JP4069506B2 - Alloy steel powder and mixed powder for high strength sintered parts - Google Patents

Alloy steel powder and mixed powder for high strength sintered parts Download PDF

Info

Publication number
JP4069506B2
JP4069506B2 JP21689998A JP21689998A JP4069506B2 JP 4069506 B2 JP4069506 B2 JP 4069506B2 JP 21689998 A JP21689998 A JP 21689998A JP 21689998 A JP21689998 A JP 21689998A JP 4069506 B2 JP4069506 B2 JP 4069506B2
Authority
JP
Japan
Prior art keywords
powder
alloy steel
mixed
sintered
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21689998A
Other languages
Japanese (ja)
Other versions
JPH11302787A (en
Inventor
繁 宇波
邦明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP21689998A priority Critical patent/JP4069506B2/en
Publication of JPH11302787A publication Critical patent/JPH11302787A/en
Application granted granted Critical
Publication of JP4069506B2 publication Critical patent/JP4069506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金用合金鋼粉に係り、とくに自動車用高強度焼結部品の製造に好適な合金鋼粉および混合粉に関する。
【0002】
【従来の技術】
一般に、粉末冶金は、金属粉を金型内で加圧して成形体としたのち、焼結して機械部品等を製造する技術である。例えば、金属粉として鉄粉を用いる場合には、鉄粉にCu粉、黒鉛粉等を混合し、成形、焼結を行い、通常5.0 〜7.2g/cm3程度の密度を有する焼結体とする。このような粉末冶金法を利用すれば、かなりの複雑な形状の機械部品を寸法精度良く製造できる。このため、粉末冶金法を用いた焼結体は、ギヤ等の自動車用部品として広く用いられている。
【0003】
これら自動車用焼結部品には、高強度や耐摩耗特性に優れていることが要求されているが、強度や耐摩耗特性の向上のためには、焼結体に合金元素を添加し、さらに焼入焼戻等の熱処理を施して製品化することが一般的に行われている。
焼結体への合金元素の添加は、従来から、純鉄粉中にCr、Mn等の合金元素を均一に合金化させて製造する予合金化合金鋼粉を用いる場合や、例えば、特公昭45-9649 号公報に開示されるように、Ni、Mo、Cu等の合金元素を鉄粉に拡散付着させた部分合金化合金鋼粉を用いる場合がある。
【0004】
しかしながら、予合金化合金鋼粉を用いた場合には、成形時の圧縮性が劣化する場合が多く、高い焼結密度が得られず、高強度が得られない。また、一方、部分合金化合金鋼粉を用いる場合には、予合金鋼粉に比べて成形時の圧縮性は高いが、成分的に不均一となるため熱処理後の組織の均一性が低下するなどの問題が残されていた。
【0005】
例えば、特開平2-104636号公報には、バルブシート用鉄基焼結合金に用いる原料粉として予合金化した合金鋼粉を利用することが提案され、Mo:3〜14wt%含有するFe-Mo 系の粉末の例が開示されている。
また、特開平1-215904号公報には、成形、焼結を経て熱処理を施される用途に用いられる合金鋼粉として、MoおよびCuとともにNiを部分合金化させた部分合金化合金鋼粉が提案されている。
【0006】
また、特開平6-81001 号公報には、成形、焼結を経て熱処理を施される用途に用いられて強度、疲労特性および寸法精度が向上する合金鋼粉が提案されている。この合金鋼粉は、Mo:0.05〜2.5wt %と、Nb、V、Tiのうちの1種または2種以上をそれぞれ0.005 〜0.08wt%の範囲で予合金成分として含有し、さらにNi:0.5 〜5wt%およびCu:0.5 〜2.5 wt%のうちの少なくとも1種を部分合金化成分として含有するものである。
【0007】
【発明が解決しようとする課題】
さらに、最近では、製造コストの低減のため、高強度の焼結部品を、RXガスなどの弱酸化性雰囲気中での焼結温度を低下させた低温焼結で製造する焼結部品の製造方法が指向され、しかもさらに焼結後の熱処理をも省略することが要求されるようになっている。このような低温焼結処理を施し、しかもその後の熱処理を省略した焼結部品において、焼結の後の焼結部品の強度が高強度となる原料鋼粉が要望されている。
【0008】
しかし、弱酸化性雰囲気中で焼結を行う場合には、Cr、Mn等の易酸化性合金元素を予合金すると予合金された合金元素が酸化されて、所望の強度向上が得られないという問題があった。一方、特公昭45-9649 号公報に記載された、Ni、Mo、Cu等の合金元素を部分合金化する合金鋼粉では、合金元素の酸化という問題はないが、この合金鋼粉は、焼結後熱処理を行うことを目的としており、焼結のままではNi等の合金元素が十分に拡散均一化せず、引張強さ500MPa以上、好ましくは800MPa以上の高強度を達成することができない。また、特開平2-104636号公報に記載された合金鋼粉では、高強度化のために高価なMoを多量添加する必要があり、安価な焼結部品を目的とする場合には問題を残していた。
【0009】
また、特開平1-215904号公報に記載された合金鋼粉も、焼結後熱処理を行うことを前提としており、焼結のままでは引張強さ500MPa以上、好ましくは800MPa以上という高強度を確保できにくいうえ、部分合金化させる合金元素量が多量であり経済的に不利となるという問題もあった。
また、特開平6-81001 号公報に記載された合金鋼粉は、熱処理を行うことを目的としており、焼結のままでは引張強さ500MPa以上好ましくは800MPa以上の高強度を達成することができないという問題があった。
【0010】
