JPH07315922A - Solid electrolytic ceramic and supporting member for solid electrolyte - Google Patents

Solid electrolytic ceramic and supporting member for solid electrolyte

Info

Publication number
JPH07315922A
JPH07315922A JP7037322A JP3732295A JPH07315922A JP H07315922 A JPH07315922 A JP H07315922A JP 7037322 A JP7037322 A JP 7037322A JP 3732295 A JP3732295 A JP 3732295A JP H07315922 A JPH07315922 A JP H07315922A
Authority
JP
Japan
Prior art keywords
solid electrolyte
zro2
mol
ceramic
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7037322A
Other languages
Japanese (ja)
Other versions
JP3502685B2 (en
Inventor
Yuji Ogawa
裕二 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03732295A priority Critical patent/JP3502685B2/en
Publication of JPH07315922A publication Critical patent/JPH07315922A/en
Application granted granted Critical
Publication of JP3502685B2 publication Critical patent/JP3502685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a solid electrolytic ceramic excellent in electric conductivity by forming from a specific ratio of ZrO2, Y2O3, Al2O3 and inevitable impurities and having a prescribed crystal grain diameter, coefficient of thermal expansion and bending strength. CONSTITUTION:A ZrO2 powder, Y2O3 powder and an Al2O3 powder are blended in the specific ratio and the blended material is wetly mixed by a ball mill or the like and dried, granulated and formed into the prescribed shape. Next, the molded body is fired at 1500-1700 deg.C to obtain the solid electrolytic ceramic formed from 5-10wt.% Y2O3, 0.5-15wt.% Al2O3, 0.5wt.% inevitable impurities such as SiO2 and balance ZrO2 and having 5-15mum average crystal grain diameter, >=9X10<-6>/ deg.C coefficient of thermal expansion at room temp. to 1000 deg.C and >=30kg/cm<3> bending strength. And the supporting body for solid electrolyte is obtained by forming a protective layer composed of a ZrO2 ceramic containing 5-10mol% Y2O3 on the surface of a ZrO2 ceramic containing 10-20mol% CaO and controlled to 20-45% in open porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素分離膜用素子や固
体電解質型燃料電池等に用いられる、固体電解質セラミ
ックス及び固体電解質用支持部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte ceramic and a solid electrolyte support member used for an oxygen separation membrane element, a solid oxide fuel cell, and the like.

【0002】[0002]

【従来の技術】近年、燃料電池発電システムは、エネル
ギー問題、地球環境問題を背景に大きな貢献をするもの
として、世界的にますますその期待が高まっている。燃
料電池発電システムは、燃料が有する化学エネルギーを
直接電気エネルギーに変換できるシステムでカルノーサ
イクルの制約を受けないため、本質的に高いエネルギー
変換効率を有し、燃料の多様化が可能で、低公害で、し
かも発電効率が設備規模によって影響されず、極めて有
望な技術である。
2. Description of the Related Art In recent years, fuel cell power generation systems have been increasingly expected worldwide as they make a great contribution against the backdrop of energy problems and global environmental problems. The fuel cell power generation system is a system that can directly convert the chemical energy of the fuel into electric energy and is not restricted by the Carnot cycle. Therefore, it has essentially high energy conversion efficiency, can diversify the fuel, and has low pollution. Moreover, the power generation efficiency is not affected by the scale of the facility, and is a very promising technology.

【0003】特に、固体電解質型燃料電池はリン酸型燃
料電池、溶融炭酸塩型燃料電池と異なり、液体、融体を
用いないため電池の構成がシンプルであり、高温の排熱
利用も含めるとエネルギー効率80〜90%が期待でき
る。
Particularly, unlike the phosphoric acid type fuel cell and the molten carbonate type fuel cell, the solid electrolyte type fuel cell has a simple cell structure because it does not use a liquid or a melt, and includes the use of high temperature exhaust heat. Energy efficiency of 80 to 90% can be expected.

【0004】一般的な固体電解質型燃料電池の単セルの
構造は、図1に示すように多孔性の管状をした支持部材
1、空気極2、固体電解質3、燃料極4から構成され
る。支持部材1は、通常CaOを含む安定化ZrO2
ラミックスからなり、耐熱性とともに適度に気体を通す
ように開気孔率が20〜40%程度の多孔質体となって
いる。また、支持部材1の外表面には、Laを10〜2
0原子%のCa,Srで置換したLaMnO3 やLaC
oO3 の空気極2、Y2 3 を含有する緻密質のZrO
2 からなる固体電解質3、およびNi−ZrO2 (Y2
3 を含有)サーメットからなる燃料極4が順次設けら
れている。また、セルには単セルを直列に接続するため
のLaCrO3 系材料からなるインターコネクタ5が形
成されている。
As shown in FIG. 1, the structure of a unit cell of a general solid oxide fuel cell is composed of a porous tubular supporting member 1, an air electrode 2, a solid electrolyte 3 and a fuel electrode 4. The support member 1 is usually made of stabilized ZrO 2 ceramics containing CaO, and is a porous body having heat resistance and an open porosity of about 20 to 40% so as to allow appropriate gas passage. In addition, La is 10 to 2 on the outer surface of the support member 1.
LaMnO 3 and LaC substituted with 0 atomic% of Ca and Sr
Air electrode 2 of oO 3 and dense ZrO containing Y 2 O 3
Solid electrolyte 3 composed of 2 and Ni—ZrO 2 (Y 2
A fuel electrode 4 made of cermet (containing O 3 ) is sequentially provided. Further, an interconnector 5 made of LaCrO 3 system material for connecting the single cells in series is formed in the cell.

