空状粒子の形状は球状化し易く、そ
の表面は平滑となるため焼結性が悪く、しかも中
空であるため高強度材を得ることができない。こ
の中空状粒子は合金組成により多少異なるが、C
量が0.40%を超えると認められるようになり、
Fe−C2元状態図での共析点すなわち0.80重量%
を超えると著しく増加する。
母合金鋼粉(マスターアロイ粉)または分散硬
化相としてこの発明の鋼粉を用いる場合、最終製
品に要求される特性とくに硬度に応じ、炭化物形
成合金元素量とのかねあいで合金C量を適宜変化
させ得る。この場合、鋼粉硬度が過剰に硬すぎる
と、かえつて相手材を損耗するなどの問題がある
ため水アトマイズ生鋼粉のままで使用するときに
は粒子断面のマイクロビツカース硬さを1000以下
にする必要がありこのためC含有量の上限を0.40
にしなければならない。また母合金鋼粉(マスタ
ーアロイ粉)または分散硬化相として使用する場
合には圧縮性、成形性に優れていることが重要で
あり、侵入型に固溶するCはα相、γ相をともに
硬化し、水アトマイズ時にα′相あるいは微細炭
化物を生成して圧縮性を損う。
C;0.40%以下より好ましくは0.20%以下の溶
鋼を水アトマイズすることによつて、α′相をほ
とんど含まない相状態の生鋼粉を製造でき、成形
圧力7t/cm2における圧粉密度が6.00g/cm3以上を
示すことが究明されさらに低Cにする程、生鋼粉
の圧縮性はいつそう改善され、また脱酸、脱炭、
脱窒焼鈍あるいは溶体化処理することによつて圧
縮性の向上が図れる。このような理由から下限値
の設定を必要としない。
Crを含む溶鋼は〔C〕もしくは〔Si〕または
その両方を多くして、〔C〕もしくは〔Si〕の優
先酸化領域に溶鋼温度を保持する。圧縮性、成形
性を重要視する場合、C量を0.10%好ましくは
0.05%以下とし、Siを0.50%以上として〔Si〕の
優先酸化領域の溶鋼を注入し、水アトマイズする
ことにより粒子表面に生成する保護被膜により鋼
粉O量は0.20%以下となる。しかし、Siを1.50%
を超えて合金すると鋼粉を硬化し圧縮性を阻害す
る。よつて1.50%を上限とする。
圧縮性、焼結性または寸法安定性などから鋼粉
粒子表面の酸化被膜は薄い方が望ましいが、母合
金鋼粉(マスターアロイ粉)または分散硬化相と
して使用する鋼粉のO量は1%まで実用上何ら支
障がないが1.00%を超えると酸化被膜の厚みが厚
くなり焼結時の合金元素の拡散を阻害する。
次にMnは粒子を球状化する傾向を持つ元素で
成形性を損い、Crを含む溶鋼においてMnの量が
多くなると〔Mn〕の優先酸化域が拡がり、Mnが
0.40%を超えると水アトマイズ時の粒子表面の酸
化が著しくなり、生成したMnOは焼結時に還元
され難く焼結を阻害する。従つてMnは0.40%以
下であることが必要である。
Cr,MoおよびVはともにα相形成元素であ
り、焼結時にα相を形成して焼結を促進する。ま
たこれらの合金元素の一部は予め合金したCまた
は配合した黒鉛粉と反応して炭化物を形成する。
Cr、Moは固溶強化、焼結促進、耐熱耐酸化
性、炭化物形成の観点から基本成分の1つであ
り、溶解作業性のほか圧縮性、焼結性および最終
製品に要求される特性などから合金組成がそして
混粉法で使用する際の配合量も決定される。
CrはFeとの2元系状態図において、約13%以
上で焼結時にα相を形成する。γ相生成域はCr
含有量に応じたC濃度範囲があるが、Or含有量
の増加とともにγ相生成域は減少しCr;19〜20
%で完全に消失する。したがつてCr含有量を増
加させC含有量を低くすることによつて水アトマ
イズで生鋼粉はα+δ相となり生鋼粉の圧縮性は
向上してくる。しかしCrが40.0%を超えてくると
融点が1550℃を超えるようになり、溶鋼注入のた
めの溶鋼処理作業での温度降下を見込むと1700℃
以上必要となり、小口径溶湯ノズルを使用すると
きには1800℃を超えてスーパーヒートしなければ
ならず、炉壁損耗など溶解作業、溶鋼処理上の問
題を生じてくる。またCr含有量が40.0%を超えた
生鋼粉を焼鈍するとσ相に変態する量が増加しか
えつて圧縮性を損うことになる。よつてCrにつ
いては40.0%を上限とする。
この発明による鋼粉を母合金鋼粉として配合
し、基地母材への固溶拡散による基地強化を図
り、性熱耐摩耗性を付与するためにはCr含有量
は高い方が望ましいが、配合作業性を考慮して
10.0%を下限値とする。
MoはCrと共存させることにより、焼結時のα
相形成を促進し、固溶拡散の相乗効果により拡散
層の強靭化と耐熱耐摩耗性を改善することができ
る。Moはσ相変態促進元素であるが水アトマイ
ズ生鋼粉の焼鈍温度を好ましくは1000℃以上とす
ることによりσ相の生成を抑制して圧縮性を改善
することができる。MoはFeとの2元状態図にお
いてα相安定域は3〜35%であるが、工業炉によ
る焼結温度を考慮した実用的な合金量は3.0〜
20.0%である。
W,Vは炭化物形成元素であり、硬化相として
硬度の改善にとくに効果があり、これらの元素の
固溶拡散によつて基地強化と耐熱耐摩耗性の向上
が期待される。
Wは30%を超えて合金すると融点を高め溶解性
を悪くする。またFeとの2元系状態図におい
て、Moと同様の理由で実用的合金量範囲は3.0〜
20.0%である。VはWと同様な効果のためWと置
き換えることができ、また共存させてもよい。
Feとの2元系状態図において、α相安定領域は
1.6%以上であるが、母合金鋼粉(マスターアロ
イ粉)として配合作業性を考慮し、かつ基地母材
を固溶強化するには3.0%以上必要であり、水ア
トマイズ生鋼粉の焼鈍によるσ相の生成を避ける
ため20.0%を上限とする。
Ni,Coはともにγ相安定元素であるため水ア
トマイズ生鋼粉のままでγ相として、あるいは焼
鈍時のσ相の生成を抑制し、炭化物の球状化を促
進するため圧縮性、成形性の向上を図ることがで
き、焼結時、α相形成元素の拡散を損うことなく
基地母材に固溶拡散し、基地強化、耐熱性、耐酸
化性、耐腐食性を改善する。γ相を形成して圧縮
性を改善するにはNiもしくはCoまたは両方の元
素の含有量は3.0%以上必要である。この2元素
はともに融点を下げ、溶解を促進し、湯流れを改
善する。しかし40.0%を超えて合金するとγ相を
安定化して焼結性を損う。また経済性の点からも
これらの元素の合金量は低い方が好ましい。
この発明の鋼粉は残余成分としてFe;50.0%
以上を必要とする。
母合金鋼粉(マスターアロイ粉)として基地母
材鉄鋼粉に配合して焼結すると、カーケンダル効
果によつて母合金鋼粉粒内や合金元素拡散層内外
に空孔や空隙を生じ、材質劣化をもたらすことが
多々おこる。そこでFeを50.0%以上とすること
によつてこれを抑制するためである。
次にこの発明による水アトマイズ鋼粉の物性値
の限定理由を説明する。
見掛密度;2.00〜3.20g/cm3について
通常、粉末冶金法における粗粒粉は焼結性が悪
く、焼結材の表面が粗くなり品質のバラツキの原
因となることから80メツシユ篩通過粉より好まし
くは100メツシユ篩通過粉が使用される。この発
明の鋼粉においても同様であるから、JIS Z
2504により80メツシユ篩通過粉の見掛密度を測定
し、上記粒度で使用する。
この発明において見掛密度は、合金成分のうち
C,Si,Mn,Cr,W,V,Ni,Coの含有量と水
アトマイズ条件のうちとくに注入溶鋼温度(スー
パーヒート量)、水圧、スプレーフオームによつ
て変わつてくる。例えばスーパーヒート量を高く
し、Mn含有量を多くし、低水圧により注入溶鋼
をアトマイズ点(以下焦点という)からバラバラ
に飛散落下させると、溶滴が凝固するまでに噴射
水の動圧摩擦と冷却作用が緩慢になり、粒子は球
状化して見掛密度が高くなる。さらにC含有量の
増加にともない、COガスが多量に発生すると中
空状となり、その粒子表面は膨張により平滑化し
てくる。
見掛密度が3.20g/cm3を超えて球状化高見掛密
度化すると、混粉切出し時の配合粉や黒鉛粉の偏
析が著しくなつてくる。また圧粉体強度が弱くな
つて圧粉体の搬送ができなくなり、焼結性が悪く
なつて焼結材の品質のバラツキなどの問題が起つ
てくる。よつてこの発明では鋼粉の見掛密度の上
限を3.20g/cm3とする。
一方、スーパーヒート量を低くし、高水圧によ
り、注入溶鋼を焦点から収束させ水柱状で落下さ
せると、噴射水の動圧摩擦と冷却作用を十分受け
て溶滴は不規則粒子となつて凝固し、見掛密度が
低くなる。合金成分のうちSi,Cr,W,V,
Ni,Coは不規則形状化促進元素である。
その理由の1つに溶鋼の凝固点より非常に高い
凝固点の酸化物をその粒子表面に形成すると不規
則状化すると考えられる。そしてこれらの不規則
形状促進合金元素を含み、かつC含有量が0.80%
を超えて高くなると中空状粒子を多数生ずるよう
になり見掛密度はますます低下して、ついには
2.00g/cm3より低くなる。C含有量が0.80%以下
好ましくは0.40%以下の溶鋼であれば水アトマイ
ズによつて実質的に問題のない程度が完全に空
孔、空洞のない中実な不規則粒子を製造すること
ができる。なお、この発明に従う鋼粉の合金組成
では、実施例に示す水アトマイズ条件の範囲にお
いて、水アトマイズ生鋼粉の見掛密度は2.00g/
cm3より低い鋼粉は得られなかつた。
成形圧力7t/cm2における圧粉密度;6.00g/cm3
以上について:圧粉密度はJSPM標準1−64によ
り粉末中にあらかじめ潤滑剤としてステアリン酸
亜鉛を1%(外枠)混合して測定する方法によ
る。
この発明の鋼粉は純鉄粉、低合金鋼粉、ステン
レス鋼粉などの鉄鋼粉の基地母材に母合金鋼粉
(マザーアロイ粉)として混粉して使用するのに
好適な高合金鋼粉であり、その配合割合は前記の
ように10.0%以上50.0%以下の範囲で用いられ
る。この配合割合が10.0%より少ないと材質改善
効果があまり認められず、また50.0%を超えると
きはもはや基地母材として取扱うべきものとな
る。
さて一般に耐熱耐摩耗焼結材の密度は6.50g/
cm3以上必要で、原料粉粒子は不規則である程、粒
子相互のからみ合いが増し接触面積が増して、焼
結時、合金元素の固溶拡散が促進して強靭化して
くる。また密度は高い程強靭化する。よつて基地
母材となる鉄鋼粉も母合金鋼粉も不規則状でかつ
高圧縮性が要望されることになる。この発明の鋼
粉は基地母材として純鉄粉が最つとも好適であ
り、したがつて純鉄粉にこの発明の鋼粉を最大
50.0%配合したとき、成形圧力7t/cm2における圧
粉密度6.50g/cm3を満足すべきこの発明の鋼粉単
味の同一成形圧力における圧粉密度値として規制