本発明は、上記した状況に鑑み、低温焼結処理、望ましくは弱酸化性雰囲気中での低温焼結処理を施し、焼結のままの強度が、引張強さ500MPa以上、より好ましくは800MPa以上の高強度を有する高強度焼結部品を製造できる合金鋼粉を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、鋭意検討した結果、鋼粉として、水アトマイズにより製造されたアトマイズ合金鋼粉を用い、さらに予合金して強度を向上させる元素として焼結中に酸化されにくい、Moを選択することにより、弱酸化性雰囲気中での低温焼結処理を施しても、引張強さ800MPa以上の高強度を有する焼結部品の製造が可能であることを見いだした。
【0012】
さらに、従来鋼粉に添加していた黒鉛粉に代えて、Fe−C系水アトマイズ粉を用いることにより、焼結時に液相が形成しやすくなり、角ばった空孔を球状化させることができ、さらには空孔を減少ないし削減させることができ、高強度焼結部品の製造に好適であることを見いだした。
本発明は、上記した知見をもとに構成されたものである。
【0014】
た、本発明は、予合金元素として、Mo:3.5 〜10wt%を含み残部Feおよび不可避的不純物からなる水アトマイズ合金鋼粉に、さらにCu:10wt%以下、Ni:10wt%以下のうちから選ばれた1種または2種を部分合金化したことを特徴とする高強度焼結部品用合金鋼粉である。
【0015】
また、本発明は、Mo:3.5 〜10wt%を予合金化して含み残部Feおよび不可避的不純物からなる水アトマイズ合金鋼粉に、さらにCu粉:10wt%以下、Ni粉:10wt%以下のうちから選ばれた1種または2種を添加混合したことを特徴とする高強度焼結部品用混合粉である。
【0016】
また、本発明は、上記した合金鋼粉に、C:2〜5wt%を含有し、好ましくは残部Feおよび不可避的不純物からなるFe−C系水アトマイズ粉を所定のC量となるように添加し、さらに潤滑剤、あるいはさらに黒鉛粉を混合したことを特徴とする高強度焼結部品用混合粉であり、前記Fe−C系水アトマイズ粉は、平均粒30μm 以下とするのが好ましい。
【0017】
【発明の実施の形態】
本発明では、所定量の合金元素を予合金した溶鋼を溶製し、水アトマイズして予合金化水アトマイズ合金鋼粉とする。水アトマイズは、通常公知の装置および方法を用いて行えばよく、とくに限定する必要はない。鋼粉は、水アトマイズ後、常法に従い、仕上還元処理、粉砕を施されるのは言うまでもない。
【0018】
予合金化水アトマイズ合金鋼粉の組成の限定理由について、説明する。
本発明では、予合金する主たる合金元素として Moを選択する Moは、弱酸化性雰囲気中での焼結を行っても酸化されることはなく、効率よく強度の向上が可能となる。なお、Moを主たる予合金元素とする場合には、Cu粉、Ni粉のうちの1種または2種を用いて合金鋼粉に拡散付着させCu、Niのうちの1種または2種を部分合金化させるものとする。このようにすることにより、Cu、Niの固溶強化による鋼粉の圧縮性の低下が避けられるのである
【0022】
ついで、Moを主たる予合金元素として含有する場合について説明する。
Moを主たる予合金元素とする場合には、Mo単独添加では、引張強さ500MPa以上を確保できないために Cu、Niを部分合金化して含有させる。
Mo:3.5 〜10wt
Moは、固溶強化、変態強化、炭化物の析出強化により強度を向上させる元素であり、しかも予合金化しても圧縮性の低下は少ない。しかし、Moが3.5wt %未満では、強度を向上させる効果が十分でなく、一方、Moを10wt%を超えて含有させると、圧縮性が低下し強度、靱性が低下する。このため、Moは3.5 〜10wt%の範囲に限定した。また、MoとCuは固溶しないため、共存させると析出量が多くなり、強度が向上する。
【0024】
本発明の合金鋼粉は、上記した合金元素以外は残部Feおよび不可避的不純物である。
また、本発明では、上記した組成のMoを主として予合金した合金鋼粉に、Cu粉、Ni粉を混合し熱処理により拡散付着させCu、Niを部分合金化した合金鋼粉としてもよい。その場合においても、Cuの含有量 10wt%以下でよい。また、Niの含有量は、Cuと同様に10wt%以下とする
【0025】
Cu:10.0wt%以下
Cuは、Mo 複合する場合には、焼結部品中のCu含有量が所定量となるように、合金鋼粉にCu粉を配合し混合した混合粉とするか、あるいは合金鋼粉にバインダーで付着させた混合粉とするか、あるいは合金鋼粉にCu粉を拡散付着させ部分合金化した合金鋼粉とする方法により、含有させるのが好ましい。なかでも、Cuを部分合金化した合金鋼粉とするのが、Cu粉の偏析防止の観点から好ましい。
【0026】
含有するCuの含有量が、10.0wt%を超えると、圧縮性が低下し強度、靱性が低下する。このため、Cuの含有量は10.0wt%以下に限定した。なお、Cu含有量が1.0 wt%未満では、強度の向上度合が少なく、好ましくは1.0 wt%以上とするのがよい。また、さらに好ましくは、2〜5wt%の範囲である。また、MoとCuは固溶しないため、共存させると析出量が多くなり強度が向上する。
【0027】
Ni:10wt%以下
Niは、Mo 複合する場合には、焼結部品中のNi含有量が所定量となるように、合金鋼粉にNi粉を配合し混合した混合粉とするか、あるいは合金鋼粉にバインダーで付着させた混合粉とするか、あるいは合金鋼粉にNi粉を拡散付着させ部分合金化した合金鋼粉とする方法により含有させるのが好ましい。なかでも、Niを部分合金化した合金鋼粉とするのが、Ni粉の偏析防止の観点から好ましい。
【0028】
Niは、ベイナイトあるいはマルテンサイト変態開始温度を低温側へ移行させて組織を微細化し、基地を強化し、焼結材料を高強度化する作用を有する元素である。しかし、Ni含有量が10wt%を超えると、オーステナイト量が増加し強度を低下させる。このため、Ni含有量は10wt%以下とするのが望ましい。なお、Ni含有量が0.5 wt%未満では、強度向上効果が少ないため、0.5 wt%以上とするのがより好ましい。さらに好ましくは2〜6wt%である。
【0029】
また、上記した組成のMoを主として予合金した合金鋼粉にさらに上記組成となるようにCu粉、Ni粉のうちの1種または2種を配合し混合するか、あるいは該合金鋼粉にバインダーで付着させた混合粉とすることもできる。
本発明では、上記したいずれかの組成の合金鋼粉に、さらにC:2〜5wt%のFe−C系水アトマイズ粉を焼結部品のC量が所定のC量となるように添加し、さらに潤滑剤、あるいはさらに必要に応じ黒鉛粉が添加され、Vブレンダー等の通常の方法で混合されたのち、所定の圧粉密度となるように圧縮成形され、ついで焼結されて焼結体とされる。この焼結体は、このまま焼結部品とするか、さらに切削加工等により所定の寸法形状に加工され焼結部品とされる。
