JPH07126001A - Fuel-reforming device - Google Patents

Fuel-reforming device

Info

Publication number
JPH07126001A
JPH07126001A JP5294073A JP29407393A JPH07126001A JP H07126001 A JPH07126001 A JP H07126001A JP 5294073 A JP5294073 A JP 5294073A JP 29407393 A JP29407393 A JP 29407393A JP H07126001 A JPH07126001 A JP H07126001A
Authority
JP
Japan
Prior art keywords
reforming
section
carbon monoxide
gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5294073A
Other languages
Japanese (ja)
Inventor
Katsuji Tanizaki
勝二 谷崎
Shinya Obara
伸哉 小原
Yukimoto Ishiko
超基エクォス・リサーチ内 石子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP5294073A priority Critical patent/JPH07126001A/en
Publication of JPH07126001A publication Critical patent/JPH07126001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a small fuel-reforming device reduced in the loss of heat and capable of lowering the concentration of carbon monoxide in the reformed gas. CONSTITUTION:A gasification section 3, a reforming and denaturing section 5, and an oxidation-removing section 6 comprise the laminate structures of a gasification layer 31 and a heating layer 32, a reformation catalyst layer 51 and a heating layer 52, and an oxidation catalyst layer 61 and a heating layer 62, respectively, and are incorporately and continuously disposed together with a combustion section 2. The constitution enables to greatly miniaturize the device in comparison with conventional devices and simultaneously highly reduce the loss of the heat of a heat source gas produced in the combustion section 2 for effectively utilizing the fuel. Since the concentration of carbon monoxide in the reformed gas is reduced in the reforming and denaturing section 5 and further since the concentration of the remaining carbon monoxide is reduced also in the oxidation-removing section 6, the concentration of the carbon monoxide in the reformed gas supplied to a fuel battery can surely be reduced to such a concentration (approximately 100ppm) as not affecting the fuel battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池を含む発電シ
ステムに設けられ、メタノールやLNGなどの化石燃料
を改質して、燃料電池の燃料となる、水素を主成分とす
る改質ガスを生成する燃料改質装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a reformed gas containing hydrogen as a main component, which is provided in a power generation system including a fuel cell and reforms fossil fuels such as methanol and LNG to serve as fuel for the fuel cell. The present invention relates to a fuel reformer that produces hydrogen.

【0002】[0002]

【従来の技術】燃料改質装置では、メタノールやLNG
などの化石燃料から成る改質原料を加熱気化して改質原
料ガスを生成し、その改質原料ガスに水蒸気を混合す
る、いわゆる水蒸気改質を施して改質ガスを生成する。
この改質ガスには、燃料電池の電極触媒の触媒毒となっ
て電池寿命を低下させる一酸化炭素が多く含まれている
ため、その改質ガス中の一酸化炭素濃度を、触媒による
変成反応を利用して低減させ、燃料電池の燃料である、
水素を主成分とする改質ガスを生成する。
2. Description of the Related Art In a fuel reformer, methanol or LNG is used.
A reforming raw material composed of fossil fuel is heated and vaporized to generate a reforming raw material gas, and steam is mixed with the reforming raw material gas, so-called steam reforming is performed to generate the reformed gas.
Since the reformed gas contains a large amount of carbon monoxide that becomes a catalyst poison of the electrode catalyst of the fuel cell and shortens the battery life, the carbon monoxide concentration in the reformed gas is changed by the catalytic conversion reaction. Is reduced by using the fuel cell fuel,
A reformed gas containing hydrogen as a main component is generated.

【0003】従来のこの種の燃料改質装置には、例えば
特開平4−71169号公報に、燃料電池発電システム
の起動方法として開示されたものがある。
A conventional fuel reformer of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-71169 as a method for starting a fuel cell power generation system.

【0004】その従来の燃料改質装置では、改質原料を
加熱気化して改質原料ガスを生成する気化器と、その改
質原料ガスに水蒸気改質を施して、水素を主成分とする
改質ガスを生成する改質器と、その改質ガス中の一酸化
炭素濃度を触媒によって低減させる変成器とが、それぞ
れ独立した装置として設けられている。
In the conventional fuel reforming apparatus, a vaporizer for heating and vaporizing a reforming raw material to produce a reforming raw material gas, and steam reforming the reforming raw material gas to have hydrogen as a main component. A reformer that generates a reformed gas and a transformer that reduces the concentration of carbon monoxide in the reformed gas by a catalyst are provided as independent devices.

【0005】そして発電システムの起動時には、先ず改
質器を、バーナ加熱によって改質ガスの露点温度以上に
まで昇温し起動する。次いで、改質原料中の水蒸気比を
過剰にすることによって改質反応を起こさせる。この
時、改質ガス中の一酸化炭素濃度は、変成器通過後と同
レベルに低減されている。次いで改質ガスを、変成器を
バイパスする側路を通して燃料電池に導入する。次いで
燃料電池を発電状態とし昇温する。次いで、変成器を昇
温し起動する。次いで上記変成器バイパス用の側路を閉
じて、改質ガスを変成器に導入する。最後に、変成後の
改質ガスを燃料電池に供給する。
At the time of starting the power generation system, first, the reformer is heated to the dew point temperature of the reformed gas or higher by the burner heating and started. Next, the reforming reaction is caused by increasing the steam ratio in the reforming raw material. At this time, the concentration of carbon monoxide in the reformed gas is reduced to the same level as that after passing through the transformer. The reformed gas is then introduced into the fuel cell through a bypass that bypasses the transformer. Next, the fuel cell is brought into a power generation state and the temperature is raised. Next, the transformer is heated and started. Then, the bypass for bypassing the transformer is closed and the reformed gas is introduced into the transformer. Lastly, the reformed reformed gas is supplied to the fuel cell.

