JPH07135275A - Heat radiating substrate, its manufacture, and plastic package using it - Google Patents

Heat radiating substrate, its manufacture, and plastic package using it

Info

Publication number
JPH07135275A
JPH07135275A JP30221093A JP30221093A JPH07135275A JP H07135275 A JPH07135275 A JP H07135275A JP 30221093 A JP30221093 A JP 30221093A JP 30221093 A JP30221093 A JP 30221093A JP H07135275 A JPH07135275 A JP H07135275A
Authority
JP
Japan
Prior art keywords
base material
heat dissipation
dissipation board
bonding
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30221093A
Other languages
Japanese (ja)
Inventor
Tadashi Arikawa
正 有川
Tadashi Igarashi
廉 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP30221093A priority Critical patent/JPH07135275A/en
Priority to US08/157,295 priority patent/US5493153A/en
Publication of JPH07135275A publication Critical patent/JPH07135275A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide a heat radiating plate which can have a desired coefficient of thermal expansion, can be improved in heat conductivity and strength, and can be reduced in weight, the manufacturing method of the substrate, and a plastic package using the substrate. CONSTITUTION:A metallic composite material for a heat radiating substrate is composed of a base material having two surfaces, a front surface and rear surface, and a clad material which is tightly bonded to at least one surface of the base material. The base material contains aluminum and the clad material contains molybdenum. The ply material is a layer material provided at, at least, one surface of the base material. The composite material has a coefficient of thermal expansion of 9X10<-6>/ deg.C to 23X10<-6>/ deg.C as a whole. At the time of manufacturing the composite material, the base material containing at least aluminum and having two surfaces, front surface and rear surface, and the clad material composed of molybdenum are stuck to each other under a static pressure or under the combination of the static pressure and rolling at a room temperature or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,放熱基板用金属複合材
料に関し,詳しくは,アルミニウム又はアルミニウム合
金からなる基材とモリブデンを含む合わせ材とから成る
放熱基板及び当該放熱基板を有するプラスチックパッケ
ージに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal composite material for a heat dissipation board, and more particularly to a heat dissipation board composed of a base material made of aluminum or an aluminum alloy and a composite material containing molybdenum, and a plastic package having the heat dissipation board. .

【0002】[0002]

【従来の技術】最近,高密度化や高速化の他に,安価に
大量生産可能なパッケージの検討も行われている。この
ため,いわゆる高価なセラミックよりもプラスチック材
料を用いた所謂プラスチックパッケージと呼ばれるもの
が提案されている。この種のプラスチックパッケージの
放熱基板上に搭載された半導体チップを樹脂モールドし
た構成を有している。このプラスチックパッケージに封
入される。チップの汎用化を進めるには,パッケージ材
料との熱膨張係数が近似しているか或いはパッケージ組
立後の熱的整合性を考慮した材料が必要であり,またパ
ッケージに必要な加工,めっき,ろう付け性が良いこと
も要求される。
2. Description of the Related Art Recently, in addition to high density and high speed, a package that can be mass-produced at low cost has been studied. Therefore, what is called a plastic package using a plastic material rather than a so-called expensive ceramic has been proposed. The semiconductor chip mounted on the heat dissipation substrate of this type of plastic package is resin-molded. Enclosed in this plastic package. In order to promote the general-purpose use of chips, it is necessary to use a material that has a thermal expansion coefficient similar to that of the package material or that considers the thermal compatibility after package assembly, and the processing, plating, and brazing required for the package. Good quality is also required.

【0003】更に,チップの高集積化に伴いパッケージ
サイズも大型化していることから,これに供する放熱基
板の重量もパッケージ設計上,より軽量化の要求が厳し
くなる傾向にある。
Further, as the size of the package increases with the high integration of the chips, the weight of the heat dissipation board provided for this also tends to be more strict in terms of package design.