【0030】
Fe−C系水アトマイズ粉は、C:2〜5wt%を含有する溶鋼を溶製し、水アトマイズ処理して水アトマイズ粉末とする。水アトマイズ処理は、通常公知の装置および方法を用いて行えばよく、とくに限定する必要はない。水アトマイズ粉は、溶融状態から水で急冷されるため、アモルファス状態に近く、焼結時に粉末中のCが拡散しにくく、Cが局所的に存在したままとなり、液相を形成しやすくなるという利点がある。
【0031】
Fe−C系水アトマイズ粉のC含有量が2wt%未満、あるいは5wt%超では、液相生成温度が高くなり、通常の焼結温度では、焼結時に液相が形成されないため、空孔を球状化することができず、また、空孔の減少あるいは消滅もなく所期した効果が期待できない。このため、水アトマイズ粉のC含有量は2〜5wt%に限定した。
【0032】
また、Fe−C系水アトマイズ粉には、C以外にとくに合金元素を添加する必要はなく、残部はFeおよび不可避的不純物とするのが好ましい。しかし、Siは0.1wt %以下、Mnは0.2wt %以下、Pは0.01wt%以下、Sは0.01wt%以下まで許容できる。
水アトマイズ処理されたFe−C系水アトマイズ粉末は、通常平均粒径が60〜90μm程度であり、粉砕によりさらに微細粒とするのが好ましい。粉砕は通常公知の装置および方法で行えばよく、とくに限定する必要はない。本発明で使用するFe−C系水アトマイズ粉は、平均粒径30μm以下に粉砕された粉末とするのが好ましい。Fe−C系水アトマイズ粉の平均粒径が30μmを超えると、液相生成後の空孔が大きくなる、Cの均一性が悪くなる問題がある。なお、本発明における粉末の粒径は、ふるい分け法で測定した結果を使用する。
【0033】
本発明の合金鋼粉あるいは混合粉に配合される黒鉛粉の配合量は、0.3 〜1.0 wt%とするのが好ましい。黒鉛粉は、鉄中に固溶せしめ強度を高めるために添加する。
また、本発明の合金鋼粉あるいは混合粉に必要に応じ配合される潤滑剤の配合量は、0.3 〜1wt%とするのが好ましい。潤滑剤は、ステアリン酸亜鉛、オレイン酸等が好適である。
【0034】
なお、本発明の合金鋼粉あるいは混合粉は、弱酸化性であるRXガスのガス雰囲気中で、1100℃〜1200℃の低温焼結を実施しても、焼結のままで所定の高強度を有する焼結体とすることができるが、この条件に限定されるものではなく、N2 、AXガス等他の雰囲気中で高い温度での焼結を行うこともできるのは言うまでもない。
【0035】
【実施例】
(実施例1)
表1に示す合金元素を予合金化して含み残部Feおよび不可避的不純物からなる組成の予合金化合金鋼粉を水アトマイズ法で製造した。なお、これら水アトマイズ合金鋼粉のうちの一部は、さらに表1に示すCu、Ni含有量となるようにCu粉、Ni粉を混合した混合粉とした。また、これら水アトマイズ合金鋼粉のうちの一部は、さらにCu粉、Ni粉を混合し、水素雰囲気中で880 ℃×1hrの熱処理を施し、Cu、Niを部分合金化した合金鋼粉とした。
【0036】
表1に示す組成の合金鋼粉および混合粉に、黒鉛粉:0.8wt %およびステアリン酸亜鉛粉:1%を添加し、Vブレンダーで混合したのち、成形圧力590MPaで成形し成形体とした。これら成形体にRXガス(プロパン変性ガス)雰囲気中で1130℃×20min の条件の低温焼結を施し、焼結体とした。得られた焼結体について、引張強さ、耐摩耗性を調査した。
【0037】
耐摩耗性試験は、大越式摩耗試験装置を用いて、下記条件で行い、摩耗体積を測定し、摩耗量とした。
荷重:12.6kgf
摩擦速度:4.21m/s
摩擦距離:1500m
湿式:ATFオイル、1滴/s
相手材:SUJ−2
それらの結果を表1に示す。
【0038】
【表1】

Figure 0004069506
【0039】
【表2】
Figure 0004069506
【0040】
表1から、本発明例は、引張強さ500MPa以上の高強度の焼結体となっており、しかも摩耗量も少なく耐摩耗性にも優れていることがわかる。また、引張強さ800MPa以上の高強度の焼結体も比較的低合金元素添加量で得られている。一方、本発明の範囲を外れる比較例No.23 は、低温焼結および焼結後の熱処理省略のため500MPa未満の低い引張強さしか得られていない。さらに、Crを含む従来例(No.32 )では、弱酸化性の焼結雰囲気のため高強度が得られていない。また、Niを多量に部分合金化した、あるいは添加混合した比較例(No. 37、No. 41)では700MPa以下の低い引張強さしか得られていないうえ、摩耗量も多い。また、Niを多量に添加した従来例(No.33 )では、低温焼結、熱処理省略のため、引張強さ800MPa以上の高強度が得られていない。
【0041】
(実施例2)
表2に示す組成の合金元素を含み残部Feおよび不可避的不純物からなる組成の予合金化鋼粉を水アトマイズ法で製造した。水アトマイズ処理後、還元焼鈍、粉砕し平均粒径70μmの粉末とした。なお、これら水アトマイズ合金鋼粉のうちの一部は、さらに表2に示すCu、Ni含有量となるようにCu粉、Ni粉を混合した混合粉とした。
【0042】
また、これら水アトマイズ合金鋼粉のうちの一部は、さらにCu粉、Ni粉を混合し、水素雰囲気中で880 ℃×1hrの熱処理を施し、Cu、Niを部分合金化した合金鋼粉とした。また、表2に示す量のCを含有し残部Feおよび不可避的不純物からなる組成の溶湯を溶製し、水アトマイズ処理によりFe−C系水アトマイズ粉とした。水アトマイズ処理後、ディスクミル装置により粉砕し、平均10〜49μmの水アトマイズ粉とした。
【0043】
ついで、表に示す組成の合金鋼粉に、表2に示すFe−C系水アトマイズ粉をC換算で 0.3または 0.6wt%配合し、さらに一部のものには、黒鉛粉:0.3 wt%を配合し、さらにステリアン酸亜鉛粉:1%を配合し、Vブレンダーで混合したのち、成形圧力490MPaで成形し,成形体とした。ついでこれら成形体にRXガス雰囲気中で1130℃×20min の焼結処理を施し、焼結体とした。これら、焼結体の引張強さ、耐摩耗特性および密度を調査した。
【0044】
なお、従来例として、表2に示す合金鋼粉に黒鉛粉:0.6 wt%およびステリアン酸亜鉛粉:1%を添加し、Vブレンダーで混合したのち、成形圧力590MPaで成形し成形体とした。ついで、これら成形体に本発明例、比例例と同様にRXガス(プロパン変性ガス)雰囲気中で焼結を施し、焼結体とした。
それらの結果を表2に示す。
【0045】
【表3】
Figure 0004069506
【0046】