される値が6.00g/cm3以上である。すなわち混合
粉における圧粉密度は単味の圧粉密度の配合比例
混合則が成り立ち、一般に市販純鉄粉単味の成形
圧力7t/cm2における圧粉密度は7.00g/cm3以上を
有するから、50.0%配合で圧粉密度6.50g/cm3以
上を出すにはこの発明の鋼粉単味のそれは6.00
g/cm3以上が不可欠である。ここで成形圧力7t/
cm2は通常金型寿命の点から採用し得る最大成形圧
力である。
次にこの発明による水アトマイズ鋼粉の製造方
法について述べる。
この発明の鋼粉の製造上の特徴は、その溶解法
にある。すなわち当業者らにおいて、原料事情の
違いによつて操業方法が異なつてくるため従来か
ら統一された方法はなく、治金反応に基づく経済
的観点に立脚したノウーハウ的色彩の濃いのが現
状であるが発明者らは、製銑製鋼一貫製鉄所の原
料入手事情を背景として、とくに経済的に、かつ
目標値の実現が難しいC,Siの的中率を改善した
迅速溶解法を確立した。
以下に通常法と比較して説明する。
Cを合金しない場合のこの発明の鋼粉製造法を
時期別に操業内容、目的、特徴について従来法と
対比し、次表に示した。
This invention involves blending high-alloy water atomized steel powder, especially pure iron powder, in an appropriate amount into the base material, as a representative example, along with a dispersion medium, graphite powder, and various metal or alloy powders, etc., if necessary. This paper proposes an improvement in water atomized steel powder that contains a high proportion of alloying components so that it can be advantageously used in the production of powder metallurgy sintered bodies as a so-called mixed powder method. The high-alloy water atomized steel powder of the present invention can be produced by simply undergoing a water atomization process, or by subsequently annealing it in a non-oxidizing or reducing atmosphere with deoxidation, denitrification, and decarburization. γ, including cases where the carbon content is reduced to 0.4% by weight or less (the same applies to percentages below) through decarburization.
phase or mixed phase of γ phase and δ phase < less than or equal to (γ + δ)
The steel powder can be used as a steel powder in a phase state such as a main phase of γ or a mixed phase of a main phase of γ and a main phase of δ <hereinafter referred to as (γ + δ) main phase>, or a phase state in which these include some carbides. Compatible with This invention has irregular particle shapes obtained by water atomization, and under the improved compressibility resulting from the diffusion of γ phase forming elements without impairing the diffusivity of α phase forming elements, The aim is to improve the mechanical properties, particularly the heat resistance and wear resistance, of powder metallurgy products using alloyed water atomized steel powder. The high-alloy water atomized steel powder according to the present invention is used in powder metallurgy by being blended with a base material, that is, pure iron powder, low-alloy steel powder, or stainless steel powder, and the blending amount is usually 10 to 50%. The sintered body using the atomized powder of this invention as a raw material powder is exposed to much harsher conditions than before due to the use of unleaded gasoline and LPG in internal combustion engines, which have seen significant increases in output in recent years.
Sufficient wear resistance is required as the valve slides under severe thermal shock every time the valve is operated at temperatures exceeding ~500℃, and damage and wear can occur on the contact surface with the valve. In addition, the present invention is intended to be suitable for use in other applications such as a cam ring or rotor of a power steering, a gear transmission part, or a high-temperature bearing material part, with a typical example being a valve seat member that is desired not to be supported. In general, in the production of sintered bodies for this type of high-strength mechanical parts, the premix method, the prealloy method, and more recently the blending of hard particles have been developed. The premix method (single powder mixing method)
Single metal powders such as Cu, Mn, Cr, Ni, Mo, and Co, mechanically crushed powders of ferroalloys used as deoxidizers and alloying agents in the steelmaking and refining process, and their atomized powders are used as graphite powders and lubricants. With,
They are mixed and used according to the properties and composition required for the final product, but excellent properties are difficult to obtain due to insufficient diffusion of component elements during sintering, and therefore, high-temperature and long-term sintering treatment is necessary. There are problems with deformation and quality variations caused by aging. In the pre-alloy method (pre-alloyed steel powder method), alloyed steel powder is prepared with a composition that excludes C from the viewpoint of compressibility, but in order to meet the required properties in terms of heat resistance and strength, it is necessary to prepare alloyed steel powder in a composite composition of two or more components. Since the amount of alloy is increased, there are still problems with formability and compressibility.
Manufacturing high-density, high-strength materials is difficult. In addition, in the case of a method in which a special alloy powder with a stellite composition is used as the dispersed hardening phase and partially diffused into the base material, C: 1.0 to 3.0%, Cr: 20 to 40%, W:
A special atomized alloy powder containing 10-20% Co and 40-60% Co and exhibiting a spherical shape is used, but when the molten alloy is atomized with water, a large amount of CO gas is generated, causing pores inside the particles and on the surface. Open cavities are likely to be formed, and during sintering, due to the Kirkendall effect, voids are likely to be formed within the particles or at the boundaries due to diffusion. For this purpose, it is necessary to make the particle shape particularly spherical, and it also has the disadvantage that it cannot function satisfactorily as a hardening phase unless the diffusion of the component elements is suppressed by alloying or blending Co. On the other hand, high carbon Cr alloy powder, especially Fe-Cr type, Fe-
The method using Ni-Cr-based σ-phase powder is ineffective unless it is made into a fine powder such as subsieve powder, and the use of σ-phase powder with a wide range of particle size compositions is
It is no different from the premix method mentioned at the beginning, and when blending high carbon Cr alloy powder, C: 6.0 to 9.5 is usually used.
% of high hardness particles are dispersed in the base material to obtain wear resistance, but the atomization method has a problem in that it creates pores and cavities. Generally, the sintering of metal powder progresses as it is sintered at higher temperatures and for longer periods of time. However, even when iron powder is sintered at a high temperature, the sintering does not proceed much and a dense sintered body cannot be obtained.
This is because the diffusion of Fe is slower, and therefore it is an element that stabilizes the α phase during sintering, for example, an element that forms a γ loop with Fe, which is shown in a binary phase diagram.
By adding Si, Cr, Mo, W, V, Al, etc., it is possible to obtain a strong sintered body with solid solution strengthening of the added elements. Most of the methods for obtaining high-strength sintered bodies by powder metallurgy methods, such as the premix method (single powder mixing method) and the prealloy method (prealloyed steel powder method), are based on this fact. Based on this basic concept, this invention uses iron powder such as pure iron powder, low-alloy steel powder, and stainless steel powder as a base material, and powders are prepared according to the mother alloy method (mother alloy method) in which the base material is blended with pure iron powder, low alloy steel powder, stainless steel powder, etc. It provides high alloy water atomized steel powder as a raw material powder suitable for manufacturing mechanical structural parts by metallurgical methods, C: 0.40% or less, Si: 1.50% or less, Mn;
0.40% or less, O; 1.00% or less, Cr; 10.0 to 40.0
%, Mo; 3.0 to 20.0% and W; 3.0 to 20.0% and /
or V; 3.0~20.0%, or further Ni; 3.0~
40.0% and/or Co; 3.0 to 40.0%, as water atomized raw steel powder, or C;
For high C water atomized steel powder exceeding 0.40%, the water quench hardening phase is removed in a non-oxidizing atmosphere or a reducing atmosphere at 900°C, preferably 1000°C or higher, until the C is below 0.40%, preferably below 0.20%. Charcoal annealing, simultaneous deoxidation, denitrification, coarsening of α or γ crystal grains, coarsening of carbides, and spheroidization precipitation, resulting in an apparent density of 2.00 to 3.20 g/cm 3 of the powder passing through an 80-mesh sieve, and molding. By providing irregular particle shape and compressibility with a compacted powder density of 6.00 g/cm 3 or more at a pressure of 7 t/cm 2 , and increasing the effective area for diffusion of alloying elements by bringing them into close contact with the base steel powder particles, By promoting solid solution diffusion of α phase forming elements during solidification and without impairing it, γ
Through the synergistic effect of improving the diffusion of phase-forming elements, the base material is strengthened and its heat and wear resistance are further improved. In this case, the steel powder of the present invention blended into the base steel powder does not diffuse into solid solution to form a completely uniform composition, and the remaining diffused steel powder portion functions as a dispersed hardening phase together with the generated carbides. In producing the steel powder of this invention, the water atomization method is not only excellent in mass production and economy on an industrial scale, but also
Due to water quenching, depending on the alloy composition, α′ main phase,
An alloy consisting of (α + δ) main phase, γ or (γ + δ) main phase, and further formed into α main phase, γ main phase, or a mixture of the above phases by reduction annealing at an appropriate temperature and atmosphere. It is possible to produce steel powder, and by simultaneously reducing surface oxides, decarburizing annealing, and solution treatment, carbides, nitrides, intermetallic compounds, etc. are precipitated and solution treated.
Compressibility can be improved. In addition, the water atomization method has a wide range of conditions for producing irregular particles with an apparent density of 3.20 g/cm 3 or less due to the dynamic pressure friction and quenching effect of the jet water, and has excellent powder characteristics such as a wide particle size distribution. A suitable master alloy steel powder that is suitable for cold mold forming and has good diffusion of alloying elements during sintering due to the intertwining and adhesion of the particles due to the irregular particle shape. It can be said to be a manufacturing method. Now, C is one of the most important elements in each process of melting, component adjustment, injection, and water atomization. First, a hot metal pool is formed and the temperature of the hot metal is raised to 1600℃ or higher as soon as possible. Preferably
By heating and maintaining the temperature above 1700℃, other alloying elements are dissolved in a reduced state due to preferential oxidation of C, suppressing oxidation of Si and Cr, and suppressing particle surface oxidation during water atomization. This is because it is useful. In water atomized powder, as the C content of the poured molten metal increases, the number of particles with holes and cavities increases, and the shape of these hollow particles tends to become spherical, and the surface becomes smooth, resulting in poor sinterability. Moreover, since it is hollow, high-strength materials cannot be obtained. These hollow particles differ somewhat depending on the alloy composition, but C
It is now recognized when the amount exceeds 0.40%,
Eutectoid point in the Fe-C binary phase diagram, i.e. 0.80% by weight
It increases significantly when it exceeds . When using the steel powder of the present invention as a master alloy steel powder (master alloy powder) or a dispersion hardening phase, the amount of alloy C may be changed as appropriate depending on the properties required for the final product, especially the hardness, and the amount of alloying elements forming carbides. can be done. In this case, if the steel powder hardness is too hard, there will be problems such as damage to the mating material, so when using water atomized raw steel powder as is, the microvitkers hardness of the particle cross section should be set to 1000 or less. Therefore, the upper limit of C content is set to 0.40.
must be done. In addition, when used as a master alloy steel powder (master alloy powder) or a dispersion hardening phase, it is important that it has excellent compressibility and formability. It hardens and forms α' phase or fine carbides when water atomized, impairing compressibility. C: By atomizing molten steel with a concentration of 0.40% or less, preferably 0.20% or less, it is possible to produce raw steel powder in a phase state containing almost no α' phase, and the green powder density at a compacting pressure of 7t/ cm2 is It was found that the raw steel powder has a carbon content of 6.00 g/cm 3 or more, and the lower it is, the more the compressibility of raw steel powder is improved, and the deoxidation, decarburization,
Compressibility can be improved by denitrification annealing or solution treatment. For this reason, it is not necessary to set a lower limit value. In molten steel containing Cr, [C] or [Si] or both are increased to maintain the molten steel temperature in the preferential oxidation region of [C] or [Si]. When compressibility and moldability are important, the C amount is preferably 0.10%.
By injecting molten steel in the preferential oxidation region of [Si] and atomizing with water, the amount of steel powder O becomes 0.20% or less due to the protective coating formed on the surface of the particles. However, Si 1.50%
Alloying in excess of this will harden the steel powder and inhibit its compressibility. Therefore, the upper limit is 1.50%. Although it is desirable for the oxide film on the surface of the steel powder particles to be thinner in terms of compressibility, sinterability, or dimensional stability, the O content of the master alloy steel powder (master alloy powder) or steel powder used as the dispersion hardening phase is 1%. Up to 1.00%, there is no problem in practical use, but if it exceeds 1.00%, the thickness of the oxide film becomes thick and inhibits the diffusion of alloying elements during sintering. Next, Mn is an element that tends to make particles spheroidal, impairing formability, and when the amount of Mn increases in molten steel containing Cr, the preferential oxidation region of [Mn] expands, and Mn
If it exceeds 0.40%, the oxidation of the particle surface during water atomization will become significant, and the generated MnO will be difficult to reduce during sintering and will inhibit sintering. Therefore, Mn needs to be 0.40% or less. Cr, Mo, and V are all α phase forming elements, and form an α phase during sintering to promote sintering. Further, some of these alloying elements react with pre-alloyed C or blended graphite powder to form carbide. Cr and Mo are one of the basic components from the viewpoint of solid solution strengthening, sintering promotion, heat resistance, oxidation resistance, and carbide formation, and are important for melting workability as well as compressibility, sinterability, and other properties required for the final product. From this, the alloy composition and the blending amount when used in the mixed powder method are determined. In the binary system phase diagram with Fe, Cr forms an α phase during sintering in an amount of about 13% or more. The γ phase generation region is Cr
There is a C concentration range depending on the content, but as the Or content increases, the γ phase formation region decreases and the Cr; 19 to 20
% disappears completely. Therefore, by increasing the Cr content and lowering the C content, the raw steel powder becomes α+δ phase by water atomization, and the compressibility of the raw steel powder improves. However, when the Cr content exceeds 40.0%, the melting point exceeds 1550℃, and when the temperature drop during molten steel processing for injection of molten steel is taken into account, it reaches 1700℃.
Therefore, when using a small-diameter molten metal nozzle, it must be superheated to over 1800°C, which causes problems in melting work and molten steel processing, such as damage to the furnace wall. Furthermore, when raw steel powder with a Cr content of more than 40.0% is annealed, the amount transformed into the σ phase increases, which impairs compressibility. Therefore, the upper limit for Cr is 40.0%. A high Cr content is desirable in order to blend the steel powder according to this invention as a master alloy steel powder, strengthen the matrix by solid solution diffusion into the base matrix, and impart thermal wear resistance. Considering workability
The lower limit is 10.0%. By allowing Mo to coexist with Cr, α during sintering can be
It promotes phase formation and can strengthen the diffusion layer and improve heat and wear resistance due to the synergistic effect of solid solution diffusion. Although Mo is an element that promotes the σ phase transformation, by setting the annealing temperature of the water atomized raw steel powder to preferably 1000° C. or higher, the formation of the σ phase can be suppressed and the compressibility can be improved. In the binary phase diagram of Mo with Fe, the α phase stability range is 3 to 35%, but the practical alloying amount considering the sintering temperature in an industrial furnace is 3.0 to 35%.
It is 20.0%. W and V are carbide-forming elements and are particularly effective in improving hardness as a hardening phase, and solid solution diffusion of these elements is expected to strengthen the base and improve heat and wear resistance. If W exceeds 30% in the alloy, the melting point will increase and the solubility will deteriorate. Also, in the binary system phase diagram with Fe, the practical alloying amount range is 3.0 to 3.0 for the same reason as Mo.
It is 20.0%. Since V has the same effect as W, it can be replaced with W, or they may coexist.
In the binary system phase diagram with Fe, the α phase stability region is
The content is 1.6% or more, but 3.0% or more is required in consideration of compounding workability as a master alloy steel powder (master alloy powder) and solid solution strengthening of the base material. The upper limit is set at 20.0% to avoid the formation of σ phase. Both Ni and Co are γ-phase stable elements, so they can be used as γ-phase in water atomized raw steel powder, or suppress the formation of σ-phase during annealing, and promote the spheroidization of carbides, improving compressibility and formability. During sintering, the α phase-forming elements diffuse into the matrix base material as a solid solution without impairing their diffusion, improving matrix reinforcement, heat resistance, oxidation resistance, and corrosion resistance. In order to form a γ phase and improve compressibility, the content of Ni or Co or both elements must be 3.0% or more. These two elements together lower the melting point, promote dissolution, and improve the flow of the metal. However, if the alloy exceeds 40.0%, the γ phase will be stabilized and sinterability will be impaired. Also, from the economic point of view, it is preferable that the alloying amount of these elements is low. The steel powder of this invention has Fe as a residual component; 50.0%
or more is required. When mixed with base steel powder as master alloy powder (master alloy powder) and sintered, pores and voids are created within the master alloy steel powder grains and inside and outside of the alloying element diffusion layer due to the Kirkendall effect, resulting in material deterioration. This often results in Therefore, this is suppressed by setting Fe to 50.0% or more. Next, the reason for limiting the physical property values of the water atomized steel powder according to the present invention will be explained. Apparent density: 2.00 to 3.20 g/cm 3 Usually, coarse powder used in powder metallurgy has poor sintering properties, making the surface of the sintered material rough and causing quality variations, so powder that passes through an 80 mesh sieve is More preferably, a powder that passes through a 100 mesh sieve is used. The same applies to the steel powder of this invention, so JIS Z
2504 to measure the apparent density of the powder that passed through an 80-mesh sieve, and use it at the above particle size. In this invention, the apparent density is determined by the contents of C, Si, Mn, Cr, W, V, Ni, and Co among the alloy components, the injection molten steel temperature (superheat amount), water pressure, and spray form among the water atomization conditions. It changes depending on. For example, if the amount of superheat is increased, the Mn content is increased, and the injected molten steel is scattered and dropped from the atomization point (hereinafter referred to as the focal point) using low water pressure, the dynamic pressure friction of the jet water will increase by the time the droplets solidify. The cooling action becomes slower and the particles become spheroidized and have a higher apparent density. Furthermore, as the C content increases, when a large amount of CO gas is generated, the particles become hollow and their surfaces become smooth due to expansion. When the apparent density exceeds 3.20 g/cm 3 and the apparent density becomes spheroidized, the segregation of blended powder and graphite powder becomes significant when cutting out the blended powder. Furthermore, the strength of the green compact becomes weak, making it impossible to convey the green compact, and the sinterability deteriorates, causing problems such as variations in the quality of the sintered material. Therefore, in this invention, the upper limit of the apparent density of steel powder is set to 3.20 g/cm 3 . On the other hand, if the amount of superheat is lowered and the injected molten steel is focused from the focal point using high water pressure and falls in the form of a water column, the droplets will solidify into irregular particles due to the dynamic pressure friction and cooling effect of the jet water. However, the apparent density becomes lower. Of the alloy components, Si, Cr, W, V,
Ni and Co are elements that promote irregular shapes. One of the reasons for this is thought to be that if an oxide with a solidification point much higher than that of molten steel is formed on the surface of the particles, the grains become irregular. Contains these irregular shape promoting alloying elements and has a C content of 0.80%
As the temperature increases beyond
It will be lower than 2.00g/cm 3 . If the C content is 0.80% or less, preferably 0.40% or less, water atomization can produce solid irregular particles that are completely free of pores and cavities to a virtually acceptable degree. . In addition, in the alloy composition of the steel powder according to the present invention, the apparent density of the water atomized raw steel powder is 2.00 g/
Steel powder lower than cm 3 could not be obtained. Green density at molding pressure 7t/ cm2 : 6.00g/ cm3
Regarding the above: Green powder density is measured according to JSPM Standard 1-64 by mixing 1% (outer frame) of zinc stearate as a lubricant in powder in advance. The steel powder of this invention is a high-alloy steel powder suitable for use as a mother alloy powder in a base material of steel powder such as pure iron powder, low-alloy steel powder, or stainless steel powder. As mentioned above, the blending ratio is in the range of 10.0% or more and 50.0% or less. If this blending ratio is less than 10.0%, the effect of improving material quality will not be noticeable, and if it exceeds 50.0%, it should no longer be treated as a base material. Now, generally speaking, the density of heat-resistant and wear-resistant sintered material is 6.50g/
cm 3 or more is required, and the more irregular the raw material powder particles are, the more the particles become entangled with each other and the contact area increases, and during sintering, the solid solution diffusion of alloying elements is promoted and the material becomes tougher. Also, the higher the density, the tougher it becomes. Therefore, both the steel powder serving as the base material and the master alloy steel powder are required to have irregular shapes and high compressibility. The steel powder of this invention is most preferably pure iron powder as the base material, and therefore the steel powder of this invention is most suitable for pure iron powder.