【0004】[0004]

【発明が解決しようとする課題】このような放熱基板の
軽量化の要求に応えるためには,放熱基板の熱膨張率
は,半導体素子のシリコン(Si)やガリウムひ素(G
aAs)のそれより大きくならざるを得ない。このよう
な背景から半導体素子搭載用基板には,銅(Cu)−タ
ングステン(W)系複合材料あるいはCu−モリブデン
(Mo)系複合材料等が提案されてきている。これらの
複合材料は,高融点金属,例えば,タングステンの多孔
質焼結体にCuを含浸することによって,形成されてい
る。しかし,これらの材料において,プラスチックパッ
ケージ用放熱基板に許容される熱膨張係数の範囲は未だ
未確定の状況にある。
In order to meet the demand for reducing the weight of the heat dissipation substrate, the coefficient of thermal expansion of the heat dissipation substrate should be set to silicon (Si) or gallium arsenide (G) of the semiconductor element.
It must be larger than that of aAs). From such a background, copper (Cu) -tungsten (W) -based composite materials, Cu-molybdenum (Mo) -based composite materials, and the like have been proposed for semiconductor element mounting substrates. These composite materials are formed by impregnating a refractory metal, for example, a porous sintered body of tungsten with Cu. However, in these materials, the range of the coefficient of thermal expansion allowed for the heat dissipation substrate for plastic packages is still uncertain.

【0005】そこで,本発明の技術的課題は,プラスチ
ックパッケージに適した熱膨張係数を有する放熱基板,
その製造方法,及びそれを用いたプラスチックパッケー
ジを提供することにある。
Therefore, a technical problem of the present invention is to dissipate a heat dissipation board having a coefficient of thermal expansion suitable for a plastic package,
It is to provide a manufacturing method thereof and a plastic package using the same.

【0006】[0006]

【課題を解決するための手段】本発明によれば,表裏2
面を有する基材と,該基材の2面のうちの少なくとも一
方に密着した合わせ材により形成され,前記基材はアル
ミニウムを含み,前記合わせ材はモリブデンを含む金属
複合材料において,前記合わせ材は,前記基材の少なく
とも一面に位置する層状材料であり,前記複合材料全体
の熱膨張係数が9〜23×10-6/℃の範囲内にあるこ
とを特徴とするプラスチックパッケージ用放熱基板が得
られる。
According to the present invention, the front and back sides 2
A metal composite material including a base material having a surface and a bonding material in close contact with at least one of the two surfaces of the base material, the base material including aluminum, and the bonding material including molybdenum; Is a layered material located on at least one surface of the base material, and the thermal expansion coefficient of the entire composite material is within the range of 9 to 23 × 10 −6 / ° C. can get.

【0007】更に,本発明によれば,少なくともアルミ
ニウムを含み表裏をなす2面を有する基材とモリブデン
を含む合わせ材とを,室温以上で静的圧力あるいは静的
圧力と圧延との組合せにより接合することを特徴とする
プラスチックパッケージ用放熱基板の製造方法が得られ
る。
Further, according to the present invention, a base material having at least two sides including aluminum and a front surface and a back surface, and a composite material containing molybdenum are joined at room temperature or higher by static pressure or a combination of static pressure and rolling. A method of manufacturing a heat dissipation substrate for a plastic package, which is characterized in that

【0008】[0008]

【実施例】以下,本発明の実施例について,図面を参照
して説明する。 (実施例1)基材用素材として亜鉛置換法によりNiを
3μmめっきした直径(D)200mmで厚さ(T)
0.75mmのAl(エル)板と,合わせ材用素材に,
同直径の厚さ0.15mmのMo板をMo/Al(エ
ル)/Moと3層になるように重ね,ホットプレスによ
り接着した。この時の接着条件は,真空中において荷
重:280kgf/cm2 ,加熱温度:500℃で2時
間保持したことによる。このようにして出来上がった積
層板の厚さは1.05mm,これをメッシュ#8000
砥粒で両面ラッピングにより厚さ1.0mmにした。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) Ni (3 μm) plated by a zinc substitution method as a material for a base material has a diameter (D) of 200 mm and a thickness (T).
For 0.75mm Al plate and the material for the laminated material,
Mo plates having the same diameter and a thickness of 0.15 mm were laminated with Mo / Al (L) / Mo so as to have three layers and bonded by hot pressing. The bonding conditions at this time are that the load was 280 kgf / cm 2 and the heating temperature was 500 ° C. for 2 hours in vacuum. The thickness of the laminated board thus completed is 1.05 mm, and the thickness of this is mesh # 8000.
The thickness was 1.0 mm by lapping both sides with abrasive grains.

【0009】この積層板の各層の形状は,図1に示した
ように均一で,いわゆるくびれは全く見られなかった。
また熱膨張係数は12.4×10-6/℃,熱伝導率は1
98W/mKであった。密度は4.8g/cm3 ,接合
強度については2.0kgf/mm2 あり十分強度のあ
ることが確認された。さらにこの複合板を□22mmの
サイズにフローティング方式により打ち抜きを行い,N
iめっきを施したところ,外周にクラックは見られず,
めっきのムラや膨れもなく良好な放熱基板が得られた。
しかもまた,断面を観察すると,合わせ材(Mo)は最
小で0.095mm,基材{Al(エル)}も最小で
0.449mmであった。接合後複合材料の全体は,
0.99〜1.01mmの範囲にあった。厚さの偏差
は,測定する層の厚さの最大値(Tmax )−厚さの最小
値(Tmin )をこの層の厚さの平均値(Ta)で除した
値の百分率{=(Tmax −Tmin )×100/Ta
(%)}で示され,合わせ材については3.1%,基材
については2.4%であった。 (実施例2)基材用素材として厚さ2.65mmのAl
(エル)板と,合わせ材用素材に厚さ0.18mmのM
o板を実施例1と同様の手順,条件にて接着した。この
積層板の厚さは3.01mm,これを冷間圧延により厚
さ3.0mmに仕上げた。偏差は合わせ材においては
2.2%,基材においては4.8%であった。実施例1
と同様に,この積層板の各層の形状は均一でくびれは全
く見られなかった。またこの積層材の熱膨張係数は1
7.4×10-6/℃,熱伝導率は215W/mKで,密
度は3.6g/cm3 と軽量化された。接合強度は4.
9kgf/mm2 であり,十分強度のあることが確認さ
れ,また,機械加工性およびめっき性も良好であった。 (実施例3)基材用素材に厚さ1mmのAl(エル)板
と,合わせ材用素材に厚さ15μmのMo板を3層に重
ねホットプレスにより接着した。この時の接着条件は,
真空中において荷重:200kgf/cm2 ,加熱温
度:550℃で2時間保持したことによる。加工上がり
の積層板の厚さは1.03mm,これをラッピングによ
り厚さ1.0mmに仕上げた。この積層板の層形状は均
一でくびれは全く見られず良好であった。また,厚さの
偏差は,合わせ材については3.3%,基材については
0.5%であった。また熱膨張係数は21.8×10-6
/℃,熱伝導率は230W/mK,接合強度は3.2k
gf/mm2 を示し,十分強度のあることが確認され
た。さらに密度は3.1g/cm3 と軽く,機械加工性
およびめっき性も良好であった。
The shape of each layer of this laminate was uniform as shown in FIG. 1, and no so-called constriction was observed.
The coefficient of thermal expansion is 12.4 × 10 -6 / ° C, and the thermal conductivity is 1
It was 98 W / mK. It was confirmed that the density was 4.8 g / cm 3 and the bonding strength was 2.0 kgf / mm 2, which was sufficiently strong. Furthermore, this composite board was punched out to a size of □ 22 mm by the floating method, and N
When i-plated, no cracks were seen on the outer periphery,
A good heat dissipation substrate was obtained without unevenness or swelling of the plating.
Moreover, when the cross section was observed, the minimum amount of the laminated material (Mo) was 0.095 mm, and the minimum amount of the base material {Al (ell)} was 0.449 mm. The whole composite material after joining is
It was in the range of 0.99 to 1.01 mm. The thickness deviation is a percentage of the maximum value (Tmax) of the layer to be measured-the minimum value (Tmin) of the layer divided by the average value (Ta) of the layer thickness {= (Tmax- Tmin) × 100 / Ta
(%)}, And 3.1% for the laminated material and 2.4% for the base material. (Example 2) Al having a thickness of 2.65 mm as a base material
0.18 mm thick M for the (L) plate and the material for the laminated material
The o-plate was adhered according to the same procedure and conditions as in Example 1. The laminated plate had a thickness of 3.01 mm and was cold-rolled to a thickness of 3.0 mm. The deviation was 2.2% in the laminated material and 4.8% in the base material. Example 1
Similar to, the shape of each layer of this laminate was uniform and no constriction was observed. The coefficient of thermal expansion of this laminated material is 1
The weight was 7.4 × 10 -6 / ° C, the thermal conductivity was 215 W / mK, and the density was 3.6 g / cm 3 . Bonding strength is 4.
It was 9 kgf / mm 2 , which was confirmed to be sufficiently strong, and the machinability and plating property were also good. (Example 3) An Al (ell) plate having a thickness of 1 mm and a Mo plate having a thickness of 15 μm were laminated on a material for a base material and a Mo material having a thickness of 15 μm in three layers and bonded by hot pressing. The bonding condition at this time is
This is because the load was kept at 200 kgf / cm 2 and the heating temperature was 550 ° C. for 2 hours in vacuum. The thickness of the laminated plate after processing was 1.03 mm, and this was finished by lapping to a thickness of 1.0 mm. The layer shape of this laminate was uniform, and no constriction was observed at all, which was good. The thickness deviation was 3.3% for the laminated material and 0.5% for the base material. The coefficient of thermal expansion is 21.8 × 10 -6
/ ° C, thermal conductivity 230W / mK, bonding strength 3.2k
It showed gf / mm 2 and was confirmed to have sufficient strength. Furthermore, the density was as light as 3.1 g / cm 3, and the machinability and plating property were also good.

【0010】ここで,本発明者らの実験によれば,プラ
スチックパッケージ用放熱基板に要求される材料とし
て,9〜23×10-6/℃の熱膨張係数を有することで
ある。上記実施例1乃至3に於ける材料はいずれも,こ
の要件を満たしていた。
According to the experiments conducted by the present inventors, the material required for the heat dissipation substrate for a plastic package has a coefficient of thermal expansion of 9 to 23 × 10 -6 / ° C. The materials in Examples 1 to 3 all satisfied this requirement.

【0011】また,上記実施例において,圧接法とし
て,基材とモリブデンを含む合わせ材とを,室温以上で
静的圧力あるいは静的圧力と圧延との組合せにより接合
している。これらダイスによる加圧圧接法であるホット
プレスあるいはHIPによれば条件の設定により,所望
する不均一変形のない層厚比を有し所望する板厚が得ら
れる。このようにすればMo/Al(エル)/Moの3
層構造材はもちろんのこと,Mo/Al(エル)の2層
構造材の作製が容易であり,各層は均一に仕上がる。さ
らに必要に応じ表面を数%程度圧延により処理すれば,
平滑でかつ密着性の良い材料となり得る。
Further, in the above embodiment, as the pressure welding method, the base material and the composite material containing molybdenum are joined at room temperature or higher by static pressure or a combination of static pressure and rolling. By hot pressing or HIP, which is a pressure welding method using these dies, a desired plate thickness having a desired layer thickness ratio without nonuniform deformation can be obtained by setting conditions. In this way, Mo / Al (Mo) / Mo 3
Not only the layer structure material, but also the Mo / Al (ell) two-layer structure material can be easily manufactured, and each layer is finished uniformly. Furthermore, if necessary, if the surface is processed by rolling about a few percent,
It can be a material that is smooth and has good adhesion.

【0012】また,上記実施例において,基材及び合わ
せ材の内の少なくとも一方の表面にめっきを施すことに
よって,半田やろう付性を向上させたり,基材及び合わ
せ材の接着強度を増すことができる。
Further, in the above embodiment, by plating at least one surface of the base material and the bonding material, the soldering property and the brazing property are improved, and the adhesive strength between the base material and the bonding material is increased. You can

【0013】また,本発明者らの実験によれば,従来の
20質量%Cu−Mo焼結複合材と同等の熱膨張係数を
有する材料を得ようとする場合,層比率Mo:Al(エ
ル):Mo=1:1:1に相当し,この時の密度は7.
0g/cm3 となる。また80質量%Cu−Mo相当の
場合,同比率=1:8:1で密度が4.1g/cm3
なり50%以上軽量化される。しかも外表面はMoのた
めキズや打痕が付き難くめっき処理も容易となる。
According to the experiments conducted by the present inventors, in order to obtain a material having a thermal expansion coefficient equivalent to that of the conventional 20 mass% Cu-Mo sintered composite material, the layer ratio Mo: Al ): Mo = 1: 1: 1, and the density at this time is 7.
It becomes 0 g / cm 3 . Further, in the case of 80 mass% Cu-Mo equivalent, the density becomes 4.1 g / cm 3 at the same ratio = 1: 8: 1, and the weight is reduced by 50% or more. Moreover, since the outer surface is made of Mo, scratches and dents are less likely to occur, and the plating process becomes easy.

【0014】尚,本発明では,基材の厚さと合わせ材と
の全厚さの比率の下限を3:1(2:1,1:1等は含
まない)としている。その理由は,全厚が0.5〜3m
mが好ましく,夫々の板の加工精度の値が,仕上がりに
影響するからであり,これよりも小さくすると所望する
特性,接着強度,複合材料全体の熱膨張係数,厚さの偏
差,密度等が得られ難いからである。一方,本発明で
は,上限を70:1(71:1,72:1等は含まな
い)としたのは,これ以上大きくなると,市場要求も少
なく複合材料とは呼べず,複合材料としてのメリットが
無くなるからである。
In the present invention, the lower limit of the ratio of the thickness of the base material to the total thickness of the laminated material is 3: 1 (2: 1, 1: 1 etc. are not included). The reason is that the total thickness is 0.5 to 3 m.
m is preferable, because the value of the processing accuracy of each plate affects the finish, and if it is smaller than this, desired properties, adhesive strength, coefficient of thermal expansion of the entire composite material, thickness deviation, density, etc. This is because it is difficult to obtain. On the other hand, in the present invention, the upper limit is set to 70: 1 (71: 1, 72: 1, etc. are not included). When the upper limit is exceeded, market demand is small and it cannot be called a composite material. Is lost.

【0015】[0015]

【発明の効果】以上,説明したように,本発明において
は,所望する熱膨張率が得られ,高熱伝導率,高強度を
備え,軽量化を図ることができる放熱基板用金属複合材
料とその製造方法とを提供することができる。
As described above, according to the present invention, a desired heat expansion coefficient is obtained, high thermal conductivity and high strength are provided, and a metal composite material for a heat dissipation substrate, which can be reduced in weight, is provided. A manufacturing method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る放熱基板の金属組織を示
す金属顕微鏡写真である。
FIG. 1 is a metallurgical micrograph showing a metal structure of a heat dissipation substrate according to an example of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表裏2面を有する基材と,該基材の2面
のうちの少なくとも一方に密着した合わせ材により形成
され,前記基材はアルミニウムを含み,前記合わせ材は
モリブデンを含む金属複合材料において,前記合わせ材
は,前記基材の少なくとも一面に位置する層状材料であ
り,前記複合材料全体の熱膨張係数が9〜23×10-6
/℃の範囲内にあることを特徴とする放熱基板。
1. A metal comprising a base material having two front and back surfaces and a bonding material in close contact with at least one of the two surfaces of the base material, wherein the base material contains aluminum and the bonding material contains molybdenum. In the composite material, the composite material is a layered material located on at least one surface of the base material, and the thermal expansion coefficient of the entire composite material is 9 to 23 × 10 −6.
A heat dissipation board having a temperature range of / ° C.
【請求項2】 請求項1記載の放熱基板において,前記
基材の厚さと前記合わせ材との全厚さの比率が3:1〜
70:1の範囲内にあることを特徴とする放熱基板。
2. The heat dissipation board according to claim 1, wherein the ratio of the thickness of the base material to the total thickness of the laminated material is 3: 1 to 1.
A heat dissipation board having a range of 70: 1.
【請求項3】 請求項2記載の放熱基板において,前記
基材及び前記合わせ材の内の少なくとも一方の表面はめ
っきが施されていることを特徴とする放熱基板。
3. The heat dissipation board according to claim 2, wherein at least one surface of the base material and the mating material is plated.
【請求項4】 請求項1乃至3の内のいずれかに記載の
放熱基板において,前記基材及び前記合わせ材の層間の
引張による接着強度は,少なくとも2kgf/mm2
あることを特徴とする放熱基板。
4. The heat dissipation board according to claim 1, wherein the adhesive strength of the base material and the laminated material due to the tension between the layers is at least 2 kgf / mm 2. Heat dissipation board.
【請求項5】 請求項4記載の放熱基板を備えたことを
特徴とするプラスチックパッケージ。
5. A plastic package comprising the heat dissipation board according to claim 4.
【請求項6】 少なくともアルミニウムを含み表裏をな
す2面を有する基材とモリブデンを含む合わせ材とを,
室温以上で静的圧力あるいは静的圧力と圧延との組合せ
により接合することを特徴とする放熱基板の製造方法。
6. A base material having at least two sides of aluminum, which includes front and back surfaces, and a composite material containing molybdenum,
A method for manufacturing a heat dissipation board, which comprises bonding by static pressure or a combination of static pressure and rolling at room temperature or higher.
【請求項7】 請求項6記載の放熱基板の製造方法にお
いて,接合前に前記基材及び前記合わせ材のうちの少な
くとも一方の少なくとも一面にめっきを施すことを特徴
とする放熱基板の製造方法。
7. The method of manufacturing a heat dissipation board according to claim 6, wherein at least one surface of at least one of the base material and the bonding material is plated before bonding.
JP30221093A 1992-11-26 1993-11-09 Heat radiating substrate, its manufacture, and plastic package using it Withdrawn JPH07135275A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30221093A JPH07135275A (en) 1993-11-09 1993-11-09 Heat radiating substrate, its manufacture, and plastic package using it
US08/157,295 US5493153A (en) 1992-11-26 1993-11-26 Plastic-packaged semiconductor device having a heat sink matched with a plastic package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30221093A JPH07135275A (en) 1993-11-09 1993-11-09 Heat radiating substrate, its manufacture, and plastic package using it

Publications (1)

Publication Number Publication Date
JPH07135275A true JPH07135275A (en) 1995-05-23

Family

ID=17906285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30221093A Withdrawn JPH07135275A (en) 1992-11-26 1993-11-09 Heat radiating substrate, its manufacture, and plastic package using it

Country Status (1)

Country Link
JP (1) JPH07135275A (en)

Similar Documents

Publication Publication Date Title
KR101344152B1 (en) - aluminum/silicon carbide composite and radiating part comprising the same
JP5144279B2 (en) Aluminum-silicon carbide composite and heat dissipation component using the same
JP4791487B2 (en) Semiconductor device mounting substrate, semiconductor device using the same, and method of manufacturing semiconductor device mounting substrate
JP5988977B2 (en) Heat dissipation parts for semiconductor elements
JP6115900B2 (en) Heat spreader
JP6775848B2 (en) Heat dissipation plate material
JPH06268115A (en) Manufacture of heat radiating substrate for semiconductor device
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JP7440944B2 (en) Composite materials and heat dissipation components
JPH07135275A (en) Heat radiating substrate, its manufacture, and plastic package using it
JP4055596B2 (en) Composite
JP2014107468A (en) Aluminum-diamond-based complex heat dissipation component
WO2001080313A1 (en) Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
JP4256282B2 (en) Heat sink material manufacturing method and heat sink ceramic package
JP4378502B2 (en) Heat sink for semiconductor device and manufacturing method thereof
JP2704932B2 (en) Heat dissipation board, method of manufacturing the same, and semiconductor device
JP3482580B2 (en) High heat dissipation metal composite plate and high heat dissipation metal substrate using the same
JPH03227621A (en) Thermally conductive composing material
US6914330B2 (en) Heat sink formed of diamond-containing composite material with a multilayer coating
JP6774252B2 (en) Insulation substrate manufacturing method and insulation substrate
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPH0997865A (en) Radiation part
JP2001217364A (en) Al-SiC COMPOSITE
JPH0645485A (en) Integrated circuit package high in heat dissipation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130