表2から、C含有量が本発明の範囲にあるFe−C系水アトマイズ粉を用いた本発明例は、液相が生成し、焼結密度が6.9Mg/m3以上と高密度の焼結体であり、引張強さ500MPa以上あるいは800MPa以上の高強度の焼結体となっている。また、Fe−C系水アトマイズ粉の粒径が30μm以下となる本発明例では、焼結密度が7.2Mg/m3以上の高密度となっている。また、本発明例の耐摩耗特性は、摩耗量8.0 ×10-3mm3 以下と優れている。
【0047】
これに対し、本発明の範囲を外れる比較例では、液相が生成せず焼結密度も低く、引張強さも低く、耐摩耗性も劣化している。また、黒鉛粉を用い、Crを含む従来例では、液相が生成せず、焼結密度は低く、弱酸化性の焼結雰囲気のため引張強さも低い。
【0048】
【発明の効果】
本発明によれば、従来の合金鋼粉に比べ、弱酸化性雰囲気での低温焼結を施すことがが可能となり、低温焼結でしかも熱処理を施さずに高強度の焼結部品が製造でき、経済的に安価の焼結部品を提供できるという、産業上格段の効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloy steel powder for powder metallurgy, and more particularly to an alloy steel powder and a mixed powder suitable for manufacturing high-strength sintered parts for automobiles.
[0002]
[Prior art]
In general, powder metallurgy is a technique in which a metal powder is pressed in a mold to form a molded body and then sintered to produce a machine part or the like. For example, when iron powder is used as the metal powder, the powder is mixed with Cu powder, graphite powder, etc., molded, sintered, and usually a sintered body having a density of about 5.0 to 7.2 g / cm 3 To do. By using such a powder metallurgy method, it is possible to manufacture a machine part having a considerably complicated shape with high dimensional accuracy. For this reason, sintered bodies using powder metallurgy are widely used as automotive parts such as gears.
[0003]
These sintered parts for automobiles are required to have high strength and excellent wear resistance, but in order to improve strength and wear resistance, alloy elements are added to the sintered body. It is generally performed to produce a product by performing a heat treatment such as quenching and tempering.
The addition of alloy elements to the sintered body is conventionally used when using prealloyed alloy steel powder produced by uniformly alloying alloy elements such as Cr and Mn in pure iron powder. As disclosed in Japanese Patent No. 45-9649, partially alloyed alloy steel powder in which alloy elements such as Ni, Mo, and Cu are diffused and adhered to iron powder may be used.
[0004]
However, when prealloyed alloy steel powder is used, the compressibility at the time of molding often deteriorates, so that a high sintered density cannot be obtained and high strength cannot be obtained. On the other hand, when partially alloyed alloy steel powder is used, the compressibility at the time of forming is higher than that of prealloyed steel powder, but the composition becomes non-uniform and the structure uniformity after heat treatment decreases. The problem such as was left.
[0005]
For example, in Japanese Patent Laid-Open No. 2-104636, it is proposed to use a prealloyed alloy steel powder as a raw material powder used for an iron-based sintered alloy for a valve seat, and Fe: containing Mo: 3 to 14 wt% Examples of Mo-based powders are disclosed.
JP-A-1-215904 discloses a partially alloyed alloy steel powder in which Ni is partially alloyed with Mo and Cu as an alloy steel powder used for heat treatment after forming and sintering. Proposed.