When compounded at 50.0%, the value regulated as the green powder density value at the same compacting pressure of the steel powder of this invention that satisfies the green powder density of 6.50 g/cm 3 at a compacting pressure of 7 t/cm 2 is 6.00 g/cm 3 . cm3 or more. In other words, the green density of the mixed powder is based on the proportionate mixing law of the density of the plain green powder, and generally the green density of commercially available pure iron powder at a compacting pressure of 7 t/cm 2 is 7.00 g/cm 3 or more. , in order to obtain a green powder density of 6.50 g/cm 3 or more with a 50.0% blend, the steel powder alone of this invention must have a density of 6.00.
g/cm 3 or more is essential. Here, the molding pressure is 7t/
cm 2 is usually the maximum molding pressure that can be adopted from the viewpoint of mold life. Next, a method for producing water atomized steel powder according to the present invention will be described. The manufacturing feature of the steel powder of this invention lies in its melting method. In other words, among those skilled in the art, there is no unified method since the operating methods differ depending on the raw material situation, and the current situation is that the method is based on know-how based on an economic perspective based on metallurgical reactions. However, the inventors established a rapid melting method that is particularly economical and improves the accuracy of C and Si, which are difficult to achieve target values, against the background of the raw material availability situation in integrated iron and steel works. This will be explained below in comparison with the normal method. The following table shows the comparison of the steel powder manufacturing method of the present invention in which C is not alloyed with the conventional method in terms of operation contents, purpose, and characteristics by period.
【表】【table】
【表】
またCを合金する場合この発明の鋼粉製造法に
おいては加炭剤による溶鋼の〔C〕脱酸が最後ま
で有効に作用する点で従来法も同様であるが、
C,Siの的中率は発明法が格段に優れる。
従来、合金鋼などの精錬で、溶落ちから還元精
錬に入り出鋼する無酸化溶解法あるいは転炉での
操業法の1つとしてCr還元法が知られている
が、これらの方法はできるだけ多量の原料を装入
して溶解し、溶鋼へFe−CrなどのCr合金剤を添
加する方法で、Crの酸化が避けられない。とこ
ろが加炭剤とCrを含む合金剤のみを炉床装入し
て加熱溶解し、可急速やかに溶銑温度を1600℃以
上、好ましくは1700℃以上に保持して、融点の高
い合金剤から順次溶解し、最初から最後まで高
温、還元溶精することによつてSi,Crをほとん
ど酸化せずに溶解することが可能である。よつて
この発明においては加炭剤、合金剤造滓剤および
鉄源を厳選することが必要であり、それは脱S、
脱Pをはじめとする酸化精錬による不純物の除去
をとくに行なわないからである。とくに炭加剤は
その配合量を最少限にとどめ、溶解初期からの低
温域でのSiの酸化を極力防止し、かつP,Sおよ
びその他の不純物の混入を避けるため、C;4.00
%以上、Si;1.50%以下、P,Sおよびその他の
不純物がおのおの0.100%以下であるのが望まし
い。
以上要するに、Cを合金しない場合はもちろん
のこと、Cを合金する場合においても、まずCr
を含む合金剤あるいは鉄銑(溶銑)を炭加剤とし
てCrを含む合金剤を溶解して、それらの溶鋼ま
たは溶銑プールを形成して、可急速やかに1600℃
以上、好ましくは1700℃以上に保持し、Siあるい
はCによつて〔O〕を〔Cr〕との平衡値以下に
することで、その後工程を還元状態で遂行でき、
その他の合金剤および鉄源の溶解時間短縮、目標
合金組成の的中精度向上、SiまたはCの燃焼損失
を時間のみの要因で制御できるのである。
次にこの発明の実施例について述べる。
この発明の鋼粉を水アトマイズするに先立つて
必要な原料溶鋼の調整に関し高周波誘導溶解炉に
よる大気雰囲気での溶解法について述べる。
Cを合金する場合;
製鋼銑(C;4.40%,Si;0.54%,Mn;0.83
%,P;0.096%,S;0.034%)を炉床装入し、
加熱溶解した後、全出力を負荷して可急速やかに
溶銑温度を1700℃以上に保持した。次にフエロク
ロムを装入して完全溶解し、目標組成に応じ、
Fe−W,Fe−Mo,Fe−Vまたはさらに金属
Co,Fe−Ni(または金属Ni)の順に溶解後、溶
鋼温度1700℃を確認して金属Siを投入してSiを調
整し、最後に低炭リムド鋼片を投入して溶製し
た。このとき溶解開始から出鋼までを一定時間で
行なうと、
〔C〕または〔Si〕%
−装入全炭素量または装入全Si量(%)
−CまたはSi燃焼損失量(%)コンスタント
で制御することができる。
Cを合金しない(C;0.10%以下)場合または
CおよびSiともに合金しない(C;0.10%以下、
Si;0.10%以下)の場合;
低炭素フエロクロム1号(FCrL1)を炉床装
入し溶解後、全出力を負荷して可急速やかに溶鋼
温度を1700℃以上に保持し、目標組成に応じた
Fe−W,Fe−Mo,Fe−V,金属Co,Fe−Ni
(金属Ni)の順に溶解後、溶鋼温度1700℃を確認
して金属Siを投入してSiを調整し(ただしSi;
0.10%以下の場合は投入しない)、最後に低炭リ
ムド鋼片を投入して溶製した。溶鋼温度が1700℃
と高く、Cr酸化物、Fe酸化物、Si酸化物が湯面
に生じないために、合金剤は速やかに溶け込み、
すべての合金剤の合金歩留りは95%以上であつ
た。
以上の溶解方法に対し、まず鉄源である低炭リ
ムド鋼を炉床装入して溶解した後、1600℃に昇温
した溶鋼に脱酸剤としてFe−SiをSi量で0.25%添
加し、次いでFe−Crを投入した場合には溶鋼を
脱酸状態に保持することができず、過酸化状態と
なり、Cr酸化物およびSi酸化物の鋼滓が多量に
発生し、投入したFe−Crが覆われて溶解不可能
となつた。
また脱酸剤としてFe−SiをSi量で0.25%添加
し、続いて加炭剤である製鋼銑を投入したが、そ
のほとんどのCが燃焼して歩留らず突沸を起して
溶鋼を噴き上げ、溶解作業を進めることが困難で
あつた。
次にこの発明につき上記した溶解法によつて目
標合金組成とし、1700℃以上に保持した溶鋼を通
常の水アトマイズ法により粉砕して表1に示すこ
の発明の鋼粉を得た。
ここに通常の水アトマイズ法とは、目標合金組
成に溶解精錬した溶鋼をあらかじめ800〜1000℃
以上に十分加熱したタンデイツシユに受け、その
底部に埋設したジルコニア質、アルミナ質などの
耐火材製溶湯ノズルから6〜30mmφの柱状落下流
が得られるように注入し、そのまわりから30〜
180Kg/cm2Gの高圧水をこの柱状落下流に衝突さ
せて鉄鋼粉を得るものである。このときの溶鋼注
入および水アトマイズ雰囲気は適宜選択される
が、低O量の鋼粉を得るには不活性雰囲気とし、
そのO2濃度は好ましくは0.5容量%以下にする。
また脱水、乾燥雰囲気も適宜選択され、脱水法と
して大気を強制的に脱水鉄鋼粉層に供給する真空
過法を採用しない限り、脱水中の酸化は無視し
得るし、乾燥条件として、200℃以下の温度で
100torrより高真空あるいはO2濃度が3容量%以
下の不活性雰囲気で乾燥する限り乾燥中の酸化増
量は無視し得る。[Table] In addition, when alloying C, the steel powder production method of the present invention is similar to the conventional method in that the [C] deoxidation of molten steel by the carburizer works effectively until the end;
The invention method has a much better accuracy rate for C and Si. Conventionally, in the refining of alloy steel, etc., the Cr reduction method is known as a non-oxidizing melting method in which the steel enters reduction refining from burn-through, or as one of the operating methods in a converter, but these methods In this method, raw materials are charged and melted, and Cr alloying agents such as Fe-Cr are added to the molten steel, but oxidation of Cr is unavoidable. However, only the alloying agent containing the recarburizer and Cr is charged into the hearth, heated and melted, and the temperature of the hot metal is quickly maintained at 1600℃ or higher, preferably 1700℃ or higher, and the alloying agents with the highest melting point are sequentially melted. By melting and reductively refining Si and Cr at high temperatures from beginning to end, it is possible to dissolve Si and Cr without oxidizing them. Therefore, in this invention, it is necessary to carefully select the recarburizing agent, alloying agent slag forming agent, and iron source.
This is because impurities are not particularly removed by oxidative refining such as P removal. In particular, the amount of carbon additive should be kept to a minimum to prevent oxidation of Si in the low temperature range from the initial stage of melting, and to avoid contamination with P, S and other impurities.
% or more, Si: 1.50% or less, and P, S and other impurities each preferably 0.100% or less. In summary, not only when C is not alloyed, but also when C is alloyed, first Cr
Cr-containing alloying agent or iron pig iron (hot metal) is used as a carbon additive to melt the Cr-containing alloying agent, form the molten steel or hot metal pool, and rapidly heat it to 1600℃.
As mentioned above, by maintaining the temperature preferably at 1700°C or higher and using Si or C to bring [O] below the equilibrium value with [Cr], the subsequent steps can be carried out in a reduced state.
It is possible to shorten the melting time of other alloying agents and iron sources, improve the accuracy of target alloy composition, and control the combustion loss of Si or C using only time as a factor. Next, embodiments of this invention will be described. Regarding the preparation of raw material molten steel necessary before water atomizing the steel powder of this invention, a melting method in an atmospheric atmosphere using a high frequency induction melting furnace will be described. When alloying C; steelmaking pig iron (C; 4.40%, Si; 0.54%, Mn; 0.83
%, P; 0.096%, S; 0.034%) was charged to the hearth,
After heating and melting, the hot metal temperature was maintained at 1700°C or higher as quickly as possible by applying full power. Next, ferrochrome is charged and completely melted, depending on the target composition,
Fe-W, Fe-Mo, Fe-V or even metals
After melting Co and Fe-Ni (or metal Ni) in this order, the molten steel temperature was confirmed to be 1700°C, metal Si was added to adjust the Si, and finally, low-carbon rimmed steel pieces were added and melted. At this time, if the process from the start of melting to tapping is carried out in a fixed period of time, [C] or [Si]% - total amount of charged carbon or total amount of charged Si (%) - amount of C or Si combustion loss (%) will be constant. can be controlled. When C is not alloyed (C; 0.10% or less) or both C and Si are not alloyed (C; 0.10% or less,
(Si; 0.10% or less); After charging low carbon ferrochrome No. 1 (FCrL1) into the hearth and melting, apply full power to quickly maintain the molten steel temperature at 1700℃ or higher, and then adjust the temperature to meet the target composition. Ta
Fe-W, Fe-Mo, Fe-V, metal Co, Fe-Ni
After melting (metallic Ni) in this order, check that the molten steel temperature is 1700℃ and add metal Si to adjust the Si (however, Si;
(If it is less than 0.10%, do not add it).Finally, low carbon rimmed steel pieces were added and melted. Molten steel temperature is 1700℃
Since Cr oxide, Fe oxide, and Si oxide are not formed on the hot water surface, the alloying agent dissolves quickly.
Alloying yields of all alloying agents were over 95%. For the above melting method, first, low carbon rimmed steel, which is the iron source, is charged into the hearth and melted, and then 0.25% of Fe-Si is added as a deoxidizer to the molten steel heated to 1600℃. Then, when Fe-Cr was added, the molten steel could not be kept in a deoxidized state and became overoxidized, producing a large amount of steel slag of Cr oxide and Si oxide. was covered and could not be dissolved. In addition, Fe-Si was added as a deoxidizing agent at a Si content of 0.25%, and then steelmaking pig iron was added as a recarburizing agent, but most of the C was burned, resulting in bumping and molten steel. It was difficult to blow up and proceed with the melting work. Next, the target alloy composition was obtained by the melting method described above for the present invention, and the molten steel maintained at 1700° C. or higher was pulverized by a conventional water atomization method to obtain the steel powder of the present invention shown in Table 1. In the normal water atomization method, molten steel that has been melted and refined to a target alloy composition is heated to 800 to 1000℃ in advance.
The molten metal is poured into a tundish which has been sufficiently heated as described above, and is injected from a nozzle made of a refractory material such as zirconia or alumina buried in the bottom of the tundish so that a columnar falling flow of 6 to 30 mmφ is obtained.
Steel powder is obtained by colliding high-pressure water of 180 kg/cm 2 G with this columnar falling flow. The molten steel injection and water atomization atmosphere at this time are selected appropriately, but in order to obtain steel powder with a low O amount, an inert atmosphere is selected.
The O 2 concentration is preferably 0.5% by volume or less.
In addition, the dehydration and drying atmosphere should be selected appropriately, and oxidation during dehydration can be ignored unless a vacuum filtration method is adopted in which air is forcibly supplied to the dehydrated steel powder layer as a dehydration method, and the drying conditions are below 200℃. at a temperature of
Oxidation weight gain during drying can be ignored as long as drying is carried out under a vacuum higher than 100 torr or in an inert atmosphere with an O 2 concentration of 3% by volume or less.
【表】【table】
【表】【table】
【表】
表1に示すこの発明の実施例は、特許第892659
号明細書(特公昭52−19540号公報)記載の水ノ
ズルにより高圧水を噴射して水アトマイズした鋼
粉である。なお注入溶鋼の合金組成はO量を除い
て水アトマイズのままの鋼粉とほぼ同値であつ
た。このうち供試番号7,8,9および10はMo
を含有しない高見掛密度高合金鋼粉、同11はC;
2.41%の低見掛密度高合金鋼粉で、ともにこの発
明の鋼粉に対する比較例である。
比較例7,8,9および10は燃焼性が悪いため
目的とする焼結材の強度を満足できないし、比較
例11はC含有量が0.80%をはるかに超えているた
めに大多数が中空状粒子となつた。第1図の写真
にこの発明の鋼粉を実施例5につき粒子断面写真
で示し、第2図a,bに比較例11の粒子断面写真
と走査電子顕微鏡による粒子形状写真と比較し
た。
この発明の鋼粉はおもに粉末冶金的手法により
他の鉄鋼粉と配合した混粉(プレミツクス粉また
はマスターアロイ粉)で冷間金型成形して使用さ
れ従つて圧縮性および成形性は最つとも重要な特
性の1つである。表2はC量が0.2%以下のα主
体相からなる水アトマイズ生鋼粉(実施例2)、
C量が0.7%のα′主体相からなる水アトマイズ生
鋼粉(実施例3)をこれにつき脱炭焼鈍を行つて
C量を0.4%以下に下げた圧縮性を改善した鋼粉
(実施例3A,3B,3C)さらにC量が0.40%以下の
γ相またはγ主体相から成り成形圧力7t/cm2にお
ける圧粉密度が6.00g/cm3以上の水アトマイズ生
鋼粉(実施例5,6)と実施例5の焼鈍粉5A,
5Bの化学分析(O,C,N)と圧粉密度とラト
ラー値を示す。なおラトラー値はJSPM標準4−
69で測定した値である。[Table] The embodiment of this invention shown in Table 1 is disclosed in Patent No. 892659.
This steel powder is water atomized by spraying high-pressure water using a water nozzle described in the specification (Japanese Patent Publication No. 52-19540). The alloy composition of the injected molten steel was almost the same as that of the water-atomized steel powder, except for the O content. Among these, sample numbers 7, 8, 9 and 10 are Mo
High apparent density high alloy steel powder that does not contain C;
These are high-alloy steel powders with a low apparent density of 2.41%, and both are comparative examples for the steel powders of the present invention. Comparative Examples 7, 8, 9, and 10 cannot satisfy the desired strength of the sintered material due to poor combustibility, and Comparative Example 11 has a carbon content far exceeding 0.80%, so the majority of the material is hollow. It became a shape particle. The photograph in FIG. 1 shows a cross-sectional photograph of the steel powder of the present invention in Example 5, and the cross-sectional photograph of the particle in Comparative Example 11 and the photograph of the particle shape taken by a scanning electron microscope are compared in FIG. 2 a and b. The steel powder of this invention is mainly used by cold molding a mixed powder (premix powder or master alloy powder) mixed with other steel powders using powder metallurgy methods, and therefore has the best compressibility and formability. This is one of the important characteristics. Table 2 shows water atomized raw steel powder (Example 2) consisting of an α-based phase with a C content of 0.2% or less,
A water-atomized raw steel powder (Example 3) consisting of an α'-based phase with a C content of 0.7% was subjected to decarburization annealing to reduce the C content to 0.4% or less, and the compressibility was improved (Example 3). 3A, 3B, 3C) Further, water atomized raw steel powder consisting of a γ phase or a γ-based phase with a C content of 0.40% or less and a green powder density of 6.00 g/cm 3 or more at a compacting pressure of 7 t/cm 2 (Example 5, 6) and annealed powder 5A of Example 5,
Chemical analysis (O, C, N), green density, and Rattler value of 5B are shown. The Rattler value is JSPM standard 4-
This is the value measured at 69.
【表】【table】
【表】
このように焼鈍することにより水アトマイズの
水焼入れ状態を回復し、α相あるいはγ相結晶粒
を粗大化し、脱炭とともに炭化物を粗大化、球状
化析出させ、表面酸化被膜の還元、脱窒を行なう
と圧縮性、成形性はさらに向上する。第2におい
て記号3A,3B,3Cは、融点−40℃の純水素中、
昇温10deg/minでそれぞれ900℃×3hr、1000℃
×3hrおよび1000℃×6hrまた記号5−Aは露点−
40℃の純水素中、昇温;10℃/min、1150℃×90
分の条件で焼鈍し、降温;炉冷した焼鈍粉の成績
で、そのうち5−Aにつき粒子断面写真を第3図
に示す。また記号5−Bは露点0℃のH2;75容
量%、N2;25容量%の混合ガス中1000℃×2hrの
条件で昇温および降温は同一とした焼鈍粉の成績
であり、このように窒素を含む雰囲気で焼鈍する
と、窒化され鋼粉が硬化してやや圧縮性が低下す
るので窒化源を含まない雰囲気で焼鈍あるいは溶
体化処理する方が好ましい。
第4図は市販水アトマイズ鉄粉(−80#)に、
実施例5に掲げたこの発明の鋼粉を配合した場合
の成形圧力7t/cm2における圧粉密度とラトラー値
を実線で示す。なお市販ステンレス鋼粉;
SUS316L(−100#)を配合した圧粉密度を鎖線
で比較として示す。第4図に見られるように混合
粉の配合割合に対する圧粉密度には比例混合則が
成り立つことが判る。
表3は市販水アトマイズ鉄粉(−80#)に、実
施例2ならびに5とその焼鈍粉5−A,5−B,
同6,そして比較例9,10(−80#)さらに市販
ステンレス鋼粉;SUS316L(−100#)を、母合
金鋼粉(マスターアロイ粉)として配合した混粉
法(プレミツクス法)により製造した焼結体の特
性を示す。なおこの焼結体の目標組成は重量%で
0.75C−3Cr−2Ni−4Mo−1Wであり、これに揃
うように、黒鉛粉末(ACP500)、フエロモリブ
デン粉末(搗砕粉、−100#)、フエロタングステ
ン粉末(搗砕粉、−100#)の必要量を潤滑剤とし
てステアリン酸亜鉛を1%(外枠)とともに配合
し、V型混合機で混合した。
焼結体はJSPM標準2−64、JIS Z2505に基づ
いて引張試験および焼結密度を測定した。焼結条
件は昇温;10℃/min、脱ろう;600℃、30分、
均熱温度、時間;1150℃、30分、降温;炉冷、雰
囲気;H275容量%+N225容量%である。[Table] By annealing in this way, the water-quenched state of water atomization is restored, the α-phase or γ-phase crystal grains are coarsened, carbides are coarsened and spheroidized with decarburization, the surface oxide film is reduced, Denitrification further improves compressibility and formability. In the second, symbols 3A, 3B, and 3C are in pure hydrogen with a melting point of -40℃,
900℃×3hr and 1000℃ with temperature increase of 10deg/min respectively
×3hr and 1000℃×6hr Also, symbol 5-A is dew point-
Temperature increase in pure hydrogen at 40℃; 10℃/min, 1150℃×90
Figure 3 shows the results of the annealed powder that was annealed under the conditions of 10 minutes and then cooled in the furnace. Symbol 5-B is the result of the annealed powder under the conditions of 1000°C x 2 hours in a mixed gas of 75% by volume of H2 and 25% by volume of N2 with a dew point of 0°C, with the same temperature rise and fall. If annealing is performed in an atmosphere containing nitrogen, the steel powder will be nitrided and hardened, resulting in a slight decrease in compressibility. Therefore, it is preferable to perform annealing or solution treatment in an atmosphere that does not contain a nitriding source. Figure 4 shows commercially available water atomized iron powder (-80#).
The solid line shows the green powder density and Rattler value at a compacting pressure of 7 t/cm 2 when the steel powder of this invention listed in Example 5 is blended. Commercially available stainless steel powder;
The density of green powder mixed with SUS316L (-100#) is shown by the chain line for comparison. As seen in FIG. 4, it can be seen that the proportional mixing law holds true for the density of the green powder relative to the blending ratio of the mixed powder. Table 3 shows examples 2 and 5 and their annealed powders 5-A, 5-B,
Comparative Examples 9 and 10 (-80#) and commercially available stainless steel powder; SUS316L (-100#) were manufactured by a mixed powder method (premix method) in which SUS316L (-100#) was blended as a master alloy steel powder (master alloy powder). Indicates the characteristics of the sintered body. The target composition of this sintered body is in weight%.
0.75C−3Cr−2Ni−4Mo−1W, and to match this, graphite powder (ACP500), ferromolybdenum powder (ground powder, -100#), ferrotungsten powder (ground powder, -100 #) was blended with 1% zinc stearate (outer frame) as a lubricant and mixed in a V-type mixer. The sintered body was subjected to a tensile test and the sintered density was measured based on JSPM Standard 2-64 and JIS Z2505. Sintering conditions: temperature increase: 10℃/min, dewaxing: 600℃, 30 minutes,
Soaking temperature, time: 1150°C, 30 minutes, temperature drop: furnace cooling, atmosphere: H 2 75% by volume + N 2 25% by volume.
【表】
この結果からMoを含有しない高見掛密度高合
金鋼粉を用いた場合、焼結性が悪いため焼結体強
度が劣ることが伴る。またこの発明の鋼粉は市販
ステンレス鋼粉;SUS316Lよりも焼結密度が低
いにもかかわらず焼結体強度が一層優れている。
またこの発明の鋼粉または基地母材鉄鋼粉のい
ずれか一方または両方の粒度を適宜選択すること
により焼結体強度を調節することができる。表4
は母合金鋼粉(マスターアロイ粉)に実施例5
(−80#)を用い基地母材である水アトマイズ鉄
粉(市販品)の粒度別の焼結体特性である。なお
焼結体目標組成、焼結条件ともに表3と同一であ
る。[Table] This result shows that when high-apparent-density high-alloy steel powder that does not contain Mo is used, the strength of the sintered body is inferior due to poor sinterability. Furthermore, the steel powder of the present invention has a lower sintered density than commercially available stainless steel powder; SUS316L, but has better sintered body strength. Furthermore, the strength of the sintered body can be adjusted by appropriately selecting the particle size of either or both of the steel powder and base material iron and steel powder of the present invention. Table 4
Example 5 was added to the master alloy steel powder (master alloy powder).
(-80#) is used as the base material, water atomized iron powder (commercially available). Note that both the target composition of the sintered body and the sintering conditions are the same as those in Table 3.
【表】
以上のようにしてCrを含む溶鋼、溶銑プール
のみを可急速やかに〔C〕、〔Si〕のいずれか一方
または両方の元素の優先酸化領域の高温に加熱保
持することによつて、Crの酸化を防止する高Cr
合金鋼の溶製法のもとで、Cr酸化物が多量に発
生するために生ずるへい害、例えば高融点Cr酸
化物鋼滓の流動性の低下、鋼滓被覆による合金剤
の未溶解などを生ぜず、有利に迅速溶解ができ、
生産性の向上およびC,Siをはじめとする各合金
量の的中精度の向上が図れこうして溶製した高合
金鋼を水アトマイズすることにより、容易にこの
発明粉をつくることができる。
この発明による鋼粉は焼結時にα相を形成する
Cr、Moをともに含んでいるために焼結性が優
れ、Moによるいつそうの基地強化が図れ、また
W、Vを含むが、焼結時にα相形成元素であるた
め焼結性を損わずに炭化物を形成して、とくに耐
熱耐摩耗性の改善を実現しさらにはNi,Coによ
りγ相とすることによつて圧縮性、成形性を向上
し、基地の耐熱耐酸化耐腐食性の改善にも役立
ち、とくに耐熱耐摩耗材製造用母合金鋼粉(マザ
ーアロイ粉)として好適である。
この発明の鋼粉は耐熱耐摩耗機械部品ばかりで
なく、高強度機械部品や焼結フイルターに利用で
きさらには切削工具鋼材および特殊ステンレス鋼
用原料粉としてその用途の拡大が期待できる。[Table] As described above, only the molten steel and hot metal pool containing Cr are rapidly heated and maintained at a high temperature in the region of preferential oxidation of either or both of the elements [C] and [Si]. , high Cr to prevent oxidation of Cr
In the melting process for alloy steel, large amounts of Cr oxide are generated, resulting in damage, such as a decrease in the fluidity of high-melting point Cr oxide steel slag, and undissolved alloying agents due to steel slag coating. Advantageously, rapid dissolution is possible.
The powder of the present invention can be easily produced by water atomizing the high-alloy steel produced in this manner, which improves productivity and accuracy in determining the amount of each alloy including C and Si. The steel powder according to this invention forms an α phase during sintering.
Since it contains both Cr and Mo, it has excellent sinterability, and Mo strengthens the base of the material.Also, although it contains W and V, they are elements that form α phase during sintering, so they impair sinterability. In particular, by forming carbides without oxidation, it improves heat and wear resistance.Furthermore, by creating a γ phase with Ni and Co, compressibility and formability are improved, and the heat, oxidation, and corrosion resistance of the base is improved. It is also useful for improvement, and is particularly suitable as a mother alloy steel powder (mother alloy powder) for producing heat-resistant and wear-resistant materials. The steel powder of the present invention can be used not only for heat-resistant and wear-resistant mechanical parts, but also for high-strength mechanical parts and sintered filters, and furthermore, its use can be expected to expand as raw material powder for cutting tool steel materials and special stainless steel.
第1図はこの発明の鋼粉を実施例5について示
した粒子断面顕微鏡写真(3%ナイタールエツ
チ、第2図aはCが2.41重量%であるためにその
大多数の粒子が中空状となつた比較例11の粒子断
面顕微鏡写真(硝酸酢混合液エツチ)、第2図b
は第2図aの粒子につき粒子外観を示す走査電子
顕微鏡写真、第3図は実施例5の鋼粉を焼鈍した
場合の粒子断面顕微鏡写真(3%ナイタールエツ
チ)であり、第4図は水アトマイズ鉄粉とこの発
明の鋼粉とを配合した場合の配合割合と圧粉密度
とラトラー値の1例を示すグラフである。
Figure 1 is a particle cross-sectional micrograph showing the steel powder of this invention in Example 5 (3% nital etched; Figure 2a shows that most of the particles are hollow because C is 2.41% by weight). Particle cross-section micrograph of Comparative Example 11 (nitric acid and vinegar mixture etching), Figure 2b
2 is a scanning electron micrograph showing the appearance of the particles in FIG. It is a graph showing an example of the blending ratio, green powder density, and Rattler value when water atomized iron powder and steel powder of the present invention are blended.
Claims (1)
素、0.40%以下のマンガン、1.00%以下の酸素な
らびに10.0%から40.0%までのクロム、3.0%から
20.0%までのモリブデンを含み、さらに3.0%な
いし20.0%の範囲でタングステンおよび/または
バナジウムを、残余50%以上を占める実質的に鉄
とともに含有する組成に成り、80メツシユ篩を通
過する粒度にて見掛密度は2.00ないし3.20g/
cm3、そして単位面積当り荷重で7トン/cm2の成形
圧力下の圧粉密度が6.00g/cm3以上である高合金
水アトマイズ鋼粉。 2 重量で0.40%以下の炭素、1.50%以下のけい
素、0.40%以下のマンガン、1.00%以下の酸素な
らびに10.0%から40.0%までのクロム、3.0%から
20.0%までのモリブデンを含み、さらに3.0%な
いし20.0%の範囲でタングステンおよび/または
バナジウムと、3.0%ないし40.0%の範囲でニツ
ケルおよび/またはコバルトとを、残余50%以上
を占める実質的に鉄とともに含有する組成に成
り、80メツシユ篩を通過する粒度にて見掛密度は
2.00ないし3.2g/cm3、そして単位面積当り荷重
で7トン/cm2の成形圧力下の圧粉密度が6.00g/
cm3以上である高合金水アトマイズ鋼粉。[Scope of Claims] 1 Up to 0.40% carbon, up to 1.50% silicon, up to 0.40% manganese, up to 1.00% oxygen and from 10.0% to 40.0% chromium, up to 3.0% by weight
It has a composition containing up to 20.0% molybdenum, and further contains tungsten and/or vanadium in the range of 3.0% to 20.0%, together with substantially iron accounting for the remaining 50% or more, at a particle size that passes through an 80 mesh sieve. Apparent density is 2.00 to 3.20g/
cm 3 and a compacted powder density of 6.00 g/cm 3 or more under a compacting pressure of 7 tons/cm 2 at a load per unit area. 2 Carbon up to 0.40% by weight, silicon up to 1.50%, manganese up to 0.40%, oxygen up to 1.00% and chromium from 10.0% to 40.0%, from 3.0%
Contains up to 20.0% molybdenum, further contains tungsten and/or vanadium in the range of 3.0% to 20.0%, nickel and/or cobalt in the range of 3.0% to 40.0%, and substantially iron with the balance 50% or more. The apparent density at the particle size that passes through an 80-mesh sieve is
2.00 to 3.2 g/cm 3 , and the green density under a compacting pressure of 7 tons/cm 2 as a load per unit area is 6.00 g/cm 3 .
High-alloy water atomized steel powder that is not less than cm3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6130180A JPS56158844A (en) | 1980-05-09 | 1980-05-09 | Water-atomized powder of high-alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6130180A JPS56158844A (en) | 1980-05-09 | 1980-05-09 | Water-atomized powder of high-alloy steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56158844A JPS56158844A (en) | 1981-12-07 |
JPS6136043B2 true JPS6136043B2 (en) | 1986-08-16 |
Family
ID=13167218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6130180A Granted JPS56158844A (en) | 1980-05-09 | 1980-05-09 | Water-atomized powder of high-alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56158844A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003000946A1 (en) * | 2001-06-26 | 2003-01-03 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Sliding member and method for manufacture thereof |
US7473295B2 (en) | 2004-07-02 | 2009-01-06 | Höganäs Ab | Stainless steel powder |
-
1980
- 1980-05-09 JP JP6130180A patent/JPS56158844A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56158844A (en) | 1981-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6093405B2 (en) | Nitrogen-containing low nickel sintered stainless steel | |
JP5671526B2 (en) | High strength low alloy sintered steel | |
TWI467031B (en) | Iron vanadium powder alloy | |
US3901661A (en) | Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts | |
WO2017043094A1 (en) | Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact | |
JPS5918463B2 (en) | Wear-resistant sintered alloy and its manufacturing method | |
JP2015108195A (en) | Low alloy steel powder | |
US2342799A (en) | Process of manufacturing shaped bodies from iron powders | |
JP3446322B2 (en) | Alloy steel powder for powder metallurgy | |
JPH10140206A (en) | Low alloy steel powder for sintering and hardening | |
CN100449024C (en) | Alloy steel powder for powder metallurgy | |
GB1573052A (en) | Method of producing high carbon hard alloys | |
JP4069506B2 (en) | Alloy steel powder and mixed powder for high strength sintered parts | |
KR20200081813A (en) | Iron-based powder for powder metallurgy and method for producing same | |
JP5929084B2 (en) | Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same | |
JPS6136043B2 (en) | ||
JPH07113121B2 (en) | Method for producing low alloy steel powder for powder metallurgy with low C and low O | |
JP3475545B2 (en) | Mixed steel powder for powder metallurgy and sintering material containing it | |
Danninger et al. | Powder metallurgy steels for highly loaded precision parts | |
JPS6148561B2 (en) | ||
WO2002072904A1 (en) | Sintered ferrous materials | |
US6652618B1 (en) | Iron based mixed power high strength sintered parts | |
JP2003239002A (en) | Iron based powdery mixture and method of producing iron based sintered compact | |
JPWO2019188833A1 (en) | Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
JP2012126972A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same |