【0006】上記燃料改質装置およびその装置を含む発
電システムの起動手順によると、改質器および燃料電池
の昇温の間は、変成器には改質ガスを通さず、よって変
成触媒は、ヒータのみによる加熱により、触媒全体が活
性温度に達するまでゆっくりと一様に昇温される。即
ち、変成触媒が局部的に加熱されることがないため、そ
の変成触媒の熱劣化を防止することができる。また、充
分に昇温されていない変成触媒に改質ガスを通すことが
ないため、変成触媒層における結露を防止して、その結
露による変成器のガス流通障害を回避することができ
る。
According to the starting procedure of the fuel reforming apparatus and the power generation system including the apparatus, the reforming gas is not passed through the shift converter during the temperature rise of the reformer and the fuel cell. By heating only by the heater, the temperature of the entire catalyst is slowly and uniformly raised until the activation temperature is reached. That is, since the shift catalyst is not locally heated, it is possible to prevent thermal degradation of the shift catalyst. Further, since the reformed gas is not passed through the shift catalyst that has not been sufficiently heated, it is possible to prevent dew condensation in the shift catalyst layer and avoid a gas flow obstacle in the shift converter due to the dew condensation.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記従来の燃
料改質装置では、次のような問題点があった。 (1)変成器は、改質ガスのバイパス路に挟まれて位置
するために、改質部とも明らかに独立した状態で設置さ
れる。従って、装置が大型化し、またそれによってガス
移送時の放熱による熱損失が大きくなる。 (2)変成器は、急速加熱と局部加熱を避けるように、
変成器内に取り付けられたヒータにより時間をかけて加
熱される。発電システムにおける最大の熱源は、バーナ
による燃焼ガスであり、その燃焼ガスの熱量だけでも、
改質器,変成器,燃料電池の3機器の起動には充分であ
る。従って、バーナとは別個に変成用のヒータを設ける
こと自体が、変成触媒の局部加熱の原因となり、また熱
エネルギーの浪費と装置の大型化を招く。 (3)変成器が起動するまでは、改質器における改質反
応によって、2倍当量の水蒸気を含む改質原料ガスから
得られた改質ガスが燃料電池に導入されることになる。
その際、改質器内では、改質反応と同時に変成反応も起
こり、その変成反応によって改質ガス中の一酸化炭素濃
度はある程度は低減されるが、かなりの濃度の一酸化炭
素を含む改質ガスが燃料電池に導入されてしまう。特
に、改質器の作動温度が高温になると、改質反応が主に
なるため、改質ガス中の一酸化炭素濃度は一層高くな
る。この改質ガス中の一酸化炭素は、燃料電池の電極触
媒の触媒毒となるため、燃料電池導入段階では約100
ppmにまで低減させる必要がある。
However, the above conventional fuel reformer has the following problems. (1) Since the transformer is located between the reformed gas bypass passages, it is clearly installed independent of the reformer. Therefore, the size of the apparatus becomes large, and thereby the heat loss due to heat dissipation during gas transfer becomes large. (2) The transformer should avoid rapid heating and local heating,
It is heated over time by a heater installed in the transformer. The largest heat source in the power generation system is the combustion gas from the burner, and the heat quantity of the combustion gas alone
It is sufficient to start up the three devices, the reformer, transformer, and fuel cell. Therefore, the provision of the conversion heater separately from the burner causes local heating of the conversion catalyst, wastes heat energy, and increases the size of the apparatus. (3) Until the shift converter is activated, the reforming gas in the reformer causes the reforming gas obtained from the reforming raw material gas containing double equivalent of steam to be introduced into the fuel cell.
At that time, in the reformer, a reforming reaction and a shift reaction also occur at the same time, and the shift reaction reduces the carbon monoxide concentration in the reformed gas to some extent. Quality gas is introduced into the fuel cell. In particular, when the operating temperature of the reformer becomes high, the reforming reaction mainly occurs, so that the concentration of carbon monoxide in the reformed gas becomes higher. Since carbon monoxide in the reformed gas becomes a catalyst poison of the electrode catalyst of the fuel cell, about 100 carbon monoxide is introduced at the fuel cell introduction stage.
It is necessary to reduce to ppm.

【0008】本発明は、上述のような問題点を解決する
ためになされたもので、小型で熱損失が少なく、しかも
改質ガス中の一酸化炭素濃度を低く抑えることのできる
燃料改質装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and is a fuel reformer which is small in size, has a small heat loss, and can keep the carbon monoxide concentration in the reformed gas low. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明に係る燃料改質装
置(1)は、熱源ガスを発生する燃焼部(2)と、改質
原料を上記燃焼部からの熱源ガスによって加熱気化させ
ることにより改質原料ガスを生成する気化部(3)と、
その気化部からの改質原料ガスを、上記燃焼部からの熱
源ガスで加熱した改質触媒によって、水素を主成分とす
る改質ガスに変換するとともに、その改質ガス中の一酸
化炭素濃度を低減させる改質・変成部(5)と、その改
質・変成部からの改質ガス中の残存一酸化炭素濃度を一
酸化炭素選択酸化触媒によって低減させる酸化除去部
(6)と、を備えている。
A fuel reforming apparatus (1) according to the present invention heats and vaporizes a combustion section (2) for generating a heat source gas and a reforming raw material by the heat source gas from the combustion section. A vaporization section (3) for generating a reforming raw material gas by
The reforming raw material gas from the vaporizing section is converted into a reforming gas containing hydrogen as a main component by the reforming catalyst heated by the heat source gas from the combustion section, and the concentration of carbon monoxide in the reforming gas is also changed. A reforming / shifting section (5) for reducing the amount of carbon monoxide, and an oxidation removing section (6) for reducing the residual carbon monoxide concentration in the reformed gas from the reforming / shifting section by a carbon monoxide selective oxidation catalyst. I have it.

【0010】そして上記気化部(3)は、改質原料を通
す気化層(31)と、上記燃焼部(2)からの熱源ガス
を通して上記気化層内の改質原料を加熱する加熱層(3
2)とが交互に配列されて積層構造を成す。
The vaporization section (3) is provided with a vaporization layer (31) for passing the reforming raw material and a heating layer (3) for heating the reforming raw material in the vaporization layer through the heat source gas from the combustion section (2).
2) and are alternately arranged to form a laminated structure.

【0011】上記改質・変成部(5)は、改質触媒を内
蔵して上記気化部の気化層からの改質原料ガスを通す改
質触媒層(51)と、上記気化部の加熱層を通過した熱
源ガスを通して上記改質触媒層内の改質触媒を加熱する
加熱層(52)とが交互に配列されて積層構造を成す。
The reforming / transforming section (5) has a reforming catalyst layer (51) containing a reforming catalyst and allowing the reforming raw material gas from the vaporization layer of the vaporization section to pass therethrough, and a heating layer of the vaporization section. The heating layers (52) for heating the reforming catalyst in the reforming catalyst layer through the heat source gas passing through are alternately arranged to form a laminated structure.

【0012】上記酸化除去部(6)は、一酸化炭素選択
酸化触媒を内蔵して上記改質・変成部からの改質ガスを
通す酸化触媒層(61)と、上記改質・変成部の加熱層
を通過した熱源ガスを通して上記酸化触媒層内の一酸化
炭素選択酸化触媒を加熱する加熱層(62)とが交互に
配列されて積層構造を成す。
The oxidation removal section (6) contains an oxidation catalyst layer (61) containing a carbon monoxide selective oxidation catalyst and allowing the reformed gas from the reforming / transforming section to pass therethrough, and the reforming / transforming section. The heating layer (62) for heating the carbon monoxide selective oxidation catalyst in the oxidation catalyst layer through the heat source gas passing through the heating layer is alternately arranged to form a laminated structure.

【0013】さらに、上記燃焼部(2)と気化部(3)
と改質・変成部(5)と酸化除去部(6)とが、一体的
に連設されて成ることを特徴とするものである。
Further, the combustion section (2) and the vaporization section (3)
The modification / transformation section (5) and the oxidation removal section (6) are integrally connected to each other.

【0014】[0014]

【作用】上記構成の燃料改質装置(1)において、気化
部(3)では、気化層(31)に導入された改質原料
を、加熱層(32)に導入された燃焼部(2)からの熱
源ガスによって加熱気化して改質原料ガスを生成する。
In the fuel reforming apparatus (1) having the above structure, in the vaporization section (3), the reforming raw material introduced into the vaporization layer (31) is introduced into the combustion section (2) introduced into the heating layer (32). The gas is heated and vaporized by the heat source gas from to produce the reforming raw material gas.

【0015】上記改質・変成部(5)では、改質触媒層
(51)内の改質触媒を、加熱層(52)に導入された
熱源ガスによって加熱する。そして、改質触媒層(5
1)内の、改質触媒が250〜300℃の温度範囲にあ
るガス進行方向上流域では、水蒸気改質反応によって、
上記気化部(3)の気化層(31)からの改質原料ガス
を改質ガスに変換する。また、熱源ガスの温度低下によ
り改質触媒が150〜200℃の温度範囲にあるガス進
行方向下流域では、変成反応によって改質ガス中の一酸
化炭素濃度を低減させる。
In the reforming / transforming section (5), the reforming catalyst in the reforming catalyst layer (51) is heated by the heat source gas introduced into the heating layer (52). Then, the reforming catalyst layer (5
In 1), in the upstream region in the gas advancing direction where the reforming catalyst is in the temperature range of 250 to 300 ° C., the steam reforming reaction causes
The reforming source gas from the vaporization layer (31) of the vaporization section (3) is converted into reformed gas. Further, in the downstream region in the gas advancing direction where the temperature of the reforming catalyst is in the temperature range of 150 to 200 ° C. due to the temperature decrease of the heat source gas, the carbon monoxide concentration in the reforming gas is reduced by the shift reaction.

【0016】さらに、上記酸化除去部(6)では、酸化
触媒層(61)内の一酸化炭素選択酸化触媒を、加熱層
(62)に導入された熱源ガスによって加熱する。そし
て、酸化触媒層(61)内の一酸化炭素選択酸化反応に
よって、上記改質・変成部(5)からの改質ガス中の残
存一酸化炭素濃度を低減させる。
Further, in the oxidation removing section (6), the carbon monoxide selective oxidation catalyst in the oxidation catalyst layer (61) is heated by the heat source gas introduced into the heating layer (62). Then, the carbon monoxide selective oxidation reaction in the oxidation catalyst layer (61) reduces the residual carbon monoxide concentration in the reformed gas from the reforming / transforming section (5).

【0017】上記燃料改質装置(1)では、気化部
(3)と改質・変成部(5)と酸化除去部(6)とを、
それぞれ気化層(31)と加熱層(32)、改質触媒層
(51)と加熱層(52)、酸化触媒層(61)と加熱
層(62)の積層構造とし、しかも燃焼部(2)と共に
一体的に連設したため、従来のものに比べて大幅に小型
化することができる。それと同時に、燃焼部(2)で発
生させた熱を、その損失を非常に小さく抑えて有効に利
用することができる。
In the fuel reforming apparatus (1), the vaporizing section (3), the reforming / transforming section (5), and the oxidation removing section (6) are provided.
The vaporization layer (31) and the heating layer (32), the reforming catalyst layer (51) and the heating layer (52), the oxidation catalyst layer (61) and the heating layer (62) have a laminated structure, and the combustion section (2). Since they are integrally connected together, the size can be greatly reduced compared to the conventional one. At the same time, the heat generated in the combustion section (2) can be effectively used with its loss being suppressed to a very small level.

【0018】また、改質・変成部(5)で改質ガス中の
一酸化炭素濃度を低減させるとともに、酸化除去部
(6)でも残存一酸化炭素濃度を低減させるようにした
ため、燃料電池に供給する改質ガス中の一酸化炭素濃度
を、その燃料電池に対して悪影響を与えることのない程
度の濃度(約100ppm)にまで確実に低減させるこ
とができる。
Further, since the carbon monoxide concentration in the reformed gas is reduced in the reforming / transformation section (5) and the residual carbon monoxide concentration is also reduced in the oxidation removal section (6), the fuel cell is improved. It is possible to reliably reduce the concentration of carbon monoxide in the supplied reformed gas to a concentration (about 100 ppm) that does not adversely affect the fuel cell.

【0019】なお、上記カッコ内の符号は、図面を参照
するためのものであり、何等本発明の構成を限定するも
のではない。
The reference numerals in the parentheses are for reference to the drawings and do not limit the structure of the present invention.

【0020】[0020]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明に係る燃料改質装置の前方
より見た斜視図、図2は、同じ燃料改質装置の後方より
見た斜視図、また図3は、同じ燃料改質装置のブロック
構成図である。
FIG. 1 is a perspective view of the fuel reformer according to the present invention seen from the front, FIG. 2 is a perspective view of the same fuel reformer seen from the rear, and FIG. 3 is the same fuel reformer. It is a block configuration diagram of.

【0022】図のようにこの燃料改質装置1は、下方か
ら上方へ、燃焼部2と、気化部3と、改質・変成部5
と、酸化除去部6とを一体的に連設して構成されてい
る。これら各部の構成について下記に説明する。
As shown in the figure, the fuel reforming apparatus 1 includes a combustion section 2, a vaporization section 3, and a reforming / transforming section 5 from the bottom to the top.
And the oxidation removing portion 6 are integrally connected. The configuration of each of these parts will be described below.

【0023】上記燃焼部2は、熱源ガスを発生するもの
で、熱源としては例えば、改質装置1外のメタノールタ
ンク7からメタノールポンプ9により供給される液体メ
タノールを燃料とし、ブロワ10によりバルブ11を介
して供給される空気を燃焼助剤としたバーナーが利用さ
れる。燃料の液体メタノールは、この燃焼部2の上部に
設けられた液体燃料マニホールド21を通して供給され
る。またこの燃焼部2には、燃料改質装置1の改質ガス
供給先である燃料電池からの余剰水素が、バルブ12を
介して供給される。
The combustion unit 2 generates a heat source gas. As a heat source, for example, liquid methanol supplied from a methanol tank 7 outside the reformer 1 by a methanol pump 9 is used as a fuel, and a valve 10 is provided by a blower 10. A burner using the air supplied through the combustion aid as a combustion aid is used. Liquid methanol, which is a fuel, is supplied through a liquid fuel manifold 21 provided at the upper portion of the combustion section 2. Further, excess hydrogen from the fuel cell, which is a reformed gas supply destination of the fuel reforming apparatus 1, is supplied to the combustion unit 2 via the valve 12.

【0024】上記気化部3は、改質原料、例えば上記メ
タノールタンク7からの液体メタノールと、水蒸気発生
器13に内蔵されている内タンクからの水とより成る混
合液体原料を、燃焼部2からの熱源ガスによって加熱気
化させることにより、改質原料ガスを生成するもので、
改質原料を通して気化させる気化層31と、燃焼部2か
らの熱源ガスを通す加熱層32とが立てられた状態で交
互に配列されて積層構造を成している。
The vaporizing section 3 supplies a reforming raw material, for example, a mixed liquid raw material composed of liquid methanol from the methanol tank 7 and water from an inner tank built in the steam generator 13 from the combustion section 2. The reforming source gas is generated by heating and vaporizing with the heat source gas of
A vaporization layer 31 for vaporizing the reforming raw material and a heating layer 32 for passing the heat source gas from the combustion section 2 are alternately arranged in a standing state to form a laminated structure.

【0025】上記改質・変成部5は、気化部3からの改
質原料ガスを、燃焼部2からの熱源ガスで加熱した改質
触媒によって、水素を主成分とする改質ガスに変換する
とともに、その改質ガス中の一酸化炭素濃度を低減させ
るもので、改質触媒を内蔵して気化部3からの改質原料
ガスを通す改質触媒層51と、気化部3の加熱層32を
通過した燃焼部2からの熱源ガスを通す加熱層52とが
立てられた状態で交互に配列されて積層構造を成してい
る。つまり改質触媒層51は気化部3の気化層31の上
端に連設され、加熱層52は気化部3の加熱層32の上
端に連設されている。また改質触媒は、銅,亜鉛等から
成るもので、改質触媒層51の内壁に含浸,溶射,電
着,スパッタ塗付等により担持、あるいは層内に充填さ
れている。
The reforming / transforming section 5 converts the reforming raw material gas from the vaporizing section 3 into a reforming gas containing hydrogen as a main component by the reforming catalyst heated by the heat source gas from the combustion section 2. Along with this, the concentration of carbon monoxide in the reformed gas is reduced, and the reforming catalyst layer 51 containing the reforming catalyst and allowing the reforming raw material gas from the vaporizing section 3 to pass through and the heating layer 32 of the vaporizing section 3 are provided. The heating layers 52 for passing the heat source gas from the combustion unit 2 that has passed through are alternately arranged in a standing state to form a laminated structure. That is, the reforming catalyst layer 51 is connected to the upper end of the vaporization layer 31 of the vaporization section 3, and the heating layer 52 is connected to the upper end of the heating layer 32 of the vaporization section 3. The reforming catalyst is made of copper, zinc or the like, and is carried on the inner wall of the reforming catalyst layer 51 by impregnation, thermal spraying, electrodeposition, sputter coating, or the like, or is filled in the layer.

【0026】上記酸化除去部6は、改質・変成部からの
改質ガス中の一酸化炭素濃度を、一酸化炭素選択酸化触
媒によって酸化除去させるもので、その一酸化炭素選択
酸化触媒を内蔵して改質・変成部5からの改質ガスを通
す酸化触媒層61と、改質・変成部5の加熱層52を通
過した燃焼部2からの熱源ガスを通す加熱層62とが立
てられた状態で交互に配列されて積層構造を成してい
る。即ち酸化触媒層61は改質・変成部5の改質触媒層
51の上端に連設され、加熱層62は改質・変成部5の
加熱層52の上端に連設されている。
The above-mentioned oxidization / removal section 6 oxidizes and removes the carbon monoxide concentration in the reformed gas from the reforming / transformation section by means of the carbon monoxide selective oxidation catalyst. Then, an oxidation catalyst layer 61 for passing the reformed gas from the reforming / transforming section 5 and a heating layer 62 for passing the heat source gas from the combustion section 2 passing through the heating layer 52 of the reforming / transforming section 5 are set up. They are alternately arranged in a closed state to form a laminated structure. That is, the oxidation catalyst layer 61 is connected to the upper end of the reforming catalyst layer 51 of the reforming / shifting section 5, and the heating layer 62 is connected to the upper end of the heating layer 52 of the reforming / shifting section 5.

【0027】この酸化除去部6の酸化触媒層61に内蔵
される一酸化炭素選択酸化触媒は、水素を酸化させず
に、つまり水が生成する反応を抑制して、一酸化炭素と
の酸化反応を選択的に推進する機能を有する触媒であ
り、その一酸化炭素選択酸化触媒としては、Pt/Al
23 ,Pd/Al23 ,Au/Fe23 ,Ru/
Al23 等の貴金属系触媒が用いられる。またこの触
媒は、酸化触媒層61の内壁に含浸,溶射,電着,スパ
ッタ塗付等により担持、あるいは層内に充填されてい
る。
The carbon monoxide selective oxidation catalyst contained in the oxidation catalyst layer 61 of the oxidation-removing section 6 does not oxidize hydrogen, that is, suppresses the reaction of water generation, and the oxidation reaction with carbon monoxide. Pt / Al is a catalyst having the function of selectively promoting carbon monoxide.
2 O 3 , Pd / Al 2 O 3 , Au / Fe 2 O 3 , Ru /
A noble metal catalyst such as Al 2 O 3 is used. The catalyst is supported on the inner wall of the oxidation catalyst layer 61 by impregnation, thermal spraying, electrodeposition, sputter coating, or the like, or is filled in the layer.

【0028】そしてこの酸化除去部6には、ブロワ19
からの空気が供給される。その空気を導入するための空
気マニホールド63が、酸化除去部6の下部に設けられ
ている。さらにこの酸化除去部6の上部には、各酸化触
媒層61からの改質ガスをまとめて燃料電池へ導く改質
ガスマニホールド65が設けられている。
A blower 19 is provided in the oxidation removing section 6.
Is supplied with air. An air manifold 63 for introducing the air is provided below the oxidation removing unit 6. Further, a reformed gas manifold 65 that guides the reformed gas from each oxidation catalyst layer 61 to the fuel cell is provided above the oxidation removal unit 6.

【0029】この燃料改質装置1では、以上の構成に加
えて、改質・変成部5からの改質ガス中の一酸化炭素濃
度を検出するCOセンサ(検出手段)20と、そのCO
センサ20が検出した改質・変成部5からの改質ガス中
の一酸化炭素濃度に応じて、この改質・変成部5の加熱
層52に供給する熱源ガスの量を制御するコントローラ
(制御手段)30とが設けられている。本実施例の場
合、コントローラ30は、COセンサ20の検出結果に
基づいてバルブ17を調整し、燃焼部2に導入するメタ
ノール流量を調整することにより、ブロワ16から気化
部3へ供給する空気量を調整することにより、後述のご
とく、改質・変成部5からの改質ガス中の一酸化炭素濃
度が所定値より高ければ、改質・変成部5の加熱層52
への熱源ガスの量を減少させるように制御する。またこ
のコントローラ30は、燃焼部2に供給される空気と余
剰水素との量を調整するバルブ11,12をも制御す
る。
In the fuel reforming apparatus 1, in addition to the above configuration, a CO sensor (detecting means) 20 for detecting the carbon monoxide concentration in the reformed gas from the reforming / transforming section 5 and its CO
A controller that controls the amount of the heat source gas supplied to the heating layer 52 of the reforming / transforming unit 5 according to the concentration of carbon monoxide in the reforming gas from the reforming / transforming unit 5 detected by the sensor 20 (control Means) 30 are provided. In the case of the present embodiment, the controller 30 adjusts the valve 17 based on the detection result of the CO sensor 20 and adjusts the flow rate of methanol introduced into the combustion section 2 to thereby supply the air amount from the blower 16 to the vaporization section 3. As described later, if the carbon monoxide concentration in the reformed gas from the reforming / transforming section 5 is higher than a predetermined value, the heating layer 52 of the reforming / transforming section 5 is adjusted.
Control to reduce the amount of heat source gas. The controller 30 also controls the valves 11 and 12 that adjust the amounts of air and surplus hydrogen supplied to the combustion unit 2.

【0030】次に、上記構成の燃料改質装置1の作用
を、ガスの流れに従い、図1〜図3および図4の説明図
を用いて説明する。
Next, the operation of the fuel reforming apparatus 1 having the above structure will be described according to the flow of gas with reference to FIGS. 1 to 3 and FIG.

【0031】気化部3の気化層31にメタノールタンク
7からの液体メタノール(改質原料)を、水蒸気発生器
13からの水と共に導入するとともに、加熱層32に燃
焼部2からの熱源ガスを導入して、気化層31を通る混
合液体原料を110〜150℃に加熱する。すると混合
液体原料は、図4中の式に示す気化反応(吸熱反応)
により液体表面から気化し、改質原料ガスとなる。
Liquid methanol (reforming raw material) from the methanol tank 7 is introduced into the vaporization layer 31 of the vaporization section 3 together with water from the steam generator 13, and a heat source gas from the combustion section 2 is introduced into the heating layer 32. Then, the mixed liquid raw material passing through the vaporization layer 31 is heated to 110 to 150 ° C. Then, the mixed liquid raw material undergoes the vaporization reaction (endothermic reaction) shown in the formula in FIG.
As a result, it is vaporized from the liquid surface and becomes a reforming raw material gas.

【0032】次いで、上記気化部3の気化層31で生成
された改質原料ガスを、改質・変成部5の改質触媒層5
1に導入するとともに、気化部3の加熱層32を通過し
た熱源ガスを、この改質・変成部5の加熱層52に導入
して、改質触媒層51内の改質触媒を、その改質触媒が
最も活性化する250〜300℃に加熱する。すると、
改質触媒と改質原料ガスとの間で、図4中の式に示す
水蒸気改質反応(吸熱反応)が起こり、改質原料ガス
は、水素を主成分とする改質ガスに変換される。この改
質ガスには、二酸化炭素および濃度約1%(10000
ppm)の一酸化炭素が含まれている。
Next, the reforming raw material gas generated in the vaporizing layer 31 of the vaporizing section 3 is supplied to the reforming catalyst layer 5 of the reforming / transforming section 5.
1, the heat source gas that has passed through the heating layer 32 of the vaporizing section 3 is introduced into the heating layer 52 of the reforming / transforming section 5 to modify the reforming catalyst in the reforming catalyst layer 51. Heat to 250-300 ° C, where the quality catalyst is most activated. Then,
A steam reforming reaction (endothermic reaction) represented by the formula in FIG. 4 occurs between the reforming catalyst and the reforming raw material gas, and the reforming raw material gas is converted into a reformed gas containing hydrogen as a main component. . This reformed gas contains carbon dioxide and a concentration of about 1% (10,000
(ppm) carbon monoxide is contained.

【0033】また、上記改質・変成部5の加熱層52を
下方から上方へ流れる熱源ガスは、改質反応が吸熱反応
であることから、その加熱層52の下流域(上方)では
温度が低下する。このため、その加熱層52の下流域に
対応する改質触媒層51内の改質触媒の温度は、150
〜200℃に低下する。すると改質触媒は、この温度範
囲では変成触媒として機能するようになり、図4中の
式に示す変成反応(発熱反応)によって改質ガス中の一
酸化炭素は、同じ改質ガス中の余剰水分と反応して二酸
化炭素に転化し、濃度が低減する。
Since the reforming reaction of the heat source gas flowing upward in the heating layer 52 of the reforming / transforming section 5 is an endothermic reaction, the temperature in the downstream region (upper) of the heating layer 52 is higher. descend. Therefore, the temperature of the reforming catalyst in the reforming catalyst layer 51 corresponding to the downstream region of the heating layer 52 is 150
~ 200 ° C. Then, the reforming catalyst functions as a shift catalyst in this temperature range, and carbon monoxide in the reformed gas is excessive in the same reformed gas due to the shift reaction (exothermic reaction) shown in the equation in FIG. It reacts with water and is converted to carbon dioxide, reducing its concentration.

【0034】即ち、改質・変成部5において、改質触媒
層51内の、改質触媒が250〜300℃の温度範囲に
あるガス進行方向上流域では、水蒸気改質反応によって
改質原料ガスを改質ガスに変換し、また改質触媒が15
0〜200℃の温度範囲にあるガス進行方向下流域で
は、変成反応によって改質ガス中の一酸化炭素濃度を低
減させる。従って、この改質・変成部5の加熱層52に
導入する熱源ガスの量を調整すれば、改質触媒層51内
の改質触媒の温度分布を変えて、改質反応領域と変成反
応領域との比率を変え、改質ガス中の一酸化炭素濃度を
調整することが可能になる。
That is, in the reforming / transforming section 5, in the upstream region of the reforming catalyst layer 51 where the reforming catalyst is in the temperature range of 250 to 300 ° C., the reforming raw material gas is produced by the steam reforming reaction. Is converted to reformed gas, and the reforming catalyst
In the downstream region in the gas advancing direction in the temperature range of 0 to 200 ° C., the carbon monoxide concentration in the reformed gas is reduced by the shift reaction. Therefore, if the amount of the heat source gas introduced into the heating layer 52 of the reforming / shifting section 5 is adjusted, the temperature distribution of the reforming catalyst in the reforming catalyst layer 51 is changed to change the reforming reaction region and the shift reaction region. It becomes possible to adjust the carbon monoxide concentration in the reformed gas by changing the ratio of

【0035】そこで本実施例では、COセンサ20によ
り、改質・変成部5からの改質ガス中の一酸化炭素濃度
を検出し、その検出の結果、一酸化炭素濃度が所定の
値、例えば1000ppmより高ければ、コントローラ
30により加熱層52への熱源ガスの量を減少させて改
質触媒の温度を低下させ、それにより変成反応領域を拡
大させて、一酸化炭素濃度を所定値まで低減させるよう
に自動的に制御する。
Therefore, in this embodiment, the CO sensor 20 detects the carbon monoxide concentration in the reformed gas from the reforming / transforming section 5, and as a result of the detection, the carbon monoxide concentration is a predetermined value, for example, If it is higher than 1000 ppm, the controller 30 reduces the amount of the heat source gas to the heating layer 52 to lower the temperature of the reforming catalyst, thereby expanding the shift reaction region and reducing the carbon monoxide concentration to a predetermined value. To control automatically.

【0036】このようにして改質・変成部5で生成さ
れ、しかも一酸化炭素濃度が所定値以下に低減された改
質ガスを、続いて酸化除去部6の酸化触媒層61に導入
する。それとともに、気化部3と改質・変成部5との加
熱層32,52を通過した燃焼部2からの熱源ガスを、
この酸化除去部6の加熱層62に導入する。すると酸化
触媒層61内の一酸化炭素選択酸化触媒と改質ガスとの
間で、図4中の式に示す一酸化炭素選択酸化反応が起
こり、改質ガス中に残る一酸化炭素は二酸化炭素に酸化
されるため、一酸化炭素濃度はさらに低減する。
The reformed gas thus generated in the reforming / transforming section 5 and having the carbon monoxide concentration reduced to a predetermined value or less is subsequently introduced into the oxidation catalyst layer 61 of the oxidation removing section 6. At the same time, the heat source gas from the combustion section 2 that has passed through the heating layers 32 and 52 of the vaporization section 3 and the reforming / transformation section 5,
This is introduced into the heating layer 62 of the oxidation removing unit 6. Then, the carbon monoxide selective oxidation reaction represented by the formula in FIG. 4 occurs between the carbon monoxide selective oxidation catalyst in the oxidation catalyst layer 61 and the reformed gas, and carbon monoxide remaining in the reformed gas is carbon dioxide. As a result, the carbon monoxide concentration is further reduced.

【0037】この一酸化炭素選択酸化触媒の反応温度は
室温〜200℃であり、加熱層62を通る熱源ガスから
その熱を得る。ただしその一酸化炭素選択酸化反応は発
熱反応であるため、反応開始後は加熱する必要はなく、
よって改質・変成部5の加熱層52を通過してきた熱源
ガスの温度が低下していても問題はない。
The reaction temperature of this carbon monoxide selective oxidation catalyst is room temperature to 200 ° C., and its heat is obtained from the heat source gas passing through the heating layer 62. However, since the carbon monoxide selective oxidation reaction is an exothermic reaction, it is not necessary to heat after the start of the reaction,
Therefore, there is no problem even if the temperature of the heat source gas passing through the heating layer 52 of the reforming / transforming section 5 is lowered.

【0038】そして上記酸化除去部6で、改質ガス中の
残存一酸化炭素濃度を、燃料電池に悪影響を及ぼさない
程度の約100ppmにまで低減させた後、その改質ガ
スを燃料電池に送る。その際、酸化除去部6からの改質
ガスを、水蒸気発生器13に通すことにより加湿する。
また、酸化除去部6の加熱層62を通過した熱源ガスを
水蒸気発生器13に通すことにより、その熱源ガス中の
水分を除去し、その他の成分は排気する。
Then, in the oxidation removing section 6, the residual carbon monoxide concentration in the reformed gas is reduced to about 100 ppm which does not adversely affect the fuel cell, and then the reformed gas is sent to the fuel cell. . At that time, the reformed gas from the oxidation-removal section 6 is humidified by passing through the steam generator 13.
Further, the heat source gas that has passed through the heating layer 62 of the oxidation removal unit 6 is passed through the steam generator 13 to remove the moisture in the heat source gas, and exhaust other components.

【0039】なお、燃料電池における改質ガスの余剰水
素は、燃焼部2の燃料ガスとして利用する。
The surplus hydrogen of the reformed gas in the fuel cell is used as the fuel gas for the combustion section 2.

【0040】[0040]

【発明の効果】以上説明したように、本発明に係る燃料
改質装置では、気化部と改質・変成部と酸化除去部と
を、それぞれ気化層と加熱層、改質触媒層と加熱層、酸
化触媒層と加熱層の積層構造とし、しかも燃焼部と共に
一体的に連設したため、従来のものに比べて大幅に小型
化することができる。それと同時に、燃焼部で発生させ
た熱を、その損失を非常に小さく抑えて有効に利用する
ことができる。従って、各部に別個にヒータ等の加熱装
置を設ける必要がない。
As described above, in the fuel reforming apparatus according to the present invention, the vaporization section, the reforming / transformation section, and the oxidation removal section are provided in the vaporization layer and the heating layer, and the reforming catalyst layer and the heating layer, respectively. Since the oxidation catalyst layer and the heating layer have a laminated structure and are integrally connected to the combustion section, the size can be greatly reduced as compared with the conventional one. At the same time, the heat generated in the combustion section can be effectively used with the loss thereof suppressed to a very small level. Therefore, it is not necessary to separately provide a heating device such as a heater in each part.

【0041】また、改質・変成部で改質ガス中の一酸化
炭素濃度を低減させるとともに、酸化除去部でも残存一
酸化炭素濃度を低減させるようにしたため、燃料電池に
供給する改質ガス中の一酸化炭素濃度を、その燃料電池
に対して悪影響を与えることのない程度の濃度(約10
0ppm)にまで確実に低減させることができる。
Further, since the carbon monoxide concentration in the reformed gas is reduced in the reforming / transforming section and the residual carbon monoxide concentration is also reduced in the oxidation removing section, the reformed gas supplied to the fuel cell is reduced. The concentration of carbon monoxide in the fuel cell is set to a level (about 10
It can be reliably reduced to 0 ppm).

【0042】さらに、実施例のように、改質・変成部か
らの改質ガス中の一酸化炭素濃度に応じて、その改質・
変成部に導入する燃焼部からの熱源ガスの量を制御すれ
ば、改質触媒層における改質反応領域と変成反応領域と
の比率を変えて、一酸化炭素濃度を常に所定値まで低減
させるように自動的に、かつ効率的に調整することがで
きる。
Further, as in the embodiment, according to the concentration of carbon monoxide in the reformed gas from the reforming / transforming section, the reforming
By controlling the amount of heat source gas from the combustion section introduced into the shift conversion section, the ratio of the reforming reaction region and the shift reaction region in the reforming catalyst layer is changed so that the carbon monoxide concentration is always reduced to a predetermined value. Can be adjusted automatically and efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における燃料改質装置の前方よ
り見た斜視図。
FIG. 1 is a perspective view of a fuel reformer according to an embodiment of the present invention seen from the front.

【図2】同じ燃料改質装置の後方より見た斜視図。FIG. 2 is a perspective view of the same fuel reformer seen from the rear.

【図3】同じ燃料改質装置のブロック構成図。FIG. 3 is a block diagram of the same fuel reformer.

【図4】同じ燃料改質装置の作用を、ガスの流れに従っ
て説明する図。
FIG. 4 is a diagram for explaining the operation of the same fuel reformer according to the flow of gas.

【符号の説明】[Explanation of symbols]

1 燃料改質装置 2 燃焼部 3 気化部 31 気化層 32 加熱層 5 改質・変成部 51 改質触媒層 52 加熱層 6 酸化除去部 61 酸化触媒層 62 加熱層 20 COセンサ(一酸化炭素濃度検出手段) 30 コントローラ(熱源ガス量制御手段) 1 Fuel Reforming Device 2 Combustion Section 3 Vaporization Section 31 Vaporization Layer 32 Heating Layer 5 Reforming / Metamorphosis Section 51 Reforming Catalyst Layer 52 Heating Layer 6 Oxidation Removal Section 61 Oxidation Catalyst Layer 62 Heating Layer 20 CO Sensor (Carbon Monoxide Concentration Detection means) 30 controller (heat source gas amount control means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 改質原料を、水蒸気改質によって、水素
を主成分とする改質ガスに変換する燃料改質装置におい
て、 熱源ガスを発生する燃焼部と、 上記改質原料を上記燃焼部からの熱源ガスによって加熱
気化させることにより、改質原料ガスを生成する気化部
と、 上記気化部からの改質原料ガスを、上記燃焼部からの熱
源ガスで加熱した改質触媒によって、水素を主成分とす
る改質ガスに変換するとともに、該改質ガス中の一酸化
炭素濃度を低減させる改質・変成部と、 上記改質・変成部からの改質ガス中の残存一酸化炭素濃
度を、一酸化炭素選択酸化触媒によって低減させる酸化
除去部と、 を備え、 上記気化部は、上記改質原料を通す気化層と、上記燃焼
部からの熱源ガスを通して上記気化層内の改質原料を加
熱する加熱層とが交互に配列されて積層構造を成し、 上記改質・変成部は、改質触媒を内蔵して上記気化部の
気化層からの改質原料ガスを通す改質触媒層と、上記気
化部の加熱層を通過した熱源ガスを通して上記改質触媒
層内の改質触媒を加熱する加熱層とが交互に配列されて
積層構造を成し、 上記酸化除去部は、一酸化炭素選択酸化触媒を内蔵して
上記改質・変成部からの改質ガスを通す酸化触媒層と、
上記改質・変成部の加熱層を通過した熱源ガスを通して
上記酸化触媒層内の一酸化炭素選択酸化触媒を加熱する
加熱層とが交互に配列されて積層構造を成し、 かつ、上記燃焼部と気化部と改質・変成部と酸化除去部
とが、一体的に連設されて成ることを特徴とする燃料改
質装置。
1. A fuel reforming apparatus for converting a reforming raw material into a reformed gas containing hydrogen as a main component by steam reforming, a combustion section for generating a heat source gas, and the reforming raw material for the combustion section. By heating and vaporizing the reforming raw material gas by the heat source gas from, the reforming catalyst that heats the reforming raw material gas from the vaporizing portion with the heat source gas from the combustion portion produces hydrogen. A reforming / transforming section for converting the reformed gas as a main component and reducing the carbon monoxide concentration in the reformed gas, and a residual carbon monoxide concentration in the reformed gas from the reforming / transforming section And a oxidization / removal unit for reducing the carbon monoxide selective oxidation catalyst, wherein the vaporization unit passes through the reforming raw material and a reforming raw material in the vaporization layer through the heat source gas from the combustion unit. The heating layers that heat the The reforming / transformation section has a reforming catalyst layer that contains a reforming catalyst and allows the reforming raw material gas from the vaporization layer of the vaporization section to pass through, and a heating layer of the vaporization section. The heating layers for heating the reforming catalyst in the reforming catalyst layer through the heat source gas passing through are alternately arranged to form a laminated structure, and the oxidation removing section has a built-in carbon monoxide selective oxidation catalyst. An oxidation catalyst layer through which the reformed gas from the reforming / transforming section is passed,
A heating layer that heats the carbon monoxide selective oxidation catalyst in the oxidation catalyst layer through a heat source gas that has passed through the heating layer of the reforming / transforming section is alternately arranged to form a laminated structure, and the combustion section A fuel reforming device, characterized in that a vaporizing section, a reforming / transforming section, and an oxidation removing section are integrally connected.
【請求項2】 上記改質・変成部からの改質ガス中の一
酸化炭素濃度を検出する検出手段と、 該検出手段が検出した上記改質・変成部からの改質ガス
中の一酸化炭素濃度に応じて、該改質・変成部に導入す
る上記燃焼部からの熱源ガスの量を制御する制御手段
と、 を備えたことを特徴とする請求項1記載の燃料改質装
置。
2. A detection means for detecting the concentration of carbon monoxide in the reformed gas from the reforming / transforming section, and a monoxide in the reformed gas from the reforming / transforming section detected by the detecting means. The fuel reformer according to claim 1, further comprising: a control unit that controls the amount of the heat source gas from the combustion unit that is introduced into the reforming / transforming unit according to the carbon concentration.
JP5294073A 1993-10-29 1993-10-29 Fuel-reforming device Pending JPH07126001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5294073A JPH07126001A (en) 1993-10-29 1993-10-29 Fuel-reforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5294073A JPH07126001A (en) 1993-10-29 1993-10-29 Fuel-reforming device

Publications (1)

Publication Number Publication Date
JPH07126001A true JPH07126001A (en) 1995-05-16

Family

ID=17802938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5294073A Pending JPH07126001A (en) 1993-10-29 1993-10-29 Fuel-reforming device

Country Status (1)

Country Link
JP (1) JPH07126001A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000361A1 (en) * 1996-06-28 1998-01-08 Matsushita Electric Works, Ltd. Modification apparatus
EP0861802A3 (en) * 1997-02-28 1999-04-21 Mitsubishi Denki Kabushiki Kaisha Fuel reforming apparatus
EP0911897A1 (en) * 1997-10-20 1999-04-28 dbb fuel cell engines GmbH Apparatus for steam reforming of a hydrocarbon fuel, in particular methanol, and for carbon monoxide reduction, and process therefor
EP0921584A2 (en) * 1997-12-05 1999-06-09 dbb fuel cell engines GmbH Device for steam reforming of hydrocarbons
EP0921585A3 (en) * 1997-12-05 1999-10-27 dbb fuel cell engines GmbH Device and method for steam reforming of hydrocarbons
EP1084990A1 (en) * 1999-09-15 2001-03-21 XCELLSIS GmbH Device for heating and/or converting at least one medium
EP1090878A1 (en) * 1999-10-06 2001-04-11 XCELLSIS GmbH Steam reforming unit
JP2003238112A (en) * 2003-01-10 2003-08-27 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
US6676907B1 (en) * 1998-11-19 2004-01-13 Ballard Power Systems Ag Arrangement for generating a hydrogen-containing gas
US6835482B2 (en) 2000-09-20 2004-12-28 Kabushiki Kaisha Toshiba Fuel reforming apparatus for polymer electrolyte membrane fuel cell
EP1230704A4 (en) * 1999-10-20 2005-08-31 Technology Man Inc Solid-oxide fuel cell hot assembly
KR100599687B1 (en) * 2004-06-29 2006-07-13 삼성에스디아이 주식회사 Fuel cell system and reformer used thereto
KR100599690B1 (en) * 2004-06-29 2006-07-13 삼성에스디아이 주식회사 Fuel cell system and stack of the same
DE19851109B4 (en) * 1998-11-06 2008-01-10 Heisel, Michael, Dr. Reactor for carrying out catalytic reactions with strong heat of reaction

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39675E1 (en) 1996-06-28 2007-06-05 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
CN1094465C (en) * 1996-06-28 2002-11-20 松下电工株式会社 Modification apparatus
WO1998000361A1 (en) * 1996-06-28 1998-01-08 Matsushita Electric Works, Ltd. Modification apparatus
US6413479B1 (en) 1996-06-28 2002-07-02 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
US6159434A (en) * 1997-02-28 2000-12-12 Engineering Advancement Association Of Japan Mitsubishi Denki Kabushiki Kaisha Flat plate stacked-type fuel reforming apparatus
EP0861802A3 (en) * 1997-02-28 1999-04-21 Mitsubishi Denki Kabushiki Kaisha Fuel reforming apparatus
EP0911897A1 (en) * 1997-10-20 1999-04-28 dbb fuel cell engines GmbH Apparatus for steam reforming of a hydrocarbon fuel, in particular methanol, and for carbon monoxide reduction, and process therefor
EP0921584A3 (en) * 1997-12-05 1999-10-27 dbb fuel cell engines GmbH Device for steam reforming of hydrocarbons
EP0921584A2 (en) * 1997-12-05 1999-06-09 dbb fuel cell engines GmbH Device for steam reforming of hydrocarbons
US6086839A (en) * 1997-12-05 2000-07-11 Dbb Fuel Cell Engines Gmbh System and process for the water vapor reforming of a hydrocarbon
US6447736B1 (en) 1997-12-05 2002-09-10 Xcellsis Gmbh System for the water vapor reforming of a hydrocarbon
EP0921585A3 (en) * 1997-12-05 1999-10-27 dbb fuel cell engines GmbH Device and method for steam reforming of hydrocarbons
DE19851109B4 (en) * 1998-11-06 2008-01-10 Heisel, Michael, Dr. Reactor for carrying out catalytic reactions with strong heat of reaction
US6676907B1 (en) * 1998-11-19 2004-01-13 Ballard Power Systems Ag Arrangement for generating a hydrogen-containing gas
EP1084990A1 (en) * 1999-09-15 2001-03-21 XCELLSIS GmbH Device for heating and/or converting at least one medium
US7481984B1 (en) 1999-09-15 2009-01-27 Nucellsys Gmbh System for heating and/or converting at least one medium
EP1090878A1 (en) * 1999-10-06 2001-04-11 XCELLSIS GmbH Steam reforming unit
EP1230704A4 (en) * 1999-10-20 2005-08-31 Technology Man Inc Solid-oxide fuel cell hot assembly
US6835482B2 (en) 2000-09-20 2004-12-28 Kabushiki Kaisha Toshiba Fuel reforming apparatus for polymer electrolyte membrane fuel cell
JP2003238112A (en) * 2003-01-10 2003-08-27 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
KR100599687B1 (en) * 2004-06-29 2006-07-13 삼성에스디아이 주식회사 Fuel cell system and reformer used thereto
KR100599690B1 (en) * 2004-06-29 2006-07-13 삼성에스디아이 주식회사 Fuel cell system and stack of the same

Similar Documents

Publication Publication Date Title
JP4830197B2 (en) Fuel reformer
JPH07126001A (en) Fuel-reforming device
JPH07315801A (en) System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
JP5340657B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
JP3711577B2 (en) Fuel reformer
JP4923371B2 (en) Start-up method of hydrogen generator equipped with hydrogen separation membrane
JP3813391B2 (en) Solid polymer fuel cell power generator and method of operating the same
JP4728475B2 (en) Fuel cell system
JPH08106913A (en) Fuel cell power generating system
JP2003151599A (en) Fuel cell system
JP2007106612A (en) Fuel reforming apparatus and fuel cell power generation system using the same
JP3490877B2 (en) Starting method of reformer for fuel cell
KR100647331B1 (en) Shift reactor, fuel cell system employing the same, and operating method of the same
JPH08100184A (en) Carbon monoxide removing system
JPH08133701A (en) Carbon monoxide removing device
JP2000327304A (en) Hydrogen generation apparatus
JP3734966B2 (en) Hydrogen generator
JPH0676847A (en) Starting method for fuel cell and device thereof
JPH09161832A (en) Fuel cell generating device, and its operation method and operation control method
JP2005353348A (en) Fuel cell system
JPH07232901A (en) Fuel reformer
JP2004292293A (en) Apparatus for generating hydrogen and method of its operation
JP2003160307A (en) Reformer and its operation method
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JPH08162137A (en) Fuel cell system and its starting method