[0006]
Japanese Laid-Open Patent Publication No. 6-81001 proposes an alloy steel powder that is used in applications where heat treatment is performed after forming and sintering, and the strength, fatigue characteristics, and dimensional accuracy are improved. This alloy steel powder contains Mo: 0.05 to 2.5 wt% and one or more of Nb, V, and Ti as prealloy components in the range of 0.005 to 0.08 wt%, respectively, and Ni: 0.5 It contains at least one of ˜5 wt% and Cu: 0.5 to 2.5 wt% as a partial alloying component.
[0007]
[Problems to be solved by the invention]
Furthermore, recently, in order to reduce the manufacturing cost, a method for manufacturing a sintered part, in which a high-strength sintered part is manufactured by low-temperature sintering in which the sintering temperature in a weakly oxidizing atmosphere such as RX gas is reduced. In addition, there is a demand to omit heat treatment after sintering. There is a demand for a raw steel powder that has such a low-temperature sintering treatment and that does not require the subsequent heat treatment, so that the strength of the sintered component after sintering is high.
[0008]
However, when sintering in a weak oxidizing atmosphere, prealloying an easily oxidizable alloy element such as Cr, Mn, etc., the prealloyed alloy element is oxidized and the desired strength improvement cannot be obtained. There was a problem. On the other hand, the alloy steel powder described in Japanese Examined Patent Publication No. 45-9649 that partially alloyed alloy elements such as Ni, Mo, Cu, etc. has no problem of oxidation of the alloy element. The purpose is to perform a heat treatment after sintering, and an alloy element such as Ni is not sufficiently diffused and homogenized as it is sintered, and a high strength of not less than 500 MPa, preferably not less than 800 MPa cannot be achieved. Further, in the alloy steel powder described in JP-A-2-104636, it is necessary to add a large amount of expensive Mo for high strength, and there is a problem when aiming at an inexpensive sintered part. It was.
[0009]
In addition, the alloy steel powder described in JP-A-1-215904 is also premised on heat treatment after sintering, ensuring high strength of 500 MPa or more, preferably 800 MPa or more when sintered. In addition to being difficult to perform, there is a problem that the amount of alloying elements to be partially alloyed is large, which is economically disadvantageous.
Further, the alloy steel powder described in JP-A-6-81001 is intended for heat treatment, and as it is sintered, a tensile strength of 500 MPa or more, preferably 800 MPa or more cannot be achieved. There was a problem.
[0010]
In view of the above situation, the present invention is subjected to a low-temperature sintering treatment, desirably a low-temperature sintering treatment in a weakly oxidizing atmosphere, and the strength as it is sintered has a tensile strength of 500 MPa or more, more preferably 800 MPa or more. An object of the present invention is to provide an alloy steel powder capable of producing a high-strength sintered part having high strength.
[0011]
[Means for Solving the Problems]
As a result of diligent studies to achieve the above-mentioned problems, the present inventors used an atomized alloy steel powder produced by water atomization as steel powder, and further pre-alloyed as an element for improving the strength. it had been oxidized difficulty, by selecting Mo, be subjected to low-temperature sintering treatment in a weakly oxidizing atmosphere, it is possible to produce the sintered part having a tensile strength higher strength than 800MPa to I found.
[0012]
In addition, by using Fe-C water atomized powder instead of graphite powder that has been added to steel powder in the past, it becomes easier to form a liquid phase at the time of sintering, and the rounded pores can be spheroidized. Furthermore, the present inventors have found that pores can be reduced or reduced, which is suitable for manufacturing high-strength sintered parts.
The present invention is configured based on the above-described knowledge.
[0014]
Also, the present invention is, as prealloyed element, Mo: 3.5 to 10 wt% hints balance of Fe and water-atomized alloyed steel powder consisting of unavoidable impurities, and et al in Cu: 10 wt% or less, Ni: less 10 wt% It is an alloy steel powder for high-strength sintered parts, characterized in that one or two selected from among them are partially alloyed.
[0015]
Further, the present invention, Mo: 3.5 to 10 wt% in the water-atomized alloyed steel powder and the balance Fe and unavoidable impurities include by pre-alloyed, is et to Cu powder: 10 wt% or less, Ni powder: The following 10 wt% It is a mixed powder for high-strength sintered parts, wherein one or two selected from among them are added and mixed.
[0016]
In the present invention, Fe: C-based water atomized powder containing C: 2 to 5 wt%, preferably remaining Fe and unavoidable impurities is added to the above alloy steel powder so as to have a predetermined C amount. In addition, it is a mixed powder for high-strength sintered parts characterized by further mixing a lubricant or a graphite powder, and the Fe-C water atomized powder preferably has an average particle size of 30 μm or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, molten steel pre-alloyed with a predetermined amount of alloy element is melted and water atomized to obtain pre-alloyed water atomized alloy steel powder. Water atomization may be performed using a generally known apparatus and method, and is not particularly limited. Needless to say, the steel powder is subjected to finish reduction treatment and pulverization according to a conventional method after water atomization.
[0018]
The reason for limiting the composition of the prealloyed water atomized alloy steel powder will be described.
In the present invention , Mo is selected as the main alloy element to be prealloyed . Mo is not oxidized even when sintered in a weakly oxidizing atmosphere, and the strength can be improved efficiently. In addition, when Mo is the main prealloy element, one or two of Cu powder and Ni powder are used to diffuse and adhere to the alloy steel powder, and one or two of Cu and Ni are partially deposited. It shall be alloyed. By doing in this way, the fall of the compressibility of the steel powder by the solid solution strengthening of Cu and Ni is avoided .
[0022]
Next, the case where Mo is contained as the main prealloy element will be described.
When Mo is the main prealloying element , Cu and Ni are partially alloyed and contained because tensile strength of 500 MPa or more cannot be secured by adding Mo alone.
Mo: 3.5 ~10wt%
Mo is an element that improves strength by solid solution strengthening, transformation strengthening, and precipitation precipitation strengthening of carbides, and even when pre-alloyed, there is little decrease in compressibility. However, if Mo is less than 3.5 wt%, the effect of improving the strength is not sufficient. On the other hand, if Mo is contained in excess of 10 wt%, the compressibility decreases and the strength and toughness decrease. For this reason, Mo was limited to the range of 3.5 to 10 wt% . Also, since no Mo and Cu are dissolved, the number of precipitation amount coexists, strength is improved.
[0024]
The alloy steel powder of the present invention is the remaining Fe and inevitable impurities other than the alloy elements described above.
In the present invention, alloy steel powder in which Cu powder and Ni powder are mixed and diffused and adhered by heat treatment to alloy steel powder mainly prealloyed with Mo having the above composition and Cu and Ni are partially alloyed may be used. Also in this case, the content of Cu may than 10 wt%. Further, the content of Ni is set to 10 wt% or less similarly to Cu .
[0025]
Cu: 10.0wt% or less
Cu, when complexed with Mo, like Cu content in the sintered part is a predetermined amount, or a mixed powder obtained by mixing and blending Cu powder alloy steel powder, or a binder to alloy steel powder It is preferable to make it contain by the method of making it the mixed powder made to adhere | attach, or making the alloy steel powder which carried out the diffusion adhesion of Cu powder to the alloy steel powder, and made it the partial alloying. Especially, it is preferable from the viewpoint of preventing segregation of Cu powder to use alloy steel powder in which Cu is partially alloyed.
[0026]
If the Cu content exceeds 10.0 wt%, the compressibility decreases and the strength and toughness decrease. For this reason, Cu content was limited to 10.0 wt% or less. If the Cu content is less than 1.0 wt%, the degree of improvement in strength is small, preferably 1.0 wt% or more. More preferably, it is in the range of 2 to 5 wt%. Moreover, since Mo and Cu do not form a solid solution, the amount of precipitation increases and the strength improves when they coexist.
[0027]
Ni: 10wt% or less
Ni, when complexed with Mo, like Ni content in the sintered part is a predetermined amount, or a mixed powder obtained by mixing and blending the Ni powder alloy steel powder, or a binder to alloy steel powder It is preferable to contain them by a mixed powder adhering to the above, or by a method in which Ni powder is diffused and adhered to alloy steel powder to obtain a partially alloyed alloy steel powder. Especially, it is preferable from the viewpoint of preventing segregation of Ni powder to use alloy steel powder in which Ni is partially alloyed.
[0028]
Ni is an element that has the effect of shifting the bainite or martensite transformation start temperature to the low temperature side to refine the structure, strengthen the matrix, and increase the strength of the sintered material. However, if the Ni content exceeds 10 wt%, the amount of austenite increases and the strength decreases. For this reason, the Ni content is desirably 10 wt% or less. Note that when the Ni content is less than 0.5 wt%, the effect of improving the strength is small, so that it is more preferably 0.5 wt% or more. More preferably, it is 2 to 6 wt%.
[0029]
In addition, one or two of Cu powder and Ni powder may be blended and mixed with alloy steel powder pre-alloyed mainly with Mo having the above composition, or a binder may be added to the alloy steel powder. It is also possible to use a mixed powder adhered in the above.
In the present invention, C: 2 to 5 wt% Fe-C water atomized powder is further added to the alloy steel powder of any of the above-described compositions so that the C amount of the sintered part becomes a predetermined C amount, Further, a lubricant or, if necessary, graphite powder is added and mixed by a usual method such as a V blender, then compression molded to a predetermined powder density, and then sintered and sintered. Is done. The sintered body is used as a sintered part as it is, or further processed into a predetermined dimensional shape by cutting or the like to obtain a sintered part.
[0030]
Fe-C system water atomized powder melts molten steel containing C: 2 to 5 wt%, and performs water atomization to obtain water atomized powder. The water atomization treatment may be performed using a generally known apparatus and method, and is not particularly limited. Since water atomized powder is rapidly cooled with water from a molten state, it is close to an amorphous state, and during sintering, C in the powder is difficult to diffuse, and C remains locally present, which makes it easier to form a liquid phase. There are advantages.
[0031]
When the C content of Fe-C water atomized powder is less than 2 wt% or more than 5 wt%, the liquid phase generation temperature becomes high, and at normal sintering temperature, no liquid phase is formed during sintering. It cannot be spheroidized, and the expected effect cannot be expected without the reduction or disappearance of the pores. For this reason, C content of water atomized powder was limited to 2-5 wt%.
[0032]
Moreover, it is not necessary to add an alloying element to Fe—C water atomized powder in addition to C, and the balance is preferably Fe and inevitable impurities. However, it is acceptable that Si is 0.1 wt% or less, Mn is 0.2 wt% or less, P is 0.01 wt% or less, and S is 0.01 wt% or less.
The Fe-C water atomized powder that has been subjected to water atomization usually has an average particle size of about 60 to 90 μm, and is preferably made finer by pulverization. The pulverization may be performed by a generally known apparatus and method, and is not particularly limited. The Fe—C water atomized powder used in the present invention is preferably a powder pulverized to an average particle size of 30 μm or less. When the average particle size of the Fe—C water atomized powder exceeds 30 μm, there is a problem that the voids after the liquid phase is generated are increased and the uniformity of C is deteriorated. In addition, the particle size of the powder in this invention uses the result measured by the sieving method.
[0033]
The blending amount of the graphite powder blended in the alloy steel powder or mixed powder of the present invention is preferably 0.3 to 1.0 wt%. Graphite powder is added in order to increase the strength by solid solution in iron.
Moreover, it is preferable that the compounding quantity of the lubricant mix | blended with the alloy steel powder or mixed powder of this invention as needed is 0.3-1 wt%. As the lubricant, zinc stearate, oleic acid and the like are suitable.
[0034]
Note that the alloy steel powder or mixed powder of the present invention has a predetermined high strength even if it is sintered at a low temperature of 1100 ° C. to 1200 ° C. in a gas atmosphere of RX gas, which is weakly oxidizing. However, the present invention is not limited to this condition, and it goes without saying that sintering can be performed at a high temperature in other atmospheres such as N 2 and AX gas.
[0035]
【Example】
Example 1
Prealloyed alloy steel powder having a composition comprising the alloy elements shown in Table 1 and including the remaining Fe and unavoidable impurities was prepared by a water atomization method. In addition, some of these water atomized alloy steel powders were mixed powders in which Cu powder and Ni powder were mixed so that the Cu and Ni contents shown in Table 1 were obtained. In addition, some of these water atomized alloy steel powders are further mixed with Cu powder and Ni powder, subjected to heat treatment at 880 ° C. for 1 hour in a hydrogen atmosphere, and alloy steel powders obtained by partially alloying Cu and Ni. did.
[0036]
Graphite powder: 0.8 wt% and zinc stearate powder: 1% were added to alloy steel powder and mixed powder having the composition shown in Table 1, mixed with a V blender, and then molded at a molding pressure of 590 MPa to obtain a molded body. These molded bodies were subjected to low-temperature sintering under conditions of 1130 ° C. × 20 min in an RX gas (propane-modified gas) atmosphere to obtain sintered bodies. About the obtained sintered compact, tensile strength and abrasion resistance were investigated.
[0037]
The wear resistance test was performed under the following conditions using an Ogoshi type wear test apparatus, the wear volume was measured, and the amount of wear was determined.
Load: 12.6kgf
Friction speed: 4.21m / s
Friction distance: 1500m
Wet: ATF oil, 1 drop / s
Opponent material: SUJ-2
The results are shown in Table 1.
[0038]
[Table 1]
Figure 0004069506
[0039]
[Table 2]
Figure 0004069506
[0040]
From Table 1, it can be seen that the present invention example is a high-strength sintered body having a tensile strength of 500 MPa or more, and has a small amount of wear and excellent wear resistance. In addition, a high-strength sintered body having a tensile strength of 800 MPa or more is obtained with a relatively low alloy element addition amount. On the other hand, a comparative example out of the scope of the present invention ( No. 23 ) Has obtained a low tensile strength of less than 500 MPa because of low-temperature sintering and omission of heat treatment after sintering. Further, in the conventional example containing Cr (No. 32), high strength is not obtained due to the weak oxidizing sintering atmosphere. Further, comparative examples (No. 37, No. 41) in which a large amount of Ni is partially alloyed or added and mixed have a low tensile strength of 700 MPa or less, and also have a large amount of wear. Further, in the conventional example (No. 33) in which a large amount of Ni is added, high strength with a tensile strength of 800 MPa or more is not obtained because low temperature sintering and heat treatment are omitted.
[0041]
(Example 2)
A pre-alloyed steel powder having a composition including the alloy elements having the composition shown in Table 2 and the balance Fe and unavoidable impurities was produced by a water atomization method. After the water atomization treatment, reduction annealing and pulverization were performed to obtain a powder having an average particle size of 70 μm. In addition, some of these water atomized alloy steel powders were mixed powders in which Cu powder and Ni powder were further mixed so as to have the Cu and Ni contents shown in Table 2.
[0042]
In addition, some of these water atomized alloy steel powders are further mixed with Cu powder and Ni powder, subjected to heat treatment at 880 ° C. for 1 hour in a hydrogen atmosphere, and alloy steel powders obtained by partially alloying Cu and Ni. did. Moreover, the melt of the composition which contains the quantity of C shown in Table 2, and consists of remainder Fe and an unavoidable impurity was melted, and it was set as the Fe-C type water atomized powder by the water atomization process. After the water atomization treatment, the mixture was pulverized by a disk mill device to obtain water atomized powder having an average of 10 to 49 μm.
[0043]
Then, the alloy steel powder of composition shown in Table 2, the Fe-C-based water atomized powder shown in Table 2 were blended 0.3 or 0.6 wt% in C terms, and even more those of the part, the graphite powder: 0.3 wt% In addition, zinc stearate powder: 1% was mixed, mixed with a V blender, and then molded at a molding pressure of 490 MPa to obtain a molded body. Subsequently, these compacts were sintered at 1130 ° C. for 20 minutes in an RX gas atmosphere to obtain sintered bodies. The tensile strength, wear resistance and density of the sintered bodies were investigated.
[0044]
As a conventional example, graphite powder: 0.6 wt% and zinc stearate powder: 1% were added to the alloy steel powder shown in Table 2, mixed with a V blender, and then molded at a molding pressure of 590 MPa to obtain a molded body. Subsequently, these molded bodies were sintered in an RX gas (propane-modified gas) atmosphere in the same manner as in the examples of the present invention and proportional examples to obtain sintered bodies.
The results are shown in Table 2.
[0045]
[Table 3]
Figure 0004069506
[0046]
From Table 2, the present invention example using the Fe-C water atomized powder having a C content within the range of the present invention produces a liquid phase and has a sintered density of 6.9 Mg / m 3 or more and a high density firing. It is a sintered body and is a high-strength sintered body with a tensile strength of 500 MPa or more or 800 MPa or more. Moreover, in the example of the present invention in which the particle size of the Fe—C water atomized powder is 30 μm or less, the sintered density is a high density of 7.2 Mg / m 3 or more. In addition, the wear resistance characteristics of the examples of the present invention are excellent with a wear amount of 8.0 × 10 −3 mm 3 or less.
[0047]
On the other hand, in the comparative example outside the scope of the present invention, a liquid phase is not generated, the sintered density is low, the tensile strength is low, and the wear resistance is also deteriorated. Further, in the conventional example using graphite powder and containing Cr, a liquid phase is not generated, the sintered density is low, and the tensile strength is low because of a weakly oxidizing sintering atmosphere.
[0048]
【The invention's effect】
According to the present invention, it becomes possible to perform low-temperature sintering in a weakly oxidizing atmosphere as compared with conventional alloy steel powder, and high-strength sintered parts can be manufactured by low-temperature sintering and without heat treatment. In this way, it is possible to provide economically inexpensive sintered parts, which has a remarkable industrial effect.

Claims (4)

予合金元素として、Mo:3.5 〜10wt%を含み残部Feおよび不可避的不純物からなる水アトマイズ合金鋼粉に、さらにCu:10wt%以下、Ni:10wt%以下のうちから選ばれた1種または2種を部分合金化したことを特徴とする高強度焼結部品用合金鋼粉。  As a pre-alloying element, Mo: 3.5 to 10 wt%, and the water atomized alloy steel powder consisting of the balance Fe and inevitable impurities, Cu: 10 wt% or less, Ni: 10 wt% or less selected from one or two Alloy steel powder for high-strength sintered parts, characterized by partial alloying of seeds. Mo:3.5 〜10wt%を予合金化して含み残部Feおよび不可避的不純物からなる水アトマイズ合金鋼粉に、さらにCu粉:10wt%以下、Ni粉:10wt%以下のうちから選ばれた1種または2種を添加混合したことを特徴とする高強度焼結部品用混合粉。  Mo: 3.5 to 10 wt% pre-alloyed and water atomized alloy steel powder consisting of the remainder Fe and inevitable impurities, Cu powder: 10 wt% or less, Ni powder: 1 type selected from 10 wt% or less A mixed powder for high-strength sintered parts, wherein two kinds are added and mixed. 請求項1に記載の合金鋼粉に、さらにC:2〜5wt%を含有するFe−C系水アトマイズ粉を所定のC量となるように添加し、さらに潤滑剤あるいはさらに黒鉛粉を混合したことを特徴とする高強度焼結部品用混合粉。To the alloy steel powder according to claim 1, Fe—C water atomized powder further containing C: 2 to 5 wt% is added so as to have a predetermined C amount, and a lubricant or further graphite powder is further mixed. A mixed powder for high-strength sintered parts. 前記Fe−C系水アトマイズ粉が、平均粒径30μm 以下であることを特徴とする請求項3に記載の高強度焼結部品用混合粉。  The mixed powder for high-strength sintered parts according to claim 3, wherein the Fe-C water atomized powder has an average particle size of 30 µm or less.
JP21689998A 1998-02-19 1998-07-31 Alloy steel powder and mixed powder for high strength sintered parts Expired - Fee Related JP4069506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21689998A JP4069506B2 (en) 1998-02-19 1998-07-31 Alloy steel powder and mixed powder for high strength sintered parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-56264 1998-02-19
JP5626498 1998-02-19
JP21689998A JP4069506B2 (en) 1998-02-19 1998-07-31 Alloy steel powder and mixed powder for high strength sintered parts

Publications (2)

Publication Number Publication Date
JPH11302787A JPH11302787A (en) 1999-11-02
JP4069506B2 true JP4069506B2 (en) 2008-04-02

Family

ID=26397216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21689998A Expired - Fee Related JP4069506B2 (en) 1998-02-19 1998-07-31 Alloy steel powder and mixed powder for high strength sintered parts

Country Status (1)

Country Link
JP (1) JP4069506B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952006B2 (en) 2003-11-26 2007-08-01 セイコーエプソン株式会社 Raw material powder for sintering or granulated powder for sintering and sintered body thereof
EP2231353B1 (en) * 2008-01-04 2014-11-05 Gkn Sinter Metals, Llc Prealloyed copper powder forged connecting rod
JP5903738B2 (en) * 2012-03-29 2016-04-13 住友電工焼結合金株式会社 Method for producing ferrous sintered alloy
US20210047713A1 (en) * 2018-03-26 2021-02-18 Jfe Steel Corporation Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
US11236411B2 (en) 2018-03-26 2022-02-01 Jfe Steel Corporation Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
CN110039039A (en) * 2019-04-10 2019-07-23 丹阳宝盈新材料科技有限公司 A kind of 3D printing powder of stainless steel
KR20210029582A (en) * 2019-09-06 2021-03-16 현대자동차주식회사 Iron-based prealloy powder, iron-based diffusion-bonded powder, and iron-based alloy powder for powder metallurgy using the same
CN114450102A (en) * 2019-09-27 2022-05-06 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body

Also Published As

Publication number Publication date
JPH11302787A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
CN1662327B (en) Prealloyed iron-based powder, a method of producing sintered components and a component
JP5958144B2 (en) Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body
US20200156156A1 (en) Powder metal material for wear and temperature resistance applications
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
JP4069506B2 (en) Alloy steel powder and mixed powder for high strength sintered parts
CN104711485A (en) Low alloyed steel powder
JP2011094187A (en) Method for producing high strength iron based sintered compact
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JPH10140206A (en) Low alloy steel powder for sintering and hardening
JP3663929B2 (en) Mixed powder for high strength sintered parts
CN110267754B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
KR20150132856A (en) Powder metal compositions for wear and temperature resistance applications and method of producing same
US6652618B1 (en) Iron based mixed power high strength sintered parts
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JPH11229001A (en) Production of high strength sintered parts
JP4013395B2 (en) Iron-based mixed powder for high-strength sintered parts
JP4093070B2 (en) Alloy steel powder
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP4367133B2 (en) Iron-based powder mixture for high-strength sintered parts
JP4151654B2 (en) Mixed powder for high strength sintered parts
JP2012126972A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same
CN110234448B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP2021042463A (en) Iron base pre-alloyed powder, iron based diffusion bonded powder, and powder metallurgical alloy powder using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees