JPH07130386A - Supporting tube for solid electrolyte type fuel cell - Google Patents

Supporting tube for solid electrolyte type fuel cell

Info

Publication number
JPH07130386A
JPH07130386A JP5271887A JP27188793A JPH07130386A JP H07130386 A JPH07130386 A JP H07130386A JP 5271887 A JP5271887 A JP 5271887A JP 27188793 A JP27188793 A JP 27188793A JP H07130386 A JPH07130386 A JP H07130386A
Authority
JP
Japan
Prior art keywords
strength
fuel cell
sintered body
cao
supporting tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5271887A
Other languages
Japanese (ja)
Inventor
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5271887A priority Critical patent/JPH07130386A/en
Publication of JPH07130386A publication Critical patent/JPH07130386A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the percentage of good products in a cell manufacturing process and ensure stability and reliability of a fuel cell over a long period. CONSTITUTION:A porous stabilizing ZrO2 sintered body which contains at least CaO, Y2O3 and/or Yb2O3 as stabilizer and has the content of Al and Si being 100-5000ppm in metal conversion is used for a fuel cell supporting tube. In this way, the supporting tube is excellent in its strength at the beginning and after used for a long period at a high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
用支持管として用いられる多孔質の安定化ジルコニア焼
結体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a porous stabilized zirconia sintered body used as a support tube for a solid oxide fuel cell.

【0002】[0002]

【従来技術】固体電解質型燃料電池は、燃料、例えば水
素、メタンが有する化学エネルギ−を直接電気エネルギ
−に変換するため本質的に高いエネルギ−変換効率を有
する。このため、近年固体電解質型燃料電池は発電装置
として、注目され、多くの研究開発が進められている。
2. Description of the Related Art A solid oxide fuel cell has an essentially high energy conversion efficiency because it directly converts chemical energy contained in a fuel such as hydrogen or methane into electric energy. Therefore, in recent years, solid oxide fuel cells have attracted attention as a power generation device, and much research and development has been advanced.

【0003】そこで、図1に固体電解質型燃料電池の一
例を示した。これは円筒型燃料電池と呼ばれ、開気孔率
35%程度のCaO安定化ZrO2 の円筒支持管1と
し、その上にスラリ−ディップ法により多孔質の空気極
2としてLaMnO3 系材料を塗布し、その表面に気相
合成法(EVD)や、あるいは溶射法により固体電解質
3であるY2 3 安定化ZrO2 膜を被覆し、さらにこ
の表面に多孔質のNi−ジルコニア(Y2 3 含有)の
燃料極4を設けられている。燃料電池のモジュ−ルにお
いては、各単セルはLaCrO3 系のインターコネクタ
5を介して接続される。発電は、支持管内部に空気(酸
素)を、外部に燃料(水素)を流し、1000〜105
0℃の温度で行われる。
Therefore, FIG. 1 shows an example of a solid oxide fuel cell. This is called a cylindrical fuel cell, and a cylindrical support tube 1 of CaO-stabilized ZrO 2 having an open porosity of about 35% is formed on which LaMnO 3 based material is applied as a porous air electrode 2 by a slurry-dip method. Then, the surface thereof is coated with a Y 2 O 3 -stabilized ZrO 2 film, which is the solid electrolyte 3, by a vapor phase synthesis method (EVD) or a thermal spraying method, and the surface is further covered with a porous Ni-zirconia (Y 2 O 2 A fuel electrode 4 (containing 3 ) is provided. In the fuel cell module, each unit cell is connected via an LaCrO 3 system interconnector 5. For power generation, air (oxygen) is flown inside the support tube, and fuel (hydrogen) is flown outside to generate 1000 to 105
It is carried out at a temperature of 0 ° C.

【0004】また、CaO安定化ZrO2 の円筒支持管
に溶射法等により多孔質のNi−ジルコニアの燃料極を
作製し、さらに固体電解質であるY2 3 安定化ZrO
2 膜を被覆し、その上にLaCoO3 等の多孔質の空気
極を設けた構造も検討されている。このセル構造ではC
aO安定化ZrO2 を支持管内部に燃料(水素)が、外
部に空気が供給される。
Further, a porous Ni-zirconia fuel electrode was prepared by a thermal spraying method on a cylindrical support tube of CaO-stabilized ZrO 2 , and Y 2 O 3 -stabilized ZrO which is a solid electrolyte was prepared.
A structure in which two films are covered and a porous air electrode such as LaCoO 3 is provided thereon is also under study. C in this cell structure
The aO-stabilized ZrO 2 is supplied with fuel (hydrogen) inside the support tube and air outside.

【0005】[0005]

【発明が解決しようとする問題点】前記CaO安定化Z
rO2 焼結体を円筒状支持管とした場合、気相合成法や
溶射法により固体電解質膜およびインターコネクタ膜を
形成する工程において、熱衝撃により円筒状支持管が破
壊し、それが製品の良品率を悪くするという問題があ
る。
Problems to be Solved by the Invention The CaO-stabilized Z
When the rO 2 sintered body is used as a cylindrical support tube, the cylindrical support tube is destroyed by thermal shock in the process of forming the solid electrolyte membrane and the interconnector membrane by the vapor phase synthesis method or the thermal spraying method, which causes There is a problem of worsening the non-defective rate.

【0006】また、CaO安定化ZrO2 は長時間発電
を行うと相変態を生じるために支持管自体の強度が低下
し、その結果小さな衝撃によりセルが破壊するという問
題も生じていた。
[0006] Further, CaO-stabilized ZrO 2 undergoes a phase transformation when power is generated for a long time, so that the strength of the supporting tube itself is lowered, and as a result, the cell is broken by a small impact.

【0007】[0007]

【問題点を解決するための手段】本発明者は、上記の問
題を解決するため多孔質の安定化ジルコニアの円筒状焼
結体について検討重ねた結果、ジルコニアを結晶学的に
安定化させるための安定化材としてCaOと、Y2 3
および/またはYb2 3 を用い、しかも焼結体中にA
l、Siを金属換算でそれぞれ100〜5000ppm
含有せしめることにより強度が向上するとともに高温で
の長期使用においても相変態を抑制し安定した強度が確
保できることを見いだしたものである。
The inventors of the present invention have repeatedly studied a porous sintered zirconia cylindrical sintered body in order to solve the above-mentioned problems, and as a result, to stabilize the zirconia crystallographically. CaO and Y 2 O 3 as stabilizers for
And / or Yb 2 O 3 is used, and
l and Si are 100 to 5000 ppm in terms of metal
It has been found that the inclusion of these elements improves the strength and suppresses the phase transformation even during long-term use at high temperature to ensure stable strength.

【0008】以下、本発明を詳述する。本発明において
用いられる安定化ZrO2 焼結体は、安定化材をCaO
と、Y2 3 および/またはYb2 3 とを複合して含
有するものである。より具体的には、これら安定化材は
固体電解質との熱膨張係数の整合性などを考慮し総量で
7〜30モル%の量で添加され、特にCaO:Y2 3
/Yb2 3 =1:8〜5:10が望ましい。
The present invention will be described in detail below. In the stabilized ZrO 2 sintered body used in the present invention, the stabilizing material is CaO.
And Y 2 O 3 and / or Yb 2 O 3 are contained in combination. More specifically, these stabilizers are added in a total amount of 7 to 30 mol% in consideration of the matching of the coefficient of thermal expansion with the solid electrolyte, and particularly CaO: Y 2 O 3
/ Yb 2 O 3 = 1: 8 to 5:10 is desirable.

【0009】また、本発明によれば、焼結体中にAl、
Siを100ppm〜5000ppm、特に500〜2
000ppmの範囲で添加することも大きな特徴であ
る。このAl、Siは焼結体中の粒界にガラスを形成さ
せることにより強度を高めるためのものであり、この量
が100ppmより少ないと、粒界相へのガラスの生成
が極めて少なく、強度の改善効果がなく、5000pp
mを越えると粒界相自体の厚みが厚くなりすぎ、焼結体
強度が低下してしまう。おそらく、ガラス相と結晶相の
熱膨張係数の差に原因していると推定される。
Further, according to the present invention, Al in the sintered body,
Si 100ppm-5000ppm, especially 500-2
It is also a great feature to add in the range of 000 ppm. These Al and Si are for increasing the strength by forming glass at the grain boundaries in the sintered body, and when this amount is less than 100 ppm, the generation of glass in the grain boundary phase is extremely small and the strength of the strength is high. No improvement effect, 5000pp
If it exceeds m, the thickness of the grain boundary phase itself becomes too thick and the strength of the sintered body decreases. It is presumed that this is probably due to the difference in the coefficient of thermal expansion between the glass phase and the crystalline phase.

【0010】さらに、本発明によれば、上記多孔質Zr
2 焼結体を円筒状支持管として利用する場合、上述の
強度のほかガスの透過性を有することが重要である。ガ
スの透過性は焼結体中の細孔径により変化する。通常、
支持管では平均細孔径が大きいほど、ガスの透過性が向
上しセルの発電特性が良くなるが、逆に支持管強度が減
少し、ハンドリング性が悪くなりセル作製において良品
率が減少する。本発明者の実験によれば、強度と発電性
能性を両立させるために、焼結体の平均細孔径は0.8
〜5.0μm、特に1〜3μmの範囲であることがよい
ことがわかった。なお、焼結体全体の開気孔率は、25
〜45%が適当である。
Further, according to the present invention, the above-mentioned porous Zr
When the O 2 sintered body is used as a cylindrical support tube, it is important to have gas permeability in addition to the above-mentioned strength. The gas permeability changes depending on the pore size in the sintered body. Normal,
In the support tube, the larger the average pore diameter, the higher the gas permeability and the better the power generation characteristics of the cell. On the contrary, the strength of the support tube decreases, the handling property deteriorates, and the yield rate of the cell decreases. According to the experiments by the present inventor, the average pore diameter of the sintered body is 0.8 in order to achieve both strength and power generation performance.
It has been found that the range is preferably to 5.0 μm, particularly 1 to 3 μm. The open porosity of the whole sintered body is 25
~ 45% is suitable.

【0011】本発明における支持管を製造するには、Z
rO2 粉末、安定化材として、CaO、Y2 3 、Yb
2 3 を酸化物、あるいは炭酸塩などの形態で、さらに
Al2 3 、SiO2 の各粉末を前述したような所定の
割合で秤量混合する。場合によっては、ZrO2 と上記
安定化材を共沈させた原料を用いることもできる。
To manufacture the support tube of the present invention, Z
rO 2 powder, stabilizers such as CaO, Y 2 O 3 , Yb
2 O 3 is in the form of an oxide or carbonate, and each powder of Al 2 O 3 and SiO 2 is weighed and mixed at a predetermined ratio as described above. In some cases, a raw material obtained by coprecipitating ZrO 2 and the above-mentioned stabilizer can also be used.

【0012】このようにして得られた混合粉末を所望の
成形手段、例えば、金型プレス,冷間静水圧プレス,押
出し成形等により任意の形状に成形する。なお、支持管
形状が円筒形状である場合には、押出成形、冷間静水圧
成形などが好適である。
The mixed powder thus obtained is molded into a desired shape by a desired molding means such as a die press, a cold isostatic press, and extrusion molding. When the support tube has a cylindrical shape, extrusion molding, cold isostatic molding, etc. are suitable.

【0013】そして上記成形体を大気などの酸化性雰囲
気中で1400〜1600℃の温度で焼成するが、この
時の焼成においては、焼結体がガス透過性を有するため
に完全に緻密化しないように焼成することが必要であ
る。従って、最適焼成温度よりやや低めの温度で焼成す
るか、あるいは焼成時間を緻密に至るよりも短い焼成時
間で焼成することが必要である。
Then, the molded body is fired at a temperature of 1400 to 1600 ° C. in an oxidizing atmosphere such as air, but in the firing at this time, since the sintered body has gas permeability, it is not completely densified. So it is necessary to bake. Therefore, it is necessary to perform the firing at a temperature slightly lower than the optimum firing temperature or to perform the firing time in a shorter firing time than when the firing time becomes dense.

【0014】このようにして得られる多孔質のZrO2
焼結体は、立方晶ZrO2 を主体とし、平均粒径が5〜
15μm程度の微細な結晶からなる安定化ZrO2 であ
り、その結晶の粒界にはCaO−SiO−Al2 3
のガラスが生成されたものである。
The porous ZrO 2 thus obtained
The sintered body is mainly composed of cubic ZrO 2 and has an average particle size of 5 to 5.
The stabilized ZrO 2 is composed of fine crystals of about 15 μm, and CaO—SiO—Al 2 O 3 system glass is formed at the grain boundaries of the crystals.

【0015】また、かかる多孔質安定化ZrO2 を燃料
電池用支持管として燃料電池セルを作製するには、この
焼結体の表面にスラリーディップ法、溶射法法により
(La,Ca)MnO3 や(La,Sr)MnO3 など
からなる多孔質の空気極を形成し、その表面に気相合成
法(EVD)や、あるいは溶射法により固体電解質であ
るY2 3 安定化ZrO2 膜を被覆し、さらにこの表面
に多孔質のNi−ジルコニア(Y2 3 含有)の燃料極
を形成する。また、空気極の表面には、さらにセル間の
接続を行うためにLaCrO3 系材料からなるインター
コネクタを形成することにより得ることができる。
In order to fabricate a fuel cell using the porous stabilized ZrO 2 as a support tube for a fuel cell, (La, Ca) MnO 3 is formed on the surface of this sintered body by a slurry dipping method or a thermal spraying method. A porous air electrode made of (La, Sr) MnO 3 or the like is formed, and a Y 2 O 3 -stabilized ZrO 2 film which is a solid electrolyte is formed on the surface thereof by a vapor phase synthesis method (EVD) or a thermal spraying method. Then, a porous anode of Ni-zirconia (containing Y 2 O 3 ) is formed on the surface. Further, it can be obtained by forming an interconnector made of a LaCrO 3 system material on the surface of the air electrode in order to further connect the cells.

【0016】その他、多孔質安定化ZrO2 支持管の表
面に溶射法等により多孔質のNi−ジルコニアの燃料極
を作製し、さらに固体電解質であるY2 3 安定化Zr
2膜を被覆し、その上にLaCoO3 等の多孔質の空
気極を設けてセルを作製することもできる。
In addition, a porous Ni-zirconia fuel electrode was prepared on the surface of the porous stabilized ZrO 2 support tube by a thermal spraying method and the solid electrolyte Y 2 O 3 stabilized Zr was prepared.
A cell can be prepared by coating an O 2 film and providing a porous air electrode such as LaCoO 3 on the O 2 film.

【0017】[0017]

【作用】CaO安定化ZrO2 焼結体中にSi、Alを
添加するとCaO−SiO−Al2 3 系ガラスが粒界
相に形成されることにより焼結体の強度および耐熱衝撃
性が大きくなる。しかしながら、CaO安定化ZrO2
は1000℃の高温で長時間保持されると立方晶から正
方晶、単斜晶への相変態が生じ、焼結体の強度が低下す
る。それに対して、Y2 3 およびYb2 3 を安定化
材として含有するZrO2 焼結体は高温での相変態が生
じにくく、長期安定性の点においては、CaO安定化Z
rO2 より好ましい。ところが、Y2 3 およびYb2
3 安定化ZrO2 においてAl、Siを添加すると、
SiO−Al2 3 系ガラスが粒界相を形成するが、こ
の場合には充分な強度を示さない。これは、SiO−A
23 系ガラスよりCaO−SiO−Al2 3 系ガ
ラスの方が、融点および軟化温度が高いためと考えられ
る。
When Si and Al are added to the CaO-stabilized ZrO 2 sintered body, CaO-SiO-Al 2 O 3 system glass is formed in the grain boundary phase, so that the strength and thermal shock resistance of the sintered body are increased. Become. However, CaO-stabilized ZrO 2
When kept at a high temperature of 1000 ° C. for a long time, a phase transformation from cubic crystal to tetragonal crystal to monoclinic crystal occurs, and the strength of the sintered body decreases. On the other hand, a ZrO 2 sintered body containing Y 2 O 3 and Yb 2 O 3 as a stabilizer does not easily undergo phase transformation at high temperature, and in view of long-term stability, CaO stabilized Z
Preferred over rO 2 . However, Y 2 O 3 and Yb 2
When Al and Si are added to O 3 stabilized ZrO 2 ,
SiO—Al 2 O 3 based glass forms a grain boundary phase, but in this case, it does not show sufficient strength. This is SiO-A
Write from l 2 O 3 based glass of CaO-SiO-Al 2 O 3 based glass, probably because the melting point and softening temperature is high.

【0018】この様な理由から、本発明では多孔質の安
定化ジルコニアの円筒状焼結体について、その安定化剤
としてY2 3 あるいはYb2 3 を添加することによ
り蛍石構造の結晶を長時間安定化させ、かつCaOを添
加することによりCaO−SiO−Al2 3 系ガラス
を粒界に生成させて強度および耐熱衝撃性を向上させる
ことができるのである。
For this reason, in the present invention, a crystal of fluorite structure is formed by adding Y 2 O 3 or Yb 2 O 3 as a stabilizer to a cylindrical sintered body of porous stabilized zirconia. Is stabilized for a long period of time and CaO is added, whereby CaO—SiO—Al 2 O 3 based glass can be generated at the grain boundaries to improve strength and thermal shock resistance.

【0019】また、本発明の支持管は、上述の強度のほ
かにガスの透過性を有することが必要である。本発明に
よれば、ガスの透過性の尺度として平均細孔径を用い、
これを0.8〜5.0μmに規定することにより、高い
強度を維持しつつ優れたガス透過性を付与することがで
きる。
Further, the support tube of the present invention is required to have gas permeability in addition to the above-mentioned strength. According to the invention, using the average pore size as a measure of gas permeability,
By setting this to 0.8 to 5.0 μm, excellent gas permeability can be imparted while maintaining high strength.

【0020】本発明の支持管は、上記構成により高い強
度と、耐熱衝撃性を有するともに、高温での長期使用に
おいて強度の劣化がないことから、燃料電池として良品
率を高めるとともに、長期信頼性の高いセルを作製する
ことができる。
The support tube of the present invention has high strength and thermal shock resistance due to the above-mentioned constitution, and does not deteriorate in strength during long-term use at high temperature. Therefore, the yield rate of the fuel cell is improved and the long-term reliability is improved. It is possible to fabricate a high cell.

【0021】[0021]

【実施例】【Example】

実施例 市販の純度99.9%の市販のY2 3 、Yb2 3
CaCO3 、ZrO2を出発原料として、表1および表
2の組成になるように調合した。これを、ジルコニアボ
−ルを用いて10時間混合した後、1500℃で10時
間仮焼を3回繰り返し充分固相反応させ、安定化ジルコ
ニア粉末を得た。さらにこれに平均粒径が約0.5μm
のAl2 3 とSiO2 粉末を用いそれぞれ所定量添加
した後、この粉末を振動ミルによりジルコニアボ−ルを
用いて、20〜30時間粉砕と混合を行った。この後、
押出成形法により円筒状に成形して、大気中で1500
〜1560℃にて焼成し、外径15mm、内径10m
m、長さ100mmの円筒状焼結体を作製した。
Example Commercially available Y 2 O 3 , Yb 2 O 3 , having a purity of 99.9%,
CaCO 3 and ZrO 2 were used as starting materials, and were prepared so as to have the compositions shown in Tables 1 and 2. This was mixed with a zirconia ball for 10 hours, and then calcined at 1500 ° C. for 10 hours to repeat solid phase reaction three times to obtain a stabilized zirconia powder. Furthermore, the average particle size is about 0.5 μm.
Al 2 O 3 powder and SiO 2 powder were each added in a predetermined amount, and the powder was crushed and mixed for 20 to 30 hours using a zirconia ball in a vibration mill. After this,
Molded into a cylindrical shape by extrusion molding method, and then 1500
Baking at ~ 1560 ° C, outer diameter 15mm, inner diameter 10m
A cylindrical sintered body having a length of m and a length of 100 mm was produced.

【0022】得られた焼結体に対して水銀圧入法により
平均細孔径を測定したところ1.7〜2.3μmであっ
た。この円筒状焼結体を長さ50mmに切断し、圧環試
験装置で破壊強度を測定した。また。この一部は100
0℃で500時間大気中で焼鈍した後、圧環試験を行っ
た。この結果を表1に示した。
The average pore diameter of the obtained sintered body was measured by the mercury porosimetry and found to be 1.7 to 2.3 μm. This cylindrical sintered body was cut into a length of 50 mm, and the breaking strength was measured with a radial crushing test device. Also. This part is 100
After annealing in the atmosphere at 0 ° C. for 500 hours, a radial crushing test was performed. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1によれば、ZrO2 に対してCaOの
み添加したNo.1では、初期強度が高いものの焼鈍後の
強度の低下が大きいものであった。また、Y2 3 のみ
添加したNo.2では、焼鈍後の強度の低下は小さいもの
の、初期強度が低い。一方、Al、Si量が100pp
mより少ないNo.3、11,16は初期強度が低い。
また、Al、Si量が5000ppmより多いNo.1
0、19については、初期強度および焼鈍後の強度とも
低い。
According to Table 1, No. 1 in which only CaO was added to ZrO 2 had a high initial strength but a large decrease in strength after annealing. Further, in No. 2 in which only Y 2 O 3 was added, the initial strength was low, although the decrease in strength after annealing was small. On the other hand, the amount of Al and Si is 100 pp
No. less than m. 3, 11, 16 have low initial strength.
In addition, No. 2 in which the amounts of Al and Si are more than 5000 ppm. 1
Regarding 0 and 19, both the initial strength and the strength after annealing are low.

【0025】これらの比較例に対してその他の本発明品
は、いずれも10kg/mm2 以上の初期強度を有し、
焼鈍後の強度も5kg/mm2 以上と高いものであっ
た。
In contrast to these comparative examples, the other products of the present invention all have an initial strength of 10 kg / mm 2 or more,
The strength after annealing was as high as 5 kg / mm 2 or more.

【0026】実施例2 実施例1の表1中No.5とNo.17の組成物を振動ミル
によりジルコニアボ−ルを用いて、15〜40時間粉砕
と混合を行った後、押出成形により円筒状に成形して1
480〜1560℃で焼成し、外径15mm、内径10
mm、長さ100mmの円筒状焼結体を作製した。この
円筒状焼結体から長さ50mmの円筒状試料を切り出
し、圧環試験装置で円筒形状試料の破壊強度を測定し
た。一方、上記の円筒状焼結体より長さ10mmの試料
を切り出し、室温(22〜24℃)でN2 ガスを用いて
ガスの透過係数を測定した。また、水銀圧入法により平
均細孔径も測定した。結果を表2に示した。
Example 2 The compositions of No. 5 and No. 17 in Table 1 of Example 1 were crushed and mixed for 15 to 40 hours by a vibration mill using a zirconia ball, and then extruded. Molded into a cylindrical shape 1
Fired at 480 to 1560 ° C, outer diameter 15 mm, inner diameter 10
A cylindrical sintered body having a length of 100 mm and a length of 100 mm was produced. A cylindrical sample having a length of 50 mm was cut out from this cylindrical sintered body, and the breaking strength of the cylindrical sample was measured by a radial crushing test device. On the other hand, a sample with a length of 10 mm was cut out from the above cylindrical sintered body, and the gas permeation coefficient was measured using N 2 gas at room temperature (22 to 24 ° C.). The average pore size was also measured by the mercury porosimetry method. The results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】表2により平均細孔径が大きいほどガス透
過係数は高くなるが、逆に材料強度は減少することが分
かる。平均細孔径が、0.8μmより小さくなると破壊
強度は充分であるが、ガス透過係数が極端に小さくな
る。逆に、平均細孔径が5.0μmを越えると、ガス透
過係数は大きくなるが、強度が極端に小さくなる。
It can be seen from Table 2 that the larger the average pore diameter, the higher the gas permeability coefficient, but conversely the material strength decreases. When the average pore diameter is smaller than 0.8 μm, the fracture strength is sufficient, but the gas permeation coefficient becomes extremely small. On the other hand, when the average pore diameter exceeds 5.0 μm, the gas permeation coefficient increases, but the strength extremely decreases.

【0029】実施例3 実施例1中のNo.1、2、3、5、8、13の組成を用
いて、平均細孔径が2.1〜2.5μmで、外径16m
m、内径12mm、長さ200mmの一端封じの中空円
筒状焼結体を作製し支持管とした。これにLa0.85Sr
0.15MnO3 組成の約3μm粉末を厚さ約1.5mmに
なるようにスラリ−ディップ法により被覆し、大気中1
400℃で3時間焼鈍して、円筒焼結体への焼き付けと
粉体自身の焼結を行い空気極とした。この後、気相合成
法により、1100℃で空気極表面に固体電解質膜(1
0mol%Y2 3 −90mol%ZrO2 )を約30
μmの厚みに被覆し、さらにこの上に燃料極として、ス
ラリ−ディップ法により、約40μmの厚みに60wt
%Ni−40wt%ジルコニア(8mol%Y2 3
92mol%ZrO2 )を被覆し図1に示すような単セ
ルを作製した。
Example 3 Using the compositions of Nos. 1, 2, 3, 5, 8, and 13 in Example 1, the average pore diameter was 2.1 to 2.5 μm and the outer diameter was 16 m.
A hollow cylindrical sintered body having a diameter of m, an inner diameter of 12 mm and a length of 200 mm, which was sealed at one end, was prepared as a supporting tube. La 0.85 Sr
A powder of about 3 μm having a composition of 0.15 MnO 3 was coated by a slurry-dip method to a thickness of about 1.5 mm, and the powder was exposed to air 1
It was annealed at 400 ° C. for 3 hours, baked on a cylindrical sintered body and sintered the powder itself to obtain an air electrode. After that, the solid electrolyte membrane (1
0 mol% Y 2 O 3 -90 mol% ZrO 2 ) about 30
It is coated to a thickness of μm, and further as a fuel electrode on this, by a slurry-dip method, a thickness of about 40 μm and 60 wt.
% Ni-40 wt% zirconia (8mol% Y 2 O 3 -
92 mol% ZrO 2 ) was coated to prepare a single cell as shown in FIG.

【0030】このセルを電気炉中に保持し、セルの内側
に酸素ガスを、また外側に水素ガスを流しながら、室温
から1000℃まで10時間で昇温し、1000℃で1
0時間発電した後、1000℃から室温まで20時間で
降温した。この熱サイクルを20回繰り返し、単セルが
破壊に至る回数と5、10、20回サイクル時の100
0℃での発電による出力密度を測定した。その結果は表
3に示した。
This cell was held in an electric furnace and the temperature was raised from room temperature to 1000 ° C in 10 hours while flowing oxygen gas inside the cell and hydrogen gas outside, and the temperature was raised at 1000 ° C for 1 hour.
After power generation for 0 hours, the temperature was lowered from 1000 ° C. to room temperature in 20 hours. This thermal cycle is repeated 20 times, and the number of times the single cell is destroyed and the number of cycles of 5, 10 or 20 times is 100.
The power density by power generation at 0 ° C was measured. The results are shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】表3によれば、本発明以外のNo.1、2、
3の組成の支持管を用いたセルは6〜11回でセルが破
壊したのに対して、本発明品であるNo.5、8、13組
成の支持管を用いたセルはいずれも20回の熱サイクル
でも破壊しなかった。また、出力密度も高い値を示し
た。この結果から、本発明の材料が充分優れたものであ
ることが実証された。
According to Table 3, Nos. 1, 2 other than the present invention,
The cells using the support tube of composition No. 3 were destroyed 6 to 11 times, whereas the cells using the support tubes of compositions No. 5, 8, and 13 of the present invention were all 20 times. It did not break even in the thermal cycle. Moreover, the power density also showed a high value. From this result, it was proved that the material of the present invention was sufficiently excellent.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明の燃料電池用
支持管は、初期強度および高温での長時間使用後とも優
れた強度を有する。このため、セル作製工程における良
品率の向上が可能であるとともに、燃料電池セルの長期
にわたり安定性および信頼性を確保することができる。
As described in detail above, the fuel cell support tube of the present invention has excellent initial strength and excellent strength even after long-term use at high temperature. Therefore, it is possible to improve the non-defective rate in the cell manufacturing process, and it is possible to secure the stability and reliability of the fuel cell for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒状燃料電池セルの構造を説明するための概
略図である。
FIG. 1 is a schematic diagram for explaining the structure of a cylindrical fuel cell unit.

【符号の説明】[Explanation of symbols]

1 円筒支持管 2 空気極 3 固体電解質 4 燃料極 5 インターコネクタ 1 Cylindrical support tube 2 Air electrode 3 Solid electrolyte 4 Fuel electrode 5 Interconnector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】安定化材として少なくともCaOと、Y2
3 および/またはYb2 3 とを含み、かつAlおよ
びSiを金属換算でそれぞれ100〜5000ppm含
有する多孔質の安定化ZrO2 焼結体からなることを特
徴とする固体電解質型燃料電池用支持管。
1. A stabilizing material comprising at least CaO and Y 2
For a solid oxide fuel cell, comprising a porous stabilized ZrO 2 sintered body containing O 3 and / or Yb 2 O 3 and containing 100 to 5000 ppm of Al and Si in terms of metal, respectively. Support tube.
JP5271887A 1993-10-29 1993-10-29 Supporting tube for solid electrolyte type fuel cell Pending JPH07130386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5271887A JPH07130386A (en) 1993-10-29 1993-10-29 Supporting tube for solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5271887A JPH07130386A (en) 1993-10-29 1993-10-29 Supporting tube for solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH07130386A true JPH07130386A (en) 1995-05-19

Family

ID=17506288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5271887A Pending JPH07130386A (en) 1993-10-29 1993-10-29 Supporting tube for solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH07130386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747863B1 (en) * 2006-07-21 2007-08-08 현대자동차주식회사 Cylindrical fuel cell assembly body and the manufacturing method
JP2016154095A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Manufacturing method for fuel battery substrate and manufacturing method for fuel battery cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747863B1 (en) * 2006-07-21 2007-08-08 현대자동차주식회사 Cylindrical fuel cell assembly body and the manufacturing method
JP2016154095A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Manufacturing method for fuel battery substrate and manufacturing method for fuel battery cell stack

Similar Documents

Publication Publication Date Title
EP2979319B1 (en) Sanbornite-based glass-ceramic seal for high-temperature applications
Bao et al. Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell
JP2013516378A (en) Thin, fine, fully dense glass-ceramic seal for SOFC stacks
JPH07315922A (en) Solid electrolytic ceramic and supporting member for solid electrolyte
JPH04253164A (en) Tape for fuel battery, electrode for fuel battery, method for sintering this kind of electrode and fuel battery having this kind of electrode
JPH08119732A (en) Production of solid electrolyte
JP3350203B2 (en) Solid oxide fuel cell
JPH07130386A (en) Supporting tube for solid electrolyte type fuel cell
JP3359413B2 (en) Solid oxide fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
JPH07326375A (en) Cell for solid electrolytic fuel cell
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2002053374A (en) Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
JP3342571B2 (en) Solid oxide fuel cell
JP3342541B2 (en) Solid oxide fuel cell
JP3346663B2 (en) Fuel cell
JPH07296839A (en) Solid electrolyte fuel cell
JP3359412B2 (en) Solid oxide fuel cell
JPH09132459A (en) Porous ceramic sintered compact
JP3091086B2 (en) Cylindrical porous ceramic sintered body
JP3350137B2 (en) Solid oxide fuel cell material
JP3346668B2 (en) Solid oxide fuel cell
JP3152843B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3359421B2 (en) Solid oxide fuel cell