【0005】そして、上記支持部材1の内側には空気6
を、電池の外側にはH2 やメタンガスの改質ガス7を各
々供給し、これらが支持部材1、空気極2、固体電解質
3、燃料極4を介して反応する時のエネルギーを直接電
力の形式で取り出すものである。また、上記構造の他に
空気極2を外側、燃料極4を内側にした逆転構造のもの
も提案されている。あるいは、板状の固体電解質を用い
た平板型の燃料電池もある。
Then, air 6 is placed inside the support member 1.
H 2 and reformed gas 7 of methane gas are supplied to the outside of the cell, respectively, and the energy when these react through the support member 1, the air electrode 2, the solid electrolyte 3 and the fuel electrode 4 is directly converted into electric power. It is taken out in the form. In addition to the above structure, a reverse structure having the air electrode 2 on the outside and the fuel electrode 4 on the inside has also been proposed. Alternatively, there is also a flat plate type fuel cell using a plate-shaped solid electrolyte.

【0006】図1に示す燃料電池の製造方法は、CaO
安定化ジルコニアセラミックスからなる多孔質の支持部
材1の外表面に前記空気極2、固体電解質3及び燃料極
4をCVD、EVD、プラズマ溶射、減圧プラズマ溶射
等の製膜技術を用いて製膜する。特に溶射法を用いる場
合は、高温に溶融された各電極材料や固体電解質材料を
母材である支持部材1の表面に吹き付けて各電極、固体
電解質を製膜するものである。
The method of manufacturing the fuel cell shown in FIG.
The air electrode 2, the solid electrolyte 3 and the fuel electrode 4 are formed on the outer surface of the porous support member 1 made of stabilized zirconia ceramics by using a film forming technique such as CVD, EVD, plasma spraying or low pressure plasma spraying. . Particularly when the thermal spraying method is used, each electrode material or solid electrolyte material melted at high temperature is sprayed onto the surface of the support member 1 as a base material to form each electrode or solid electrolyte film.

【0007】また、上記固体電解質3として用いられる
セラミックスとしては、ZrO2 、CeO2 、Th
2 、Bi2 3 等を主成分とするものがある。固体電
解質セラミックスとして要求される特性は、 イオン導電率が大きい 電子導電性がほとんどない 高温で化学的に安定している 高温で十分な機械的用度を持つ 資源的に豊富で価格が安い 等がある。
The ceramics used as the solid electrolyte 3 include ZrO 2 , CeO 2 , Th.
Some have O 2 and Bi 2 O 3 as main components. The properties required for solid electrolyte ceramics are high ionic conductivity, almost no electronic conductivity, chemically stable at high temperatures, sufficient mechanical utility at high temperatures, abundant in resources, low in price, etc. is there.

【0008】これらの条件を満たすものとして一般的に
用いられるものの一つがY2 3 、CaO、MgO、Y
2 3 等で安定化されたジルコニアセラミックスであ
る。このジルコニアセラミックスにおいて、ZrO2
結晶構造は蛍石型であり、一部の格子点が4価のZrに
代わり2価のCaや3価のY等に置き換えられる。その
分だけ酸素が占めるべき格子点が空席となり、空格子点
の存在が酸素イオンの結晶内移動を可能にして、固体電
解質としての作用を成すのである。また、CaO、Y2
3 等を含むことにより、ZrO2 は立方晶の結晶とな
り結晶転移を起こさず、安定化の役割も果たしている。
One of those generally used to satisfy these conditions is Y 2 O 3 , CaO, MgO, Y.
Zirconia ceramics stabilized with b 2 O 3 or the like. In this zirconia ceramic, the crystal structure of ZrO 2 is fluorite type, and some lattice points are replaced with divalent Ca, trivalent Y or the like instead of tetravalent Zr. The lattice points that oxygen should occupy are vacant by that amount, and the existence of the vacancy points enables the movement of oxygen ions in the crystal, and functions as a solid electrolyte. Also, CaO, Y 2
By containing O 3 and the like, ZrO 2 becomes a cubic crystal and does not cause crystal transition, and also plays a stabilizing role.

【0009】そして図1に示すように燃料電池に用いる
場合は、固体電解質3を空気極2と燃料極4で挟み込む
ため、これらの電極材料と熱膨張係数が近いジルコニア
セラミックスが最も一般的に用いられている。
When used in a fuel cell as shown in FIG. 1, since the solid electrolyte 3 is sandwiched between the air electrode 2 and the fuel electrode 4, zirconia ceramics whose thermal expansion coefficient is close to those of these electrode materials are most commonly used. Has been.

【0010】[0010]

【発明が解決しようとする課題】ところで、燃料電池に
用いる固体電解質3は、内部抵抗を低くし、発電効率を
高めるために通常厚み0.1〜0.5mm程度の薄いも
のが用いられる。しかし、固体電解質3として一般に用
いられる8モル%のY2 3 を含む安定化ジルコニアセ
ラミックスは曲げ強度が約25kg/mm2 と低いた
め、上記燃料電池セルを形成する際等に破損し易く、取
り扱いが困難であった。そのため製造歩留りが低く、ま
た製品の信頼性が低いという問題点があった。
By the way, as the solid electrolyte 3 used in the fuel cell, a thin electrolyte having a thickness of about 0.1 to 0.5 mm is usually used in order to lower the internal resistance and increase the power generation efficiency. However, since the stabilized zirconia ceramics containing 8 mol% Y 2 O 3 which is generally used as the solid electrolyte 3 has a low bending strength of about 25 kg / mm 2 , it is easily damaged when forming the fuel cell, It was difficult to handle. Therefore, there are problems that the manufacturing yield is low and the product reliability is low.

【0011】なお、強度を高めるために、Y2 3 の含
有量を2〜4モル%程度にして正方晶ジルコニアを存在
させた部分安定化ジルコニアセラミックスとし、かつ結
晶粒子径を2μm以下とした固体電解質セラミックスも
提案されている(特公平3−4505号公報等参照)。
しかし、このようにY2 3 量を少なくしたものでは、
固体電解質セラミックスの電気伝導度が低くなり、固体
電解質としての特性が劣るという問題点があった。
In order to increase the strength, the content of Y 2 O 3 is about 2 to 4 mol% to form a partially stabilized zirconia ceramic in which tetragonal zirconia is present, and the crystal grain size is 2 μm or less. Solid electrolyte ceramics have also been proposed (see Japanese Patent Publication No. 3-4505).
However, if the amount of Y 2 O 3 is reduced in this way,
There has been a problem that the electric conductivity of the solid electrolyte ceramics is lowered and the characteristics as a solid electrolyte are deteriorated.

【0012】一方、上記のCaO安定化ZrO2 からな
る支持部材1を用いた燃料電池セルの製造工程や、ある
いは燃料電池セルの長時間発電において、支持部材1中
のCa成分が空気極2に拡散侵入し、空気極2の電気伝
導性やあるいは酸素をイオン化させる触媒能が低下し、
その結果セルの発電特性を劣化させるという問題があっ
た。
On the other hand, in the manufacturing process of the fuel cell using the supporting member 1 made of the above CaO-stabilized ZrO 2 or in the long-term power generation of the fuel battery cell, the Ca component in the supporting member 1 becomes the air electrode 2. It diffuses and penetrates, and the electric conductivity of the air electrode 2 or the catalytic ability to ionize oxygen decreases,
As a result, there is a problem that the power generation characteristics of the cell are deteriorated.

【0013】[0013]

【発明の目的】そこで本発明の第1の目的は、優れた電
気伝導度を有し、機械的強度の高い固体電解質セラミッ
クスを得ることである。また、本発明の第2の目的はC
a成分の拡散を防ぐ固体電解質用支持部材を得ることで
ある。
SUMMARY OF THE INVENTION Therefore, a first object of the present invention is to obtain a solid electrolyte ceramic having excellent electrical conductivity and high mechanical strength. The second object of the present invention is C
The purpose is to obtain a solid electrolyte support member that prevents diffusion of the component a.

【0014】[0014]

【課題を解決するための手段】本発明の第1の目的を達
成するために、安定化剤として5〜10モル%のY2
3 を含み、さらに0.5〜15重量%のAl2 3 と、
0.5重量%以下の不可避不純物と、残部がZrO2
ら成り、焼結体の平均結晶粒径を5〜15μmとして固
体電解質セラミックスを構成した。
In order to achieve the first object of the present invention, as a stabilizer, 5 to 10 mol% of Y 2 O is used.
3 and further 0.5 to 15% by weight of Al 2 O 3 ,
The solid electrolyte ceramics were composed of 0.5% by weight or less of unavoidable impurities and the balance ZrO 2 and the average grain size of the sintered body was 5 to 15 μm.

【0015】ここで、Y2 3 の含有量を5〜10モル
%としたのは、5モル%より少ないと電気伝導度が低く
なり固体電解質としての特性が劣るためであり、逆に1
0モル%を超えると強度が低下するためである。そし
て、この範囲内であれば立方晶の結晶を主体とした安定
化ジルコニアセラミックスとすることができる。
Here, the content of Y 2 O 3 is set to 5 to 10 mol%, because if it is less than 5 mol%, the electric conductivity is lowered and the characteristics as a solid electrolyte are deteriorated.
This is because if it exceeds 0 mol%, the strength will decrease. Within this range, a stabilized zirconia ceramic mainly composed of cubic crystals can be obtained.

【0016】また、本発明においてはAl2 3 を添加
することにより強度を高めることができるが、Al2
3 添加量を0.5〜15重量%としたのは、0.5重量
%よりも少ないと強度を高める効果が低く、一方15重
量%を越えると熱膨張係数が小さくなって空気極や燃料
極との熱膨張差が生じてしまうためである。
Further, although in the present invention can increase the strength by adding Al 2 O 3, Al 2 O
3 The amount of addition is 0.5 to 15% by weight, if it is less than 0.5% by weight, the effect of increasing strength is low, while if it exceeds 15% by weight, the coefficient of thermal expansion becomes small and the air electrode and fuel are reduced. This is because there is a difference in thermal expansion from the pole.

【0017】さらに、上記Y2 3 、Al2 3 、Zr
2 以外の成分として、SiO2 、Fe2 3 、Mg
O、CaO、TiO2 等の不純物を含んでいても良い
が、これらの不純物の合計を0.5重量%以下としてあ
るのは、不純物量が0.5重量%を越えると電気伝導度
が低下してしまうためである。なお、不純物量をこの範
囲内にするためには、純度の高い原料粉末を用いるとと
もに、例えば粉砕時にジルコニア製ボールを用いるな
ど、製造工程中での不純物の混入を防止すれば良い。
Further, the above Y 2 O 3 , Al 2 O 3 and Zr
As components other than O 2 , SiO 2 , Fe 2 O 3 , Mg
Although impurities such as O, CaO and TiO 2 may be included, the total amount of these impurities is set to 0.5% by weight or less because the electrical conductivity decreases when the amount of impurities exceeds 0.5% by weight. The reason is that In order to set the amount of impurities within this range, it is sufficient to use raw material powder with high purity and prevent impurities from being mixed in during the manufacturing process, for example, by using zirconia balls during grinding.

【0018】また、固体電解質セラミックスの平均結晶
粒径を5〜15μmとしたのは、立方晶の結晶を主体と
してあるため、結晶粒径を5μmよりも小さくすること
は困難であり、また結晶粒径を15μmよりも大きくす
ると強度が低下するためである。
Further, the reason why the average crystal grain size of the solid electrolyte ceramics is set to 5 to 15 μm is that it is mainly cubic crystals, so that it is difficult to make the crystal grain size smaller than 5 μm. This is because the strength decreases when the diameter is larger than 15 μm.

【0019】このような本発明の固体電解質体は、上記
の組成範囲内となるように調合した原料粉末を所定形状
に成形し、1500〜1700℃の温度で焼成すること
によって得ることができる。そして、得られた固体電解
質セラミックスは曲げ強度が30kg/mm2 以上で、
常温から1000℃間の熱膨張係数が9×10-6/℃以
下とすることができるのである。
Such a solid electrolyte body of the present invention can be obtained by molding a raw material powder prepared so as to be within the above composition range into a predetermined shape and firing it at a temperature of 1500 to 1700 ° C. And the obtained solid electrolyte ceramics has a bending strength of 30 kg / mm 2 or more,
The coefficient of thermal expansion between room temperature and 1000 ° C. can be 9 × 10 −6 / ° C. or less.

【0020】次に本発明の第2の目的を達成するため
に、5〜10モル%のY2 3 を含み、平均結晶粒子径
5〜50μm、開気孔率20〜45%のジルコニアセラ
ミックスにより固体電解質用支持部材を形成した。
To achieve the second object of the present invention, a zirconia ceramic containing 5 to 10 mol% of Y 2 O 3 and having an average crystal grain size of 5 to 50 μm and an open porosity of 20 to 45% is used. A solid electrolyte support member was formed.

【0021】また本発明の第2の目的を達成するため
に、10〜20モル%のCaOを含み、開気孔率が20
〜45%のジルコニアセラミックスの表面に、5〜10
モル%のY2 3 を含むジルコニアセラミックスからな
る保護層を備えて固体電解質用支持部材を構成した。
In order to achieve the second object of the present invention, it contains 10 to 20 mol% of CaO and has an open porosity of 20.
5 to 10% on the surface of ~ 45% zirconia ceramics
A support member for a solid electrolyte was constituted by including a protective layer made of zirconia ceramic containing mol% of Y 2 O 3 .

【0022】つまり、固体電解質用支持部材の少なくと
も表面をY2 3 を含むジルコニアセラミックスで形成
したことによって、空気極や固体電解質体等へのCa成
分の拡散を防止するようにしたのである。
That is, at least the surface of the solid electrolyte support member is formed of zirconia ceramics containing Y 2 O 3 so as to prevent the diffusion of the Ca component into the air electrode, the solid electrolyte body and the like.

【0023】また、燃料電池セルでは図1に示した構造
の他に、同様な材料を用い支持部材の表面にNi−Zr
2 (Y2 3 含有)の燃料極を形成した後、その上に
固体電解質、さらに空気極を設けた構造も提案されてい
る。この構造においても、本発明の支持部材を用いるこ
とが可能である。
Further, in the fuel cell, in addition to the structure shown in FIG. 1, the same material is used and Ni-Zr is formed on the surface of the supporting member.
A structure in which a fuel electrode of O 2 (containing Y 2 O 3 ) is formed, and then a solid electrolyte and an air electrode are provided thereon is also proposed. Also in this structure, the supporting member of the present invention can be used.

【0024】[0024]

【実施例】実施例1 まず固体電解質セラミックスに関する本発明の実施例を
説明する。
EXAMPLES Example 1 First, examples of the present invention relating to solid electrolyte ceramics will be described.

【0025】Y2 3 を8モル%含む平均粒径1〜2μ
mのZrO2 原料粉末を共沈法で作製し、この原料粉末
に平均粒径0.2〜1μmのAl2 3 粉末を表1に示
す種々の比率で添加し、ボールミルで20時間湿式混合
を行い、乾燥、造粒、成形後1500℃で2時間焼成し
てJIS R1601に基づく曲げ試験片形状のセラミ
ック焼結体を得た。この焼結体の曲げ強度と熱膨張率の
測定結果を表1に示す。
Average particle size of 1 to 2 μm containing 8 mol% of Y 2 O 3
m ZrO 2 raw material powder was prepared by a coprecipitation method, and Al 2 O 3 powder having an average particle diameter of 0.2 to 1 μm was added to the raw material powder at various ratios shown in Table 1 and wet-mixed in a ball mill for 20 hours. After drying, granulating, and molding, firing was performed at 1500 ° C. for 2 hours to obtain a ceramic sintered body in the shape of a bending test piece based on JIS R1601. Table 1 shows the measurement results of the bending strength and the coefficient of thermal expansion of this sintered body.

【0026】一般に固体電解質の曲げ強度は30kg/
mm2 以上であれば電極形成時のハンドリング等での破
損が殆どなくなるため、曲げ強度が30kg/mm2
上であるかどうかを判定基準とした。従って、表1より
Al2 3 の添加量を0.5重量%以上とすればこの基
準を満たすことがわかる。
Generally, the bending strength of a solid electrolyte is 30 kg /
If it is mm 2 or more, there is almost no damage due to handling at the time of forming an electrode, so that whether the bending strength is 30 kg / mm 2 or more was used as a criterion for judgment. Therefore, it can be seen from Table 1 that this criterion is satisfied when the addition amount of Al 2 O 3 is 0.5% by weight or more.

【0027】また、ジルコニアが燃料電池用固体電解質
として利用される理由の一つに熱膨張率が電極材料に近
いと言うことがあるが、電極材料の熱膨張率(常温〜1
000℃)は11×10-6/℃程度であることから、固
体電解質の熱膨張率(常温〜1000℃)は9.0×1
-6/℃以上であることが必要であり、従って表1から
Al2 3 添加量は15重量%以下が適切となる。
One of the reasons why zirconia is used as a solid electrolyte for fuel cells is that it has a coefficient of thermal expansion close to that of the electrode material, but the coefficient of thermal expansion of the electrode material (from room temperature to 1
(000 ° C.) is about 11 × 10 −6 / ° C., the thermal expansion coefficient (normal temperature to 1000 ° C.) of the solid electrolyte is 9.0 × 1.
It is necessary to be 0 -6 / ° C or higher, and therefore, from Table 1, it is appropriate that the amount of Al 2 O 3 added be 15% by weight or less.

【0028】以上によりAl2 3 添加量が0.5〜1
5重量%であれば適切な材料が得られる。
From the above, the added amount of Al 2 O 3 is 0.5 to 1
A suitable material is obtained with 5% by weight.

【0029】[0029]

【表1】 [Table 1]

【0030】以上のような本発明の固体電解質セラミッ
クスは、円柱状あるいは平板状として固体電解質型燃料
電池や酸素分離膜用素子等に好適に用いることができ
る。
The solid electrolyte ceramics of the present invention as described above can be suitably used in a solid electrolyte fuel cell, an oxygen separation membrane element or the like in the form of a column or a plate.

【0031】実施例2 次に固体電解質用支持部材に関する本発明の実施例を説
明する。
Example 2 Next, an example of the present invention relating to a solid electrolyte support member will be described.

【0032】共沈法を用いて合成されたY2 3 添加量
5、8、10モル%、CaO添加量10、15、17モ
ル%の安定化ZrO2 原料粉末を各々1200℃で、1
0時間仮焼した後、ジルコニアボールを用いて振動ミル
により所定の粒度まで粉砕し評価用原料を作製した。次
に成形用バインダーとして、得られた原料粉末に対し固
形分で5%添加量となるように、PVA100%水溶液
を攪拌混合しながら添加した。120℃で、10時間乾
燥した後80番のナイロンメッシュを通してプレス成形
用の原料を作製した。この原料を直径30mmの金型を
用い、成形圧力1t/cm2 で成形した後、大気中、1
250〜1700℃で焼成して多孔質ジルコニアセラミ
ックスを得、これを評価用の支持部材の試料とした。
Stabilized ZrO 2 raw material powders having a Y 2 O 3 addition amount of 5, 8, 10 mol% and a CaO addition amount of 10, 15, 17 mol% synthesized by the coprecipitation method were each prepared at 1200 ° C.
After calcination for 0 hour, a zirconia ball was used to grind to a predetermined particle size by a vibration mill to prepare a raw material for evaluation. Next, as a molding binder, a 100% PVA aqueous solution was added while stirring and mixing so that the solid content was 5% with respect to the obtained raw material powder. After drying at 120 ° C. for 10 hours, a raw material for press molding was produced through a No. 80 nylon mesh. This raw material was molded at a molding pressure of 1 t / cm 2 using a mold having a diameter of 30 mm, and then, in the atmosphere,
A porous zirconia ceramic was obtained by firing at 250 to 1700 ° C., which was used as a sample of a supporting member for evaluation.

【0033】次に、空気極材料として純度99.7%、
平均粒子径が3μmの市販のLa0.9 Sr0.1 MnO3
粉末をスラリーとして上記評価用の支持部材表面に10
0μmの厚みとなるように塗布し、大気中1200℃で
500時間熱処理した。その後、切断面についてCa及
びYの空気極への拡散侵入深さをEPMA装置により測
定した。
Next, as an air electrode material, a purity of 99.7%,
Commercially available La 0.9 Sr 0.1 MnO 3 having an average particle size of 3 μm
The powder is used as a slurry on the surface of the supporting member for evaluation described above.
It was applied so as to have a thickness of 0 μm, and heat-treated in the air at 1200 ° C. for 500 hours. After that, the diffusion penetration depth of Ca and Y into the air electrode of the cut surface was measured by an EPMA apparatus.

【0034】表2に結果を示すように、比較例であるC
aOを含むジルコニアセラミックスからなる支持部材に
ついては添加したCaO量や焼結体の粒径、開気孔率に
よらず全てのもので空気極材料中へのCa成分の拡散が
見られた。
As the results are shown in Table 2, C which is a comparative example.
Diffusion of the Ca component into the air electrode material was observed in all of the supporting members made of zirconia ceramics containing aO, regardless of the amount of CaO added, the particle size of the sintered body, and the open porosity.

【0035】これに対し、本発明実施例であるY2 3
を含むジルコニアセラミックスからなる支持部材につい
ては、全ての試料においてY成分の拡散状態は見られな
かった。しかし、Y2 3 を含むジルコニアセラミック
スであっても、粒径が5μm未満のものでは、熱処理温
度と同様の焼成温度1300℃での開気孔率が規格値で
ある20〜45%を満足せず、また粒径が50μm以上
のものでは、焼結性が悪く1800℃の高温焼成でも上
記開気孔率の規格を満足することができなかったため、
電解質用支持部材としては不適であった。
On the other hand, Y 2 O 3 according to the present invention is used.
Regarding the supporting member made of zirconia ceramics containing, no diffused state of the Y component was observed in all the samples. However, even for zirconia ceramics containing Y 2 O 3 , if the particle size is less than 5 μm, the open porosity at a firing temperature of 1300 ° C., which is similar to the heat treatment temperature, must satisfy the standard value of 20 to 45%. In addition, if the particle size is 50 μm or more, the sinterability is poor and the above open porosity standard cannot be satisfied even at a high temperature of 1800 ° C. Therefore,
It was unsuitable as a support member for electrolyte.

【0036】また、本実施例では、支持部材の全体がY
2 3 安定化ジルコニアセラミックスからなるため、機
械的強度を高くすることができる。
Further, in this embodiment, the entire supporting member is Y
Since it is made of 2 O 3 -stabilized zirconia ceramics, the mechanical strength can be increased.

【0037】[0037]

【表2】 [Table 2]

【0038】実施例3 次に固体電解質用支持部材に関する本発明の他の実施例
を説明する。
Embodiment 3 Next, another embodiment of the present invention relating to a solid electrolyte support member will be described.

【0039】共沈法を用いて合成されたCaO添加量1
0、15、20モル%の安定化ZrO2 原料粉末を各々
1300℃で、3時間仮焼した後、ジルコニアボールを
用いて振動ミルにより平均粒径10μmまで粉砕し評価
用原料を作製した。成形用バインダーとして、上記原料
粉末に対し固形分で5%添加量となるようにPVA10
0%水溶液を攪拌混合しながら添加した。120℃で、
10時間乾燥した後、80番のナイロンメッシュを通し
プレス成形用原料を作製した。
Addition amount of CaO synthesized by coprecipitation method 1
Each of 0, 15, and 20 mol% of the stabilized ZrO 2 raw material powder was calcined at 1300 ° C. for 3 hours, and then pulverized to a mean particle size of 10 μm with a vibration mill using zirconia balls to prepare a raw material for evaluation. As a molding binder, PVA10 is added so that the solid content is 5% with respect to the above raw material powder.
A 0% aqueous solution was added with stirring and mixing. At 120 ℃,
After drying for 10 hours, a No. 80 nylon mesh was passed through to prepare a raw material for press molding.

【0040】得られた原料を直径30mmの金型を用
い、成形圧力1t/cm2 で成形した後、大気中、14
50〜1700℃で焼成し、開気孔率の異なった多孔質
ジルコニアセラミックスから成る支持部材の試料を作製
した。
The obtained raw material was molded at a molding pressure of 1 t / cm 2 using a mold having a diameter of 30 mm, and was then molded in the atmosphere at 14
By firing at 50 to 1700 ° C., a sample of a supporting member made of porous zirconia ceramics having different open porosities was prepared.

【0041】さらに、保護膜の材料として、前記同様共
沈法を用いて合成されたY2 3 添加量5、8、10モ
ル%の安定化ZrO2 原料を1250℃で、3時間仮焼
した後、ジルコニアボールを用いて振動ミルにより、各
々平均粒径2、5、8、10、15μmに粉砕し原料粉
末を作製した。得られた原料粉末に対し、固形分で2%
添加量となるようにPVA80%水溶液を攪拌混合しな
がら添加し、ジルコニアペーストを得た。
Further, as a material for the protective film, a stabilized ZrO 2 raw material having a Y 2 O 3 addition amount of 5, 8, and 10 mol% synthesized by the same coprecipitation method as described above was calcined at 1250 ° C. for 3 hours. After that, a zirconia ball was used to pulverize the particles into an average particle size of 2, 5, 8, 10, and 15 μm by a vibration mill to prepare a raw material powder. 2% in solid content based on the obtained raw material powder
An 80% PVA aqueous solution was added with stirring and mixing so that the addition amount was obtained, to obtain a zirconia paste.

【0042】このジルコニアペーストを上記支持部材の
表面へ厚み50μm程度になるように印刷し、120℃
で、2時間乾燥した後、大気中にて、1400℃で2時
間焼きつけY2 3 安定化ジルコニアからなる保護層を
形成した。
This zirconia paste was printed on the surface of the supporting member so that the thickness was about 50 μm, and the temperature was 120 ° C.
Then, after drying for 2 hours, it was baked in air at 1400 ° C. for 2 hours to form a protective layer made of Y 2 O 3 -stabilized zirconia.

【0043】さらに、空気極材料として純度99.7
%、平均粒子径が3μmの市販のLa0.9 Sr0.1 Mn
3 粉末をスラリーとして上記評価用の支持部材表面に
100μmの厚みとなるように塗布し、大気中1200
℃で500時間熱処理した。その後、切断面についてC
a及びYの空気極への拡散侵入深さをEPMA装置によ
り測定した。
Further, the purity of the air electrode material is 99.7.
%, Commercially available La 0.9 Sr 0.1 Mn having an average particle size of 3 μm
O 3 powder was applied as a slurry to the surface of the supporting member for evaluation so as to have a thickness of 100 μm, and was applied in air at 1200
It heat-processed at 500 degreeC for 500 hours. After that, regarding the cut surface, C
The diffusion penetration depths of a and Y into the air electrode were measured by an EPMA device.

【0044】表3、4に結果を示すように、比較例であ
る保護層を形成しないCaO安定化ジルコニアセラミッ
クスのみからなる支持部材については、添加したCaO
量及び焼結体の気孔率によらず全てのもので空気極材料
中へCa成分の拡散が見られた。
As shown in the results in Tables 3 and 4, the supporting member made of only CaO-stabilized zirconia ceramics without forming a protective layer, which is a comparative example, was added with CaO.
Diffusion of the Ca component was observed in the air electrode material in all of them regardless of the amount and the porosity of the sintered body.

【0045】これに対しY2 3 安定化ジルコニアの保
護層を設けた本発明の支持部材については、Y2 3
にかかわらず全ての試料においてCa成分の拡散が遮断
されており、燃料極材料中への拡散は見られなかった。
また、Yの空気極への拡散も見られなかった。
On the other hand, in the case of the support member of the present invention provided with the protective layer of Y 2 O 3 stabilized zirconia, the diffusion of the Ca component was blocked in all the samples regardless of the amount of Y 2 O 3 , and No diffusion into the polar material was observed.
Further, no diffusion of Y to the air electrode was observed.

【0046】なお、上記保護層の厚みについては、種々
実験の結果5μm以上、好ましくは10μm以上あれ
ば、Ca成分の拡散を防止できることがわかった。
As a result of various experiments, it was found that the thickness of the protective layer was 5 μm or more, preferably 10 μm or more, so that the diffusion of the Ca component could be prevented.

【0047】また、本実施例では支持部材の大部分がC
aO安定化ジルコニアセラミックスから成るため、安価
に製造することができる。
In this embodiment, most of the supporting members are C
Since it is made of aO-stabilized zirconia ceramics, it can be manufactured at low cost.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】以上のような本発明の固体電解質用支持部
材は、円筒状や平板状等として固体電解質燃料電池や酸
素分離膜用素子等に好適に使用することができる。
The solid electrolyte support member of the present invention as described above can be suitably used in a solid electrolyte fuel cell, an oxygen separation membrane element or the like in a cylindrical shape or a flat plate shape.

【0051】[0051]

【発明の効果】以上のように本発明によれば、安定化剤
として5〜10モル%のY2 3 を含み、さらに0.5
〜15重量%のAl2 3 と、0.5重量%以下の不可
避不純物と、残部がZrO2 から成り、焼結体の平均結
晶粒径を5〜15μmとして固体電解質セラミックスを
構成したことによって、充分な電気伝導度と熱膨張係数
を維持したまま、曲げ強度を30kg/mm2 以上と高
くすることができる。したがって、本発明の固体電解質
セラミックスを燃料電池に用いる場合に、取り扱い上充
分な強度を有しているため破損などの恐れはないことか
ら、製造歩留りが高く、信頼性を高くすることができ
る。
As described above, according to the present invention, 5 to 10 mol% of Y 2 O 3 is contained as a stabilizer, and further 0.5
By constructing the solid electrolyte ceramics, Al 2 O 3 of ˜15 wt%, unavoidable impurities of 0.5 wt% or less, and the balance ZrO 2 are used, and the average crystal grain size of the sintered body is 5 to 15 μm. The bending strength can be increased to 30 kg / mm 2 or more while maintaining sufficient electric conductivity and thermal expansion coefficient. Therefore, when the solid electrolyte ceramics of the present invention is used in a fuel cell, since it has sufficient strength for handling and is not likely to be damaged, the manufacturing yield is high and the reliability can be improved.

【0052】また、本発明によれば、5〜10モル%の
2 3 を含み、平均結晶粒子径5〜50μm、開気孔
率20〜45%のジルコニアセラミックスにより固体電
解質用支持部材を形成し、あるいは10〜20モル%の
CaOを含み、開気孔率が20〜45%のジルコニアセ
ラミックスの表面に、5〜10モル%のY2 3 を含む
ジルコニアセラミックスからなる保護層を備えて固体電
解質用支持部材を構成したことによって、燃料電池とし
ての製造工程中の熱処理での空気極中へのCa成分の拡
散を防止し、長時間作動可能な燃料電池発電セルを製造
することが可能となる。
According to the present invention, the solid electrolyte support member is formed of zirconia ceramics containing 5 to 10 mol% of Y 2 O 3 and having an average crystal grain size of 5 to 50 μm and an open porosity of 20 to 45%. Alternatively, a protective layer made of zirconia ceramic containing 5 to 10 mol% of Y 2 O 3 is provided on the surface of zirconia ceramic containing 10 to 20 mol% of CaO and having an open porosity of 20 to 45%. By configuring the support member for the electrolyte, it is possible to prevent the diffusion of the Ca component into the air electrode during the heat treatment during the manufacturing process as the fuel cell, and to manufacture the fuel cell power generation cell that can operate for a long time. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な固体電解質型燃料電池の構造を示す一
部破断斜視図である。
FIG. 1 is a partially cutaway perspective view showing a structure of a general solid oxide fuel cell.

【符合の説明】[Explanation of sign]

1:支持部材 2:空気極 3:固体電解質 4:燃料極 5:インターコネクタ 6:空気 7:燃料 1: Support member 2: Air electrode 3: Solid electrolyte 4: Fuel electrode 5: Interconnector 6: Air 7: Fuel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/12 9444−4K // B01D 71/02 500 9153−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01M 8/12 9444-4K // B01D 71/02 500 9153-4D

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】5〜10モル%のY2 3 と、0.5〜1
5重量%のAl2 3 と、0.5重量%以下の不可避不
純物と、残部がZrO2 から成り、平均結晶粒径が5〜
15μmであることを特徴とする固体電解質セラミック
ス。
1. A Y 2 O 3 content of 5 to 10 mol%, and 0.5 to 1
5% by weight of Al 2 O 3 , 0.5% by weight or less of unavoidable impurities, and the balance of ZrO 2 and having an average crystal grain size of 5 to 5.
A solid electrolyte ceramic having a thickness of 15 μm.
【請求項2】常温から1000℃間の熱膨張係数が9×
10-6/℃以上であり、かつ曲げ強度が30kg/mm
2 以上であることを特徴とする請求項1記載の固体電解
質セラミックス。
2. The coefficient of thermal expansion between room temperature and 1000 ° C. is 9 ×
More than 10 -6 / ° C and bending strength of 30 kg / mm
The solid electrolyte ceramics according to claim 1, wherein the solid electrolyte ceramics is 2 or more.
【請求項3】5〜10モル%のY2 3 を含み、平均結
晶粒子径5〜50μm、開気孔率20〜45%のジルコ
ニアセラミックスからなる固体電解質用支持部材。
3. A solid electrolyte support member comprising zirconia ceramics containing 5 to 10 mol% of Y 2 O 3 and having an average crystal grain diameter of 5 to 50 μm and an open porosity of 20 to 45%.
【請求項4】10〜20モル%のCaOを含み、開気孔
率が20〜45%のジルコニアセラミックスの表面に、
5〜10モル%のY2 3 を含むジルコニアセラミック
スの保護層を備えてなる固体電解質用支持部材。
4. A surface of zirconia ceramics containing 10 to 20 mol% of CaO and having an open porosity of 20 to 45%,
A support member for a solid electrolyte, comprising a protective layer of zirconia ceramics containing 5 to 10 mol% of Y 2 O 3 .
JP03732295A 1994-03-31 1995-02-24 Air electrode support Expired - Fee Related JP3502685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03732295A JP3502685B2 (en) 1994-03-31 1995-02-24 Air electrode support

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-62737 1994-03-31
JP6273794 1994-03-31
JP03732295A JP3502685B2 (en) 1994-03-31 1995-02-24 Air electrode support

Publications (2)

Publication Number Publication Date
JPH07315922A true JPH07315922A (en) 1995-12-05
JP3502685B2 JP3502685B2 (en) 2004-03-02

Family

ID=26376459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03732295A Expired - Fee Related JP3502685B2 (en) 1994-03-31 1995-02-24 Air electrode support

Country Status (1)

Country Link
JP (1) JP3502685B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097859A (en) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell and manufacture thereof
JPH11329462A (en) * 1998-05-13 1999-11-30 Murata Mfg Co Ltd Solid electrolytic fuel cell
EP0996130A1 (en) * 1998-10-23 2000-04-26 Eurotope Entwicklungsgesellschaft für Isotopentechnologien mbH Medical radioactive iodine-125 miniature radiation sources and methods of producing same
EP1008995A1 (en) * 1998-12-12 2000-06-14 Eurotope Entwicklungsgesellschaft für Isotopentechnologien mbH Medical radioactive palladium-103 miniature radiation sources and methods of producing same
KR100317465B1 (en) * 1998-06-04 2001-12-22 무라타 야스타카 Solid electrolyte fuel cell
JP2004362913A (en) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP2006124256A (en) * 2004-10-29 2006-05-18 Noritake Co Ltd Zirconia porous body and its manufacturing method
JP2006202667A (en) * 2005-01-24 2006-08-03 Chubu Electric Power Co Inc Manufacturing method of solid electrolyte membrane
JP2007099584A (en) * 2005-10-07 2007-04-19 Nitsukatoo:Kk Porous electroconductive zirconia-based sintered compact and vacuum chuck member made of the same
JP2007254215A (en) * 2006-03-23 2007-10-04 Noritake Co Ltd Ceramic cylindrical support with straight tubular pore and oxygen separation membrane
JP2009195867A (en) * 2008-02-25 2009-09-03 Noritake Co Ltd Porous support for oxygen separating membrane and oxygen separating membrane element with this support
JP2011518416A (en) * 2008-04-18 2011-06-23 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Integrated seal for high temperature electrochemical devices
JP2012087046A (en) * 2011-12-12 2012-05-10 Nippon Shokubai Co Ltd Zirconia sheet
JP2014508372A (en) * 2010-11-29 2014-04-03 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Yttria stabilized zirconia melted powder
DE102017207560A1 (en) * 2017-05-05 2018-11-08 Robert Bosch Gmbh Method for producing a functional layer device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097859A (en) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell and manufacture thereof
JPH11329462A (en) * 1998-05-13 1999-11-30 Murata Mfg Co Ltd Solid electrolytic fuel cell
KR100317465B1 (en) * 1998-06-04 2001-12-22 무라타 야스타카 Solid electrolyte fuel cell
EP0996130A1 (en) * 1998-10-23 2000-04-26 Eurotope Entwicklungsgesellschaft für Isotopentechnologien mbH Medical radioactive iodine-125 miniature radiation sources and methods of producing same
EP1008995A1 (en) * 1998-12-12 2000-06-14 Eurotope Entwicklungsgesellschaft für Isotopentechnologien mbH Medical radioactive palladium-103 miniature radiation sources and methods of producing same
JP2004362913A (en) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP4580729B2 (en) * 2004-10-29 2010-11-17 株式会社ノリタケカンパニーリミテド Zirconia porous body and method for producing the same
JP2006124256A (en) * 2004-10-29 2006-05-18 Noritake Co Ltd Zirconia porous body and its manufacturing method
JP2006202667A (en) * 2005-01-24 2006-08-03 Chubu Electric Power Co Inc Manufacturing method of solid electrolyte membrane
JP2007099584A (en) * 2005-10-07 2007-04-19 Nitsukatoo:Kk Porous electroconductive zirconia-based sintered compact and vacuum chuck member made of the same
JP2007254215A (en) * 2006-03-23 2007-10-04 Noritake Co Ltd Ceramic cylindrical support with straight tubular pore and oxygen separation membrane
JP4523924B2 (en) * 2006-03-23 2010-08-11 株式会社ノリタケカンパニーリミテド Ceramic straight tube hole cylindrical support and oxygen separation membrane
JP2009195867A (en) * 2008-02-25 2009-09-03 Noritake Co Ltd Porous support for oxygen separating membrane and oxygen separating membrane element with this support
JP2011518416A (en) * 2008-04-18 2011-06-23 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Integrated seal for high temperature electrochemical devices
JP2014508372A (en) * 2010-11-29 2014-04-03 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Yttria stabilized zirconia melted powder
JP2012087046A (en) * 2011-12-12 2012-05-10 Nippon Shokubai Co Ltd Zirconia sheet
DE102017207560A1 (en) * 2017-05-05 2018-11-08 Robert Bosch Gmbh Method for producing a functional layer device

Also Published As

Publication number Publication date
JP3502685B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
JP3502685B2 (en) Air electrode support
JP3453283B2 (en) Solid oxide fuel cell
JP2001307546A (en) Ionic conductor
JPH053037A (en) Solid electrolyte type fuel cell
CN112186201B (en) Metal oxide cathode material, composite cathode material and battery
JP6100050B2 (en) Air electrode for fuel cell
JP4524791B2 (en) Solid oxide fuel cell
WO2006098272A1 (en) Ion conductor
JPH0769721A (en) Zirconia solid-electrolytic material having high strength partially stabilized by scandia
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP3254456B2 (en) Method for manufacturing solid oxide fuel cell
WO2002013296A1 (en) Composite oxide for air electrode and material of collector of solid electrolyte fuel cell, method for preparation thereof, and solid electrolyte fuel cell
JP2734768B2 (en) Method for manufacturing solid oxide fuel cell
JP4184039B2 (en) Oxygen ion conductive solid electrolyte, electrochemical device using the same, and solid oxide fuel cell
JP3740304B2 (en) Conductive ceramics
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
EP1081782A2 (en) Solid electrolyte, method of producing same and fuel cell using same
JP3339936B2 (en) Method for producing conductive ceramics
JP2846559B2 (en) Porous sintered body and solid oxide fuel cell
JP3121991B2 (en) Conductive ceramics
JP3199546B2 (en) Current collector for solid oxide fuel cell and method for producing conductive ceramics
JP2003068324A (en) Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same
JP3091064B2 (en) Method for producing conductive ceramics and method for producing solid oxide fuel cell
JPH07187841A (en) Porous sintered compact and solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees