JPH08106913A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH08106913A
JPH08106913A JP6259764A JP25976494A JPH08106913A JP H08106913 A JPH08106913 A JP H08106913A JP 6259764 A JP6259764 A JP 6259764A JP 25976494 A JP25976494 A JP 25976494A JP H08106913 A JPH08106913 A JP H08106913A
Authority
JP
Japan
Prior art keywords
reformed gas
carbon monoxide
fuel cell
water
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6259764A
Other languages
Japanese (ja)
Inventor
Takeshi Hara
毅 原
Kenji Kato
憲二 加藤
Katsuji Tanizaki
勝二 谷崎
Shinya Obara
伸哉 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Equos Research Co Ltd
Original Assignee
Aisin AW Co Ltd
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Equos Research Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP6259764A priority Critical patent/JPH08106913A/en
Publication of JPH08106913A publication Critical patent/JPH08106913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To reduce the concentration of carbon monoxide in a hydrogen-rich fuel gas supplied to a fuel cell to 10ppm or less. CONSTITUTION: A reformed gas from a fuel reformer 14 is introduced into a carbon monoxide removing unit 26 through a water recovery unit 32, cooling water is circulated to cooling layers of the unit 32 and the unit 26, and a sensor 27 for measuring the temperature of the reformed gas exhausted from the unit 26 is installed. When the temperature of the reformed gas is increased above an activation temperature region of a selected oxidation catalyst carried to the unit 26, a controller 36 controls operation of a circulation pump 34 so as to increase the circulation velocity of cooling water. The reformed gas is cooled by the cooling layers of the unit 32 and the unit 26, and the selected activation catalyst is always kept in the activation temperature region. Excess steam contained in the reformed gas by reaction in a reformer 15 and a modifier 16 is recovered and removed with the water recovery unit 32, and the reformed gas whose carbon monoxide concentration is reduced is humidified with a water supply unit 28, then supplied to a hydrogen electrode of a fuel cell 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池発電装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator.

【0002】[0002]

【従来の技術】従来の固体高分子電解質型燃料電池発電
装置の概略システム構成図が図6に示される。ここで燃
料電池本体30は、公知のように、固体高分子電解質膜
を2枚のガス拡散電極で挟み、ガスセパレータで各燃料
電池セルを隔離する構造を有している。ガス拡散電極に
は一般に白金が用いられるが、特に水素極に導入される
燃料ガス中に一酸化炭素が含まれていると、白金が被毒
されて発電効率を低下あるいは不安定にさせることが知
られている。このため、図6に示される構成において
は、燃料改質装置14の変成部16におけるシフト反
応、および一酸化炭素除去装置26における酸化反応を
経て、改質ガス中の一酸化炭素含量を低減させるものと
している。
2. Description of the Related Art A schematic system configuration diagram of a conventional solid polymer electrolyte fuel cell power generator is shown in FIG. Here, as is well known, the fuel cell main body 30 has a structure in which a solid polymer electrolyte membrane is sandwiched between two gas diffusion electrodes and each fuel cell is isolated by a gas separator. Platinum is generally used for the gas diffusion electrode. However, if carbon monoxide is contained in the fuel gas introduced to the hydrogen electrode, the poisoning of platinum may lower the power generation efficiency or make it unstable. Are known. Therefore, in the configuration shown in FIG. 6, the carbon monoxide content in the reformed gas is reduced through the shift reaction in the shift conversion section 16 of the fuel reformer 14 and the oxidation reaction in the carbon monoxide remover 26. I am supposed to.

【0003】以下、改質ガスが燃料電池30の水素極
(−)に導入されるまでの流れを中心として、図6の構
成について説明する。
The structure shown in FIG. 6 will be described below centering on the flow until the reformed gas is introduced into the hydrogen electrode (-) of the fuel cell 30.

【0004】メタノールと過剰量の水とからなる混合燃
料がタンク10からポンプ12により燃料改質装置14
内の改質部15に導入され、該改質部において改質触媒
により改質されて水素と二酸化炭素とからなる改質ガス
を生成する(CHOH(g)+HO(g)→3H
+CO)。吸熱反応である改質反応に必要な熱量は、
燃料改質装置14内の燃焼部18にメタノールタンク2
0からのメタノールガスおよびエアーポンプ24からの
空気を導入して該メタノールガスを触媒燃焼させること
によって熱源ガスを生成し、この熱源ガスを改質部15
に導入することによって与えられる。燃焼部18内に充
填された触媒を活性温度まで加熱するためにヒータ17
が設けられる。
A mixed fuel consisting of methanol and an excess amount of water is supplied to a fuel reformer 14 from a tank 10 by a pump 12.
Is introduced into the reforming section 15 inside and is reformed by the reforming catalyst in the reforming section to generate a reformed gas composed of hydrogen and carbon dioxide (CH 3 OH (g) + H 2 O (g) → 3H 2
+ CO 2). The amount of heat required for the reforming reaction, which is an endothermic reaction, is
The methanol tank 2 is installed in the combustion section 18 in the fuel reformer 14.
Methanol gas from 0 and air from the air pump 24 are introduced to catalytically burn the methanol gas to generate a heat source gas.
Given by introducing to. In order to heat the catalyst filled in the combustion section 18 to the activation temperature, the heater 17
Is provided.

【0005】改質部15において改質反応を受けて得ら
れる改質ガスには1%近くの多量の一酸化炭素が含有さ
れている。そこで、次いで、改質部に隣接して燃料改質
装置内に設けられる変成部16に改質ガスを導入する。
変成部において変成触媒によるシフト反応を受けて、改
質ガス中の一酸化炭素と改質部での余剰水蒸気とから水
素と二酸化炭素を生成する(CO+HO→H+CO
)。
The reformed gas obtained by undergoing the reforming reaction in the reforming section 15 contains a large amount of carbon monoxide of about 1%. Therefore, next, the reformed gas is introduced into the shift conversion section 16 provided in the fuel reforming apparatus adjacent to the reforming section.
In the shift conversion section, the shift reaction by the shift conversion catalyst is performed to generate hydrogen and carbon dioxide from carbon monoxide in the reformed gas and excess steam in the reforming section (CO + H 2 O → H 2 + CO).
2 ).

【0006】変成部16でのシフト反応により改質ガス
中の一酸化炭素は相当除去されるが、シフト反応は、水
蒸気と一酸化炭素のモル比をたとえば3:1のように水
蒸気過剰の条件下で行っても、一酸化炭素濃度を100
0ppm程度にまで低下させるのが限度である。
Although carbon monoxide in the reformed gas is considerably removed by the shift reaction in the shift conversion section 16, the shift reaction is performed under the condition of excess steam such as a molar ratio of steam to carbon monoxide of 3: 1. Even if done below, carbon monoxide concentration of 100
The limit is to reduce it to about 0 ppm.

【0007】そこで、変成部16を通過した改質ガスを
一酸化炭素除去装置26に導入し、選択酸化触媒の下で
改質ガス中の一酸化炭素を酸化除去し、燃料電池の水素
極(−)に導入する燃料ガス中の一酸化炭素濃度を10
0ppm未満にまで低減させることが、たとえば特開平
3−203165号公報に提案されている。
Therefore, the reformed gas that has passed through the shift conversion unit 16 is introduced into the carbon monoxide removing device 26, and the carbon monoxide in the reformed gas is oxidized and removed under the selective oxidation catalyst, and the hydrogen electrode ( The concentration of carbon monoxide in the fuel gas introduced into
Reduction to less than 0 ppm has been proposed, for example, in Japanese Patent Laid-Open No. 3-203165.

【0008】このようにして一酸化炭素濃度を低減され
た水素リッチな改質ガスは、水供給装置28にて加湿さ
れた後、燃料電池本体30の水素極(−)に導入され、
エアーポンプ24から酸素極(+)に導入される酸化剤
ガス(空気)との間で電池反応を起こして発電を行うも
のである。なお改質ガスの加湿は、燃料電池本体30内
の固体高分子電解質膜を湿潤状態に保持すると共に、燃
料電池を所定の作動温度(100℃前後)に温度調節
し、発電効率を最大限に発揮させるために行われる。
The hydrogen-rich reformed gas with the carbon monoxide concentration reduced in this way is humidified by the water supply device 28 and then introduced into the hydrogen electrode (-) of the fuel cell main body 30,
The electric power is generated by causing a battery reaction with the oxidant gas (air) introduced from the air pump 24 to the oxygen electrode (+). The humidification of the reformed gas maintains the solid polymer electrolyte membrane in the fuel cell main body 30 in a wet state and controls the temperature of the fuel cell to a predetermined operating temperature (around 100 ° C.) to maximize power generation efficiency. It is done to bring out.

【0009】[0009]

【発明が解決しようとする課題】一酸化炭素除去装置2
6において担持される選択酸化触媒とは、活性化される
酸化反応が構成分子に対してその活性温度域に応じて選
択的に作用するものを言う。一酸化炭素との酸化反応を
選択的に推進する触媒で反応効率に優れているものとし
ては、Au/α−Fe/Alが知られてい
る。この触媒によれば、水素、二酸化炭素、一酸化炭素
および水を含む混合ガスである改質ガスに対して、10
0℃以上の高温域では水素を選択的に酸化して水を生成
する反応が促進されるが、50〜100℃の低温域では
一酸化炭素を選択酸化して二酸化炭素を生成する反応が
促進される。
Carbon monoxide removing device 2
The selective oxidation catalyst supported in 6 means a catalyst in which an activated oxidation reaction selectively acts on constituent molecules according to the activation temperature range. Au / α-Fe 2 O 3 / Al 2 O 3 is known as a catalyst that selectively promotes the oxidation reaction with carbon monoxide and has excellent reaction efficiency. According to this catalyst, the reformed gas, which is a mixed gas containing hydrogen, carbon dioxide, carbon monoxide, and water, is mixed with 10
In the high temperature range of 0 ° C or higher, the reaction of selectively oxidizing hydrogen to produce water is promoted, but in the low temperature range of 50 to 100 ° C, the reaction of selectively oxidizing carbon monoxide to produce carbon dioxide is promoted. To be done.

【0010】したがって、この選択酸化触媒を一酸化炭
素の酸化除去に利用する場合には、該触媒を担持する一
酸化炭素除去装置26を50〜100℃の低温域に保持
することが不可欠であるが、従来技術によるときはかか
る温度制御が十分になされていなかったため、改質ガス
中の一酸化炭素濃度を100ppm以下、より好ましく
は10ppm程度もしくはそれ以下のような満足すべき
低レベルにまで低減させることが困難であった。
Therefore, when utilizing this selective oxidation catalyst for the oxidation removal of carbon monoxide, it is essential to maintain the carbon monoxide removal device 26 carrying the catalyst in a low temperature range of 50 to 100 ° C. However, since the temperature control is not sufficiently performed in the prior art, the carbon monoxide concentration in the reformed gas is reduced to 100 ppm or less, more preferably to about 10 ppm or less, which is a satisfactory low level. It was difficult to do.

【0011】また、改質ガス中には燃料改質装置14内
での改質反応およびシフト反応における余剰水蒸気が多
量に含まれており、これが一酸化炭素除去装置26に直
接的に導入されるために、触媒表面を濡らして目詰まり
を起こすという障害が生じていた。さらに、上記のよう
に触媒温度が低温に保持されるため、一旦触媒表面に付
着した水蒸気は容易には蒸発せず、触媒劣化を引き起こ
して一酸化炭素の選択酸化反応が阻止されてしまう。
Further, the reformed gas contains a large amount of surplus steam in the reforming reaction and shift reaction in the fuel reforming device 14, and this is directly introduced into the carbon monoxide removing device 26. Therefore, there has been a problem that the catalyst surface is wetted and clogging occurs. Furthermore, since the catalyst temperature is maintained at a low temperature as described above, the water vapor once attached to the catalyst surface does not easily evaporate, and the catalyst deterioration is caused to prevent the selective oxidation reaction of carbon monoxide.

【0012】[0012]

【課題を解決するための手段】そこで本発明は上記した
従来技術の問題点を解消し、燃料電池に供給される水素
リッチな燃料ガス中の一酸化炭素濃度を確実に100p
pm以下、より好ましくは10ppm以下に低減させる
ことができ、したがって発電性能を向上させ安定化させ
ることのできる燃料電池発電装置を提供することを目的
とする。
Therefore, the present invention solves the above-mentioned problems of the prior art and ensures that the carbon monoxide concentration in the hydrogen-rich fuel gas supplied to the fuel cell is 100 p.
It is an object of the present invention to provide a fuel cell power generation device that can be reduced to pm or less, more preferably 10 ppm or less, and thus can improve and stabilize power generation performance.

【0013】かかる目的を達成するために創案された本
発明は、原燃料ガスを改質触媒の下で改質反応させて水
素リッチな改質ガスを生成させる燃料改質手段と、該燃
料改質手段にて生成された改質ガス中の一酸化炭素を変
成触媒の下で水と反応させて水素と二酸化炭素を生成さ
せることにより該改質ガス中の一酸化炭素濃度を一次的
に低減させる変成手段と、該変成手段を通過した後の改
質ガス中の一酸化炭素を選択酸化触媒の下で酸化除去し
て該改質ガス中の一酸化炭素濃度を二次的に低減させる
一酸化炭素酸化除去手段と、これら変成手段および一酸
化炭素酸化除去手段を経て所定値以下に一酸化炭素濃度
が低減された改質ガスを加湿する加湿手段と、該加湿手
段により加湿された改質ガスが水素極に供給される一方
酸化極には酸化剤ガスが供給されて電池反応を得る燃料
電池本体と、を有する燃料電池発電装置において、前記
変成手段と前記一酸化炭素酸化除去手段との間に水回収
手段を設けて該水回収手段に改質ガスを流通させ、か
つ、該水回収手段と該一酸化炭素酸化除去手段との間に
前記水回収手段に用いられた冷却水を循環させる循環手
段を設けたことを特徴とする。
The present invention, which was devised to achieve such an object, provides a fuel reforming means for reforming a raw fuel gas under a reforming catalyst to produce a hydrogen-rich reformed gas, and the fuel reforming means. The carbon monoxide concentration in the reformed gas is temporarily reduced by reacting carbon monoxide in the reformed gas with water under a shift catalyst to generate hydrogen and carbon dioxide. And a carbon monoxide concentration in the reformed gas secondarily reduced by oxidizing and removing carbon monoxide in the reformed gas after passing through the reforming means under a selective oxidation catalyst. Carbon oxide oxidation removal means, humidification means for humidifying the reformed gas whose carbon monoxide concentration is reduced to a predetermined value or less through these shift conversion means and carbon monoxide oxidation removal means, and reforming humidified by the humidification means Gas is supplied to the hydrogen electrode while oxidizer is present at the oxidizing electrode In a fuel cell power generator having a fuel cell main body that is supplied with gas to obtain a cell reaction, a water recovery means is provided between the shift conversion means and the carbon monoxide oxidation removal means to reform the water recovery means. Circulating means for circulating the gas and circulating the cooling water used for the water collecting means is provided between the water collecting means and the carbon monoxide oxidation removing means.

【0014】前記冷却水の温度を一酸化炭素酸化除去手
段に用いられる選択酸化触媒の活性温度域に維持するた
めに温度制御手段を設けることができる。この温度制御
手段は、一酸化炭素酸化除去手段から排出される改質ガ
スの温度を測定する温度センサーと、該温度センサーに
よる測定結果を受けて循環手段による冷却水の循環速度
を制御するコントローラとを有するものとして構成され
得る。
Temperature control means may be provided to maintain the temperature of the cooling water in the active temperature range of the selective oxidation catalyst used in the carbon monoxide oxidation removal means. The temperature control means includes a temperature sensor that measures the temperature of the reformed gas discharged from the carbon monoxide oxidation removal means, and a controller that receives the measurement result of the temperature sensor and controls the circulation speed of the cooling water by the circulation means. Can be configured as having

【0015】[0015]

【作用】改質ガス中の一酸化炭素は、変成手段における
シフト反応および一酸化炭素酸化除去手段における酸化
反応により、100ppm以下、特に好適には10pp
m以下の濃度に低減され、燃料電池の水素極に供給され
るので、電極触媒として用いられる白金を被毒させるこ
とがなく、所期の電池性能を安定的に発揮させることが
できる。
The carbon monoxide in the reformed gas is 100 ppm or less, particularly preferably 10 pp, due to the shift reaction in the shift conversion means and the oxidation reaction in the carbon monoxide oxidation removal means.
Since the concentration is reduced to m or less and the hydrogen is supplied to the hydrogen electrode of the fuel cell, the desired cell performance can be stably exhibited without poisoning platinum used as an electrode catalyst.

【0016】変成手段から排出された改質ガスは、改質
反応および変成反応における余剰水蒸気を多量に含んで
いるが、一酸化炭素酸化除去手段に導入される前に水回
収手段を通過することにより、該余剰水蒸気が凝縮回収
されるので、一酸化炭素酸化除去手段に用いられる選択
酸化触媒の表面を濡らして目詰まりを生じさせることが
防止される。
The reformed gas discharged from the shift conversion means contains a large amount of excess steam in the reforming reaction and shift conversion reaction, but must pass through the water recovery means before being introduced into the carbon monoxide oxidation removal means. As a result, the excess water vapor is condensed and recovered, so that it is possible to prevent the surface of the selective oxidation catalyst used in the carbon monoxide oxidation removing means from being wet and causing clogging.

【0017】水回収手段においては、改質ガスの通過す
る水回収層が冷却水の通過する冷却層によって冷却され
るため、改質ガス中の余剰水蒸気は水回収層内で凝縮
し、改質ガス下流部に設けられたドレイン部に回収され
るか、あるいは冷却層通過後の冷却水が回収される冷却
水タンクに直接回収される。この冷却水は、選択酸化触
媒の活性温度(100℃以下)に温度調整されており、
前記水回収手段の冷却層と一酸化炭素酸化除去手段の冷
却層との間を循環しているので、改質ガスは一酸化炭素
酸化除去手段の内部において常に該温度以下に維持され
ており、選択酸化触媒の作用が最大限に活性化される。
In the water recovery means, since the water recovery layer through which the reformed gas passes is cooled by the cooling layer through which the cooling water passes, surplus steam in the reformed gas is condensed in the water recovery layer and reformed. It is recovered in a drain part provided in the gas downstream part or directly in a cooling water tank in which the cooling water after passing through the cooling layer is recovered. The temperature of this cooling water is adjusted to the activation temperature of the selective oxidation catalyst (100 ° C. or lower),
Since it circulates between the cooling layer of the water recovery means and the cooling layer of the carbon monoxide oxidation removal means, the reformed gas is always maintained at the temperature or less inside the carbon monoxide oxidation removal means, The action of the selective oxidation catalyst is maximally activated.

【0018】一方、変成手段から排出された改質ガスに
は、改質反応における未反応メタノールも微量ながら含
まれている。このメタノールは、一酸化炭素除去手段に
用いられる選択酸化触媒に付着して被毒を引き起こすと
共に、燃料電池本体に供給されると電極成分に付着して
ここでも被毒を引き起こす。このメタノールは、従来
は、燃料電池本体への燃料ガス供給直前に設置される水
供給装置においてのみ除去されていたが、本発明では、
改質ガスが水回収手段を通過するときに水と同時にメタ
ノールとが除去されるため、水供給装置通過後には残留
メタノール量が確実に許容範囲量にまで低減される。
On the other hand, the reformed gas discharged from the shift conversion means contains a small amount of unreacted methanol in the reforming reaction. This methanol adheres to the selective oxidation catalyst used in the carbon monoxide removing means to cause poisoning, and when supplied to the fuel cell main body, adheres to the electrode components to cause poisoning here as well. Conventionally, this methanol was removed only in the water supply device installed immediately before the fuel gas was supplied to the fuel cell body, but in the present invention,
When the reformed gas passes through the water recovery means, the water and methanol are removed together with the water, so that the amount of residual methanol is reliably reduced to an allowable range after passing through the water supply device.

【0019】[0019]

【実施例】本発明による固体高分子電解質型燃料電池発
電装置のシステム構成について、図1を参照しながら説
明する。なお、図6に示される従来構成と同一の装置、
部分には同一の符号が付されている。
EXAMPLE A system configuration of a solid polymer electrolyte fuel cell power generator according to the present invention will be described with reference to FIG. In addition, the same device as the conventional configuration shown in FIG.
The parts have the same reference numerals.

【0020】燃料改質装置14の燃焼部18には、メタ
ノールタンク20からの液体メタノールがポンプ22に
より導入されると共に、エアポンプ24からの空気が導
入され、該燃焼部に充填される燃焼触媒上で燃焼される
ことによって熱源ガスが生成される。ヒータ17は、燃
焼触媒を活性温度まで加熱するために設けられている。
なお、熱源は上記に特定されるものではなく、たとえ
ば、空気を燃焼助剤として水素ガスや液体メタノールを
バーナーで燃焼させて熱源ガスを生成してもよい。熱源
ガスは、後述する改質部15および変成部16における
改質反応およびシフト反応のための熱源として用いられ
る。
The liquid methanol from the methanol tank 20 is introduced into the combustion section 18 of the fuel reformer 14 by the pump 22 and the air from the air pump 24 is introduced into the combustion section 18 of the combustion catalyst. The heat source gas is generated by being burned at. The heater 17 is provided to heat the combustion catalyst to the activation temperature.
The heat source is not limited to the above, and for example, the heat source gas may be generated by burning hydrogen gas or liquid methanol with a burner using air as a combustion aid. The heat source gas is used as a heat source for a reforming reaction and a shift reaction in the reforming section 15 and the shift conversion section 16 described later.

【0021】改質原料であるメタノールおよび水の混合
液体燃料(混合比1:1〜1:4)はタンク10に収容
されており、ポンプ12により燃料改質装置14の改質
部15に導入される。改質部15には図示されないが改
質原料を気化する気化部が備えられ、該気化部にて順次
気化された改質燃料ガスが改質部の改質触媒上に導入さ
れて、改質反応(CHOH(g)+HO(g)→3
+CO)により改質ガスが生成される。改質部1
5は改質触媒の担持体であり、たとえばCu/Znから
なる改質触媒が含浸、溶射、電着、スパッタ、塗布等に
より改質部構造体に担持されている。改質部構造体は前
記熱源ガスによって改質触媒の活性温度範囲である25
0〜300℃に保持される。改質触媒の下で改質反応を
受けて生成される改質ガスは水素リッチなものではある
が、余剰水蒸気、二酸化炭素および微量(1%程度)の
一酸化炭素が含まれている。
A mixed liquid fuel of methanol and water (mixing ratio 1: 1 to 1: 4) as a reforming raw material is contained in a tank 10 and introduced into a reforming section 15 of a fuel reforming device 14 by a pump 12. To be done. Although not shown, the reforming section 15 is provided with a vaporizing section for vaporizing the reforming raw material, and the reforming fuel gas sequentially vaporized by the vaporizing section is introduced onto the reforming catalyst of the reforming section to reform the reforming catalyst. Reaction (CH 3 OH (g) + H 2 O (g) → 3
A reformed gas is generated by H 2 + CO 2 . Reformer 1
Reference numeral 5 denotes a reforming catalyst carrier, and a reforming catalyst made of Cu / Zn, for example, is carried on the reforming structure by impregnation, thermal spraying, electrodeposition, sputtering, coating or the like. The reforming part structure is within the activation temperature range of the reforming catalyst by the heat source gas.
Hold at 0-300 ° C. The reformed gas produced by the reforming reaction under the reforming catalyst is rich in hydrogen, but contains surplus steam, carbon dioxide, and a trace amount (about 1%) of carbon monoxide.

【0022】改質反応により生成された改質ガスは、改
質部15から隣接する変成部16に導入され、変成触媒
の下でのシフト反応(CO+HO→H+CO)に
より一酸化炭素が除去され、改質ガス中の一酸化炭素濃
度が1000ppm程度にまで低減される。シフト反応
の活性温度範囲は150〜200℃であり、変成部での
加熱源として前記熱源ガスが利用される。
The reformed gas produced by the reforming reaction is introduced from the reforming section 15 into the adjoining shift conversion section 16 and is monoxidized by the shift reaction (CO + H 2 O → H 2 + CO 2 ) under the shift conversion catalyst. Carbon is removed, and the concentration of carbon monoxide in the reformed gas is reduced to about 1000 ppm. The active temperature range of the shift reaction is 150 to 200 ° C., and the heat source gas is used as the heat source in the shift conversion section.

【0023】変成部16におけるシフト反応を経た改質
ガスは、水回収装置32に導入される。水回収装置32
は、図2に示されるように、改質ガスを通過せしめる水
回収層39と、室温以下の冷却水を通過せしめる冷却層
40とが交互に積層されて構成されており、これら積層
構造体の底部には冷却層40通過後の冷却水を貯留せし
める冷却水タンク41が設けられる。改質ガスは、水回
収層39を通過する間に、隣接する冷却層40を通過す
る冷却水によって冷却され、改質ガス中の余剰水蒸気が
凝縮して水となり、水回収層39の底部に形成された排
水孔42から冷却水タンク41に回収される。
The reformed gas that has undergone the shift reaction in the shift conversion section 16 is introduced into the water recovery device 32. Water recovery device 32
As shown in FIG. 2, a water recovery layer 39 that allows the reformed gas to pass therethrough and a cooling layer 40 that allows the cooling water at room temperature or lower to pass therethrough are alternately laminated. A cooling water tank 41 for storing the cooling water after passing through the cooling layer 40 is provided at the bottom. The reformed gas is cooled by the cooling water passing through the adjacent cooling layer 40 while passing through the water recovery layer 39, and the excess steam in the reformed gas is condensed into water, and the reformed gas reaches the bottom of the water recovery layer 39. It collects in the cooling water tank 41 from the formed drainage hole 42.

【0024】図2の水回収装置32における水回収層3
9は単なる空間として形成されているが、図3に示され
るように、シリカゲル等の吸水剤の薄層43を冷却層4
0との境界壁面に含浸、塗布等により形成してもよい。
あるいは、吸水剤を水回収層39の空間内全体あるいは
部分的に充填してもよい。このように吸水剤を用いるこ
とにより、改質ガス中の余剰水分の凝縮回収効率を高め
ることができる。
Water recovery layer 3 in the water recovery device 32 of FIG.
9 is formed as a mere space, but as shown in FIG. 3, a thin layer 43 of a water absorbing agent such as silica gel is placed in the cooling layer 4.
It may be formed on the boundary wall surface with 0 by impregnation, coating, or the like.
Alternatively, the water absorbing agent may be filled entirely or partially in the space of the water recovery layer 39. By using the water absorbing agent in this way, the efficiency of condensing and collecting the excess water in the reformed gas can be improved.

【0025】また、改質ガスを冷却することにより凝縮
されて得た水を、図2または図3のように冷却水タンク
41に直接回収することに代えて、図4に示されるよう
に、水回収装置32の積層構造体底部に隣接してドレイ
ン部44を設け、水回収層39の底部に溜まった凝縮水
を該ドレイン部44に回収するように構成することもで
きる。図4に示す実施例では水回収層39の空間内全体
に吸水剤45を充填しているが、吸水剤45は水回収層
39に部分的(たとえばドレイン部44に接する下方空
間部のみ)に充填してもよく、あるいは図2に示すよう
に水回収層を単なる空間として形成しても、あるいは図
3に示すように水回収層の壁面に吸水剤の薄層を形成し
てもよいことは勿論である。
Further, as shown in FIG. 4, instead of directly collecting the water obtained by condensing by cooling the reformed gas in the cooling water tank 41 as shown in FIG. 2 or 3, A drain part 44 may be provided adjacent to the bottom of the laminated structure of the water recovery device 32, and the condensed water collected at the bottom of the water recovery layer 39 may be recovered by the drain part 44. In the embodiment shown in FIG. 4, the water absorbing agent 45 is filled in the entire space of the water collecting layer 39, but the water absorbing agent 45 is partially (for example, only in the lower space portion in contact with the drain portion 44) in the water collecting layer 39. It may be filled, or the water recovery layer may be formed as a mere space as shown in FIG. 2, or a thin layer of a water absorbing agent may be formed on the wall surface of the water recovery layer as shown in FIG. Of course.

【0026】冷却水は、循環ポンプ34により、水回収
装置32の冷却層40、冷却水タンク41と一酸化炭素
除去装置26内の冷却層38(図5)との間を循環して
いる。一酸化炭素除去装置26の改質ガス排出口には温
度センサー27が取り付けられて該排出口における改質
ガス温度を常時測定しており、その測定信号はコントロ
ーラ36に送られる。該排出口における改質ガス温度が
たとえば100℃以上に上昇したことが検知されたと
き、コントローラ36は、冷却水の循環速度を増大させ
て冷却効果を向上させるよう循環ポンプ34を制御す
る。このようにして、燃料改質装置14の変成部16を
通過した改質ガスは、水回収装置32にて循環する冷却
水によって冷却され、余剰水分と未反応メタノールが除
去される。
The cooling water is circulated by the circulation pump 34 between the cooling layer 40 of the water recovery device 32, the cooling water tank 41 and the cooling layer 38 (FIG. 5) in the carbon monoxide removing device 26. A temperature sensor 27 is attached to the reformed gas outlet of the carbon monoxide removing device 26 to constantly measure the reformed gas temperature at the outlet, and the measurement signal is sent to the controller 36. When it is detected that the reformed gas temperature at the outlet has risen to, for example, 100 ° C. or more, the controller 36 controls the circulation pump 34 to increase the circulation speed of the cooling water and improve the cooling effect. In this way, the reformed gas that has passed through the shift conversion unit 16 of the fuel reformer 14 is cooled by the cooling water circulating in the water recovery unit 32, and excess water and unreacted methanol are removed.

【0027】水回収装置32にて冷却された改質ガス
は、次いで一酸化炭素除去装置26に導入されて、該装
置内に担持される選択酸化触媒(Au/α−Fe2O3
/Al2O3)による酸化反応(CO+1/2O2→C
O2)により、改質ガス中の一酸化炭素が二酸化炭素に
酸化除去される。一酸化炭素除去装置26は、図5に示
されるように、改質ガスを通過せしめる触媒充填層37
と冷却水を通過せしめる冷却層38とが交互に積層され
て構成されている。上記したようにコントローラ36に
より100℃以下に制御された冷却水が循環ポンプ34
を介して水回収装置32のタンクおよび一酸化炭素除去
装置26の冷却層38を循環しているので、改質ガスは
一酸化炭素除去装置26の導入口から排出口に至るまで
常に100℃以下の低温状態に維持される。したがっ
て、上記選択酸化触媒によって一酸化炭素を二酸化炭素
に酸化除去する反応が十分に活性化され、改質ガス中の
一酸化炭素濃度を10ppm以下、さらには10ppm
以下にまで低減することが可能となる。
The reformed gas cooled by the water recovery device 32 is then introduced into the carbon monoxide removing device 26 and carried by the selective oxidation catalyst (Au / α-Fe2O3).
/ Al2O3) oxidation reaction (CO + 1 / 2O2 → C
O2) oxidizes and removes carbon monoxide in the reformed gas to carbon dioxide. As shown in FIG. 5, the carbon monoxide removing device 26 has a catalyst packed bed 37 that allows the reformed gas to pass through.
And cooling layers 38 that allow cooling water to pass therethrough are alternately laminated. As described above, the cooling water whose temperature is controlled to 100 ° C. or lower by the controller 36 is circulated by the circulation pump 34.
Since the tank of the water recovery device 32 and the cooling layer 38 of the carbon monoxide removing device 26 are circulated through the reforming gas, the reformed gas is always 100 ° C. or less from the inlet to the outlet of the carbon monoxide removing device 26. Maintained at low temperature. Therefore, the reaction of oxidizing and removing carbon monoxide into carbon dioxide is sufficiently activated by the selective oxidation catalyst, and the concentration of carbon monoxide in the reformed gas is 10 ppm or less, further 10 ppm.
It becomes possible to reduce to the following.

【0028】このようにして一酸化炭素濃度が低減され
た改質ガスは、恒温水槽およびヒーターよりなる水供給
装置28を介して、燃料電池30の水素極(−)に供給
される。水供給装置28において改質ガスが冷却される
と共に加湿されるので、燃料電池が50〜100℃の最
適作動温度域に保持され、かつ、電解質膜に水分補給が
なされてその湿潤状態が維持される。
The reformed gas with the carbon monoxide concentration reduced in this way is supplied to the hydrogen electrode (-) of the fuel cell 30 via the water supply device 28 consisting of a constant temperature water tank and a heater. Since the reformed gas is cooled and humidified in the water supply device 28, the fuel cell is kept in the optimum operating temperature range of 50 to 100 ° C., and the electrolyte membrane is rehydrated to maintain its wet state. It

【0029】[0029]

【発明の効果】燃料電池の水素極への改質ガス供給経路
において、燃料改質装置と選択酸化触媒による一酸化炭
素除去装置との間に水回収装置を設けた本発明によれ
ば、燃料改質装置を出た改質ガスが水回収装置にて選択
酸化触媒の活性温度域に冷却されるので、一酸化炭素除
去装置における一酸化炭素の酸化除去が効率的に行わ
れ、100ppm以下あるいは10ppm以下の低濃度
にして燃料電池水素極に供給することができる。
According to the present invention, the water recovery device is provided between the fuel reforming device and the carbon monoxide removing device by the selective oxidation catalyst in the reformed gas supply path to the hydrogen electrode of the fuel cell. Since the reformed gas discharged from the reformer is cooled to the active temperature range of the selective oxidation catalyst by the water recovery device, the carbon monoxide is efficiently removed by oxidation in the carbon monoxide removing device. It can be supplied to the fuel cell hydrogen electrode with a low concentration of 10 ppm or less.

【0030】また、燃料改質装置において改質反応およ
びシフト反応を受けた改質ガス中には余剰水蒸気が含ま
れているが、水回収装置を通過することで該余剰水蒸気
が除去されるので、一酸化炭素除去装置に担持される選
択酸化触媒の表面を濡らして目詰まりを起こすことが防
止され、触媒劣化をもたらすことがない。
In addition, since the reformed gas that has undergone the reforming reaction and the shift reaction in the fuel reforming apparatus contains excess steam, the surplus steam is removed by passing through the water recovery apparatus. The surface of the selective oxidation catalyst carried by the carbon monoxide removing device is prevented from being wetted and clogged, and the catalyst is not deteriorated.

【0031】更に、改質ガス中の未反応メタノールも水
回収装置通過中に除去されるので、一酸化炭素除去装置
の選択酸化触媒および燃料電池の電極成分を被毒させる
ことがない。
Furthermore, since unreacted methanol in the reformed gas is also removed while passing through the water recovery device, the selective oxidation catalyst of the carbon monoxide removal device and the electrode components of the fuel cell are not poisoned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固体高分子電解質型燃料電池発電
装置の概略システム構成図である。
FIG. 1 is a schematic system configuration diagram of a solid polymer electrolyte fuel cell power generator according to the present invention.

【図2】図1中の水回収装置の構成例を概略的に示す斜
視図である。
FIG. 2 is a perspective view schematically showing a configuration example of the water recovery device in FIG.

【図3】水回収装置の別の構成例を概略的に示す斜視図
である。
FIG. 3 is a perspective view schematically showing another configuration example of the water recovery device.

【図4】水回収装置の更に別の構成例を概略的に示す斜
視図である。
FIG. 4 is a perspective view schematically showing still another configuration example of the water recovery device.

【図5】図1中の一酸化炭素除去装置の構成例を概略的
に示す斜視図である。
5 is a perspective view schematically showing a configuration example of a carbon monoxide removing device in FIG.

【図6】従来技術による固体高分子電解質型燃料電池発
電装置の概略システム構成図である。
FIG. 6 is a schematic system configuration diagram of a solid polymer electrolyte fuel cell power generator according to a conventional technique.

【符号の説明】[Explanation of symbols]

14 燃料改質装置 15 改質部 16 変成部 26 一酸化炭素除去装置 27 温度センサー 30 燃料電池 32 水回収装置 34 循環ポンプ 36 コントローラ 14 Fuel reforming device 15 Reforming unit 16 Metamorphic unit 26 Carbon monoxide removing device 27 Temperature sensor 30 Fuel cell 32 Water recovery device 34 Circulation pump 36 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷崎 勝二 東京都千代田区外神田2丁目19番12号 株 式会社エクォス・リサーチ内 (72)発明者 小原 伸哉 東京都千代田区外神田2丁目19番12号 株 式会社エクォス・リサーチ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuji Tanizaki 2-19-12 Sotokanda, Chiyoda-ku, Tokyo Within Equus Research Co., Ltd. (72) Inventor Shinya Ohara 2-19, Sotokanda, Chiyoda-ku, Tokyo No. 12 Stock company Equus Research

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原燃料ガスを改質触媒の下で改質反応
させて水素リッチな改質ガスを生成させる燃料改質手段
と、該燃料改質手段にて生成された改質ガス中の一酸化
炭素を変成触媒の下で水と反応させて水素と二酸化炭素
を生成させることにより該改質ガス中の一酸化炭素濃度
を一次的に低減させる変成手段と、該変成手段を通過し
た後の改質ガス中の一酸化炭素を選択酸化触媒の下で酸
化除去して該改質ガス中の一酸化炭素濃度を二次的に低
減させる一酸化炭素酸化除去手段と、これら変成手段お
よび一酸化炭素酸化除去手段を経て所定値以下に一酸化
炭素濃度が低減された改質ガスを加湿する加湿手段と、
該加湿手段により加湿された改質ガスが水素極に供給さ
れる一方酸化極には酸化剤ガスが供給されて電池反応を
得る燃料電池本体と、を有する燃料電池発電装置におい
て、前記変成手段と前記一酸化炭素酸化除去手段との間
に水回収手段を設けて該水回収手段に改質ガスを流通さ
せ、かつ、該水回収手段と該一酸化炭素酸化除去手段と
の間に冷却水を循環させる循環手段を設けたことを特徴
とする燃料電池発電装置。
1. A fuel reforming means for reforming a raw fuel gas under a reforming catalyst to produce a hydrogen-rich reformed gas, and a reformed gas in the reformed gas produced by the fuel reforming means. A conversion means for temporarily reducing the carbon monoxide concentration in the reformed gas by reacting carbon monoxide with water under a conversion catalyst to generate hydrogen and carbon dioxide, and after passing through the conversion means Of carbon monoxide in the reformed gas by oxidizing and removing the carbon monoxide in the reformed gas under a selective oxidation catalyst to secondarily reduce the carbon monoxide concentration in the reformed gas; Humidifying means for humidifying the reformed gas in which the carbon monoxide concentration is reduced to a predetermined value or less via the carbon oxide oxidation removing means,
In the fuel cell power generator, the reforming gas humidified by the humidifying means is supplied to the hydrogen electrode while the oxidizing electrode is supplied with the oxidant gas to obtain a cell reaction. Water recovery means is provided between the carbon monoxide oxidation removal means and the reformed gas is circulated through the water recovery means, and cooling water is provided between the water recovery means and the carbon monoxide oxidation removal means. A fuel cell power generation device comprising a circulation means for circulation.
【請求項2】 前記冷却水の温度を前記一酸化炭素酸
化除去手段に用いられる選択酸化触媒の活性温度域に維
持するための温度制御手段を更に有することを特徴とす
る請求項1の燃料電池発電装置。
2. The fuel cell according to claim 1, further comprising temperature control means for maintaining the temperature of the cooling water in the active temperature range of the selective oxidation catalyst used in the carbon monoxide oxidation removal means. Power generator.
【請求項3】 前記温度制御手段が、前記一酸化炭素
酸化除去手段から排出される改質ガスの温度を測定する
温度センサーと、該温度センサーによる測定結果を受け
て前記循環手段による冷却水の循環速度を制御するコン
トローラとを有してなることを特徴とする請求項2の燃
料電池発電装置。
3. The temperature control means measures the temperature of the reformed gas discharged from the carbon monoxide oxidation removal means, and the cooling water cooled by the circulation means in response to the measurement result of the temperature sensor. The fuel cell power generator according to claim 2, further comprising a controller that controls a circulation speed.
【請求項4】 前記温度制御手段により前記一酸化炭
素酸化除去装置の作動温度が100℃以下に維持される
ことを特徴とする請求項3の燃料電池発電装置。
4. The fuel cell power generator according to claim 3, wherein the operating temperature of the carbon monoxide oxidation removal device is maintained at 100 ° C. or lower by the temperature control means.
【請求項5】 前記水回収手段により前記改質ガス中
の余剰水蒸気と未反応メタノールが除去されることを特
徴とする請求項1の燃料電池発電装置。
5. The fuel cell power generator according to claim 1, wherein excess water vapor and unreacted methanol in the reformed gas are removed by the water recovery means.
JP6259764A 1994-09-30 1994-09-30 Fuel cell power generating system Pending JPH08106913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6259764A JPH08106913A (en) 1994-09-30 1994-09-30 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6259764A JPH08106913A (en) 1994-09-30 1994-09-30 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH08106913A true JPH08106913A (en) 1996-04-23

Family

ID=17338644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6259764A Pending JPH08106913A (en) 1994-09-30 1994-09-30 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH08106913A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167256A (en) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd Fuel cell system
WO2000004600A1 (en) * 1998-07-18 2000-01-27 Xcellsis Gmbh Fuel cell system
JP2001263968A (en) * 2000-03-21 2001-09-26 Sumitomo Precision Prod Co Ltd Plate fin type heat exchanger
WO2002011224A3 (en) * 2000-07-28 2002-09-26 Hydrogenics Corp Method and apparatus for humidification and temperature control of incoming fuel cell process gas
JP2002356308A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Fuel reforming system
KR20040005065A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Co gas removal device of fuel cell
US6787254B2 (en) 2000-07-28 2004-09-07 Hydrogenics Corporation Method and apparatus for humidification and temperature control of incoming fuel cell process gas
JP2006120626A (en) * 2004-09-24 2006-05-11 Toshiba Corp Hydrogen manufacturing device and fuel cell system
JP2008037692A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generating system
JP2008037691A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generation system
KR100814887B1 (en) * 2007-04-13 2008-03-20 삼성에스디아이 주식회사 Carbon monoxide treatment apparatus for fuel cell
JP2008247735A (en) * 2001-04-24 2008-10-16 Osaka Gas Co Ltd Fuel reforming system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167256A (en) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd Fuel cell system
WO2000004600A1 (en) * 1998-07-18 2000-01-27 Xcellsis Gmbh Fuel cell system
US6620536B1 (en) 1998-07-18 2003-09-16 Ballard Power Systems Ag Fuel cell system
JP2001263968A (en) * 2000-03-21 2001-09-26 Sumitomo Precision Prod Co Ltd Plate fin type heat exchanger
US7051801B1 (en) 2000-07-28 2006-05-30 Hydrogenics Corporation Method and apparatus for humidification and temperature control of incoming fuel cell process gas
WO2002011224A3 (en) * 2000-07-28 2002-09-26 Hydrogenics Corp Method and apparatus for humidification and temperature control of incoming fuel cell process gas
US7261150B2 (en) 2000-07-28 2007-08-28 Hydrogenics Corporation Apparatus for humidification and temperature control of incoming fuel cell process gas
US6787254B2 (en) 2000-07-28 2004-09-07 Hydrogenics Corporation Method and apparatus for humidification and temperature control of incoming fuel cell process gas
CN1314154C (en) * 2000-07-28 2007-05-02 洁能氏公司 Method and apparatus for humidification and temp. control of incoming fuel cell process gas
US7052791B2 (en) 2000-07-28 2006-05-30 Hydrogenics Corporation Apparatus for humidification and temperature control of incoming fuel cell process gas
JP2002356308A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Fuel reforming system
JP4493257B2 (en) * 2001-03-26 2010-06-30 大阪瓦斯株式会社 Fuel reforming system
JP2008247735A (en) * 2001-04-24 2008-10-16 Osaka Gas Co Ltd Fuel reforming system
KR20040005065A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Co gas removal device of fuel cell
JP2006120626A (en) * 2004-09-24 2006-05-11 Toshiba Corp Hydrogen manufacturing device and fuel cell system
JP2008037692A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generating system
JP2008037691A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generation system
KR100814887B1 (en) * 2007-04-13 2008-03-20 삼성에스디아이 주식회사 Carbon monoxide treatment apparatus for fuel cell
US8182750B2 (en) 2007-04-13 2012-05-22 Samsung Sdi Co., Ltd. Carbon monoxide treatment apparatus for fuel cell

Similar Documents

Publication Publication Date Title
US7674445B2 (en) Method for purifying hydrogen in a reformed gas
JP3439770B2 (en) Fuel cell power generation system
US7678481B2 (en) Fuel cell system with a fuel tank configured to store a fuel at a pressure higher than atmospheric pressure
JP4487401B2 (en) Combustion exhaust gas treatment of fuel reformer
JPH07315801A (en) System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
JPH08106913A (en) Fuel cell power generating system
JP4624670B2 (en) Integration of the functions of many components of a fuel cell power plant
JP3879480B2 (en) Fuel cell system
JPH08133702A (en) Carbon monoxide removing device and method therefor
JP4036607B2 (en) Fuel gas reformer and fuel cell system
JP2003151599A (en) Fuel cell system
JPH09266005A (en) Solid high polymer fuel cell system
JP2003229161A (en) Fuel cell generating system and its operation method
JP3734966B2 (en) Hydrogen generator
JPH097620A (en) Solid high polymer type fuel cell power generator
JP2005317489A (en) Solid oxide fuel cell system
JPH08100184A (en) Carbon monoxide removing system
JP4264875B2 (en) Condensate drainage system and fuel cell system
JPH07105967A (en) Fuel cell
JP3983020B2 (en) Method for starting reformer in fuel cell system
JP3732004B2 (en) Carbon monoxide removal apparatus and operation method thereof
JP3900391B2 (en) Carbon monoxide oxidation reactor
JP2000021426A (en) Fuel cell
JP2003157878A (en) Fuel cell system
KR20110126360A (en) Preferential oxidation reactor and fuel cell system thereof