JPH0676847A - Starting method for fuel cell and device thereof - Google Patents

Starting method for fuel cell and device thereof

Info

Publication number
JPH0676847A
JPH0676847A JP4226303A JP22630392A JPH0676847A JP H0676847 A JPH0676847 A JP H0676847A JP 4226303 A JP4226303 A JP 4226303A JP 22630392 A JP22630392 A JP 22630392A JP H0676847 A JPH0676847 A JP H0676847A
Authority
JP
Japan
Prior art keywords
fuel cell
carbon monoxide
temperature
reformed gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4226303A
Other languages
Japanese (ja)
Inventor
Toshiya Kuroda
俊也 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4226303A priority Critical patent/JPH0676847A/en
Publication of JPH0676847A publication Critical patent/JPH0676847A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To feed the reformed gas to a heated fuel cell at good timing so that no harmful effect is given to the electrode catalyst of a fuel cell by the carbon monoxide concentration in the reformed gas from a heated carbon monoxide converter when a fuel cell power generating device is started. CONSTITUTION:The relation between the carbon monoxide concentration in the reformed gas detected by a concentration detector 30 and the temperature of a fuel cell main body 5 detected by a temperature detector 6 is stored in a memory section 31, and the relation between the carbon monoxide concentration giving no harmful effect to an electrode catalyst and the temperature of the fuel cell main body 5 is read out. When no effect is given, an electric valve 13 is closed and electric valves 11, 16, 18 are opened by a controller 32, and the reformed gas and air are fed to the fuel cell main body 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電装置に組
込まれるりん酸電解質を有する燃料電池の起動方法及び
その起動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a fuel cell having a phosphoric acid electrolyte incorporated in a fuel cell power generator and a starting apparatus for the same.

【0002】[0002]

【従来の技術】炭化水素系の原燃料を水素に富むガスに
改質する燃料改質装置と、この改質装置で改質された改
質ガスを燃料として発電するりん酸電解質を有する燃料
電池とからなるりん酸形燃料電池発電装置が知られてい
る。ところで、りん酸形燃料電池発電装置の起動時、燃
料改質装置を昇温するとともに原燃料を通流させて改質
し、この改質ガスを電池反応を起させるに適する温度に
昇温した燃料電池に供給し、別に供給される空気とによ
り燃料電池を発電させている。
2. Description of the Related Art A fuel reforming apparatus for reforming a hydrocarbon-based raw fuel into a gas rich in hydrogen, and a fuel cell having a phosphoric acid electrolyte for generating electricity using the reformed gas reformed by the reforming apparatus as fuel. There is known a phosphoric acid fuel cell power generation device including and. By the way, at the time of starting the phosphoric acid fuel cell power generator, the temperature of the fuel reformer is raised and the raw fuel is allowed to flow through the reformer to raise the temperature of the reformed gas to a temperature suitable for causing the cell reaction. The fuel cell is supplied to the fuel cell, and the fuel cell is caused to generate electricity by the air supplied separately.

【0003】以下図面を用いて従来技術について説明す
る。図3は従来のりん酸形燃料電池発電装置の系統図で
ある。図3において燃料改質装置は脱硫器1,改質器
2,一酸化炭素変成器3とから構成される。脱硫器1は
炭化水素系の原燃料の含有する硫黄分を脱硫触媒の下で
脱硫する。改質器2はバーナ4での燃焼により生じる燃
焼ガスにより改質触媒が充填された改質管を加熱して改
質管を流れる脱硫器1からの脱硫された原燃料を改質触
媒の下で水素に富むガスに水蒸気改質する。一酸化炭素
変成器3は改質器2からの水蒸気改質したガス中に含ま
れる一酸化炭素を二酸化炭素に変成して一酸化炭素濃度
を低減した改質ガスを生成する。
The prior art will be described below with reference to the drawings. FIG. 3 is a system diagram of a conventional phosphoric acid fuel cell power generator. In FIG. 3, the fuel reformer comprises a desulfurizer 1, a reformer 2, and a carbon monoxide shift converter 3. The desulfurizer 1 desulfurizes the sulfur content of the hydrocarbon-based raw fuel under a desulfurization catalyst. The reformer 2 heats the reforming tube filled with the reforming catalyst by the combustion gas generated by the combustion in the burner 4 to cause the desulfurized raw fuel from the desulfurizer 1 flowing through the reforming tube to flow under the reforming catalyst. Steam reforms to hydrogen-rich gas. The carbon monoxide shift converter 3 shifts carbon monoxide contained in the steam reformed gas from the reformer 2 into carbon dioxide to generate a reformed gas having a reduced carbon monoxide concentration.

【0004】燃料電池本体5はりん酸電解質を含浸,担
持するマトリックスと、このマトリックスを挟持する燃
料極と空気極と、これらの各極に接し、この各極に供給
する反応ガスとしての改質ガスと空気とがそれぞれ流れ
る通路を有する基材とからなるセルを積層したセルスタ
ックから構成される。なお、6は燃料電池本体5の温度
を検出する温度検出器である。
The fuel cell main body 5 is in contact with the matrix impregnated with and carrying the phosphoric acid electrolyte, the fuel electrode and the air electrode sandwiching this matrix, and each of these electrodes, and reforming as a reaction gas supplied to each electrode. It is composed of a cell stack in which cells made of a base material having passages through which gas and air respectively flow are laminated. A temperature detector 6 detects the temperature of the fuel cell body 5.

【0005】原燃料供給系7は原燃料供給源から原燃料
を脱硫器1に供給する。脱硫原燃料供給系8は脱硫器1
にて脱硫された原燃料を改質器2の改質管に供給する。
水蒸気改質ガス供給系9は改質器2にて水蒸気改質した
ガスを一酸化炭素変成器3に供給する。改質ガス供給系
10は電動弁11を備え、一酸化炭素変成器3にて一酸
化炭素を低濃度にした改質ガスを燃料電池本体5に供給
する。
The raw fuel supply system 7 supplies the raw fuel from the raw fuel supply source to the desulfurizer 1. Desulfurization raw fuel supply system 8 is desulfurizer 1
The raw fuel desulfurized in 1 is supplied to the reforming pipe of the reformer 2.
The steam reformed gas supply system 9 supplies the gas reformed by the reformer 2 to the carbon monoxide shift converter 3. The reformed gas supply system 10 includes a motor-operated valve 11, and supplies the reformed gas having a low concentration of carbon monoxide in the carbon monoxide shift converter 3 to the fuel cell body 5.

【0006】改質ガスバイパス系12は電動弁13を備
え、一酸化炭素変成器3から送出される改質ガスを燃料
電池本体5をバイパスして改質器2のバーナ4に供給す
る。オフガス供給系15は電動弁16を備えて燃料極か
ら改質ガスバイパス系12に合流して設けられ、燃料電
池本体5の発電時、燃料極から電池反応に寄与しない水
素を含んで排出されるオフガスを改質器2のバーナ4に
供給する。
The reformed gas bypass system 12 is provided with a motor-operated valve 13, and supplies the reformed gas delivered from the carbon monoxide shift converter 3 to the burner 4 of the reformer 2 by bypassing the fuel cell body 5. The off-gas supply system 15 is equipped with a motor-operated valve 16 and is provided so as to join the reformed gas bypass system 12 from the fuel electrode. When the fuel cell main body 5 generates power, the off-gas supply system 15 is discharged from the fuel electrode including hydrogen that does not contribute to the cell reaction. The off gas is supplied to the burner 4 of the reformer 2.

【0007】空気供給系17は電動弁18を備え、空気
を燃料電池本体5の空気極に供給する。空気排出系19
は空気極から排出される排空気を外部に排出する。窒素
供給系21は原燃料供給系7に合流し、一方窒素排出系
22は改質ガス供給系10から分岐して設けられ、窒素
を脱硫器1,改質器2,一酸化炭素変成器3に通流させ
る。なお、23,24は弁である。
The air supply system 17 is provided with an electric valve 18 and supplies air to the air electrode of the fuel cell body 5. Air exhaust system 19
Discharges the exhaust air discharged from the air electrode to the outside. The nitrogen supply system 21 merges with the raw fuel supply system 7, while the nitrogen discharge system 22 is provided so as to branch from the reformed gas supply system 10, and is used to remove nitrogen from the desulfurizer 1, the reformer 2, and the carbon monoxide shift converter 3 Flow to. In addition, 23 and 24 are valves.

【0008】電池用窒素供給系25は分岐して改質ガス
供給系10及び空気供給系17とに合流し、一方電池用
窒素排出系26はオフガス排出系15から分岐して設け
られ、窒素を燃料電池本体5の改質ガス,空気の通路に
通流させる。なお、27,28,29は弁である。この
ような構成により、燃料電池発電装置の起動時、弁2
3,24を開にして窒素により脱硫器1,改質器2の改
質管,一酸化炭素変成器3内の可燃性ガスをガスパージ
し、ガスパージ終了したら弁23,24を閉にする。そ
して脱硫器1は電気ヒータにより、改質器2の改質管は
バーナ4での燃焼による燃焼ガスにより、一酸化炭素変
成器3は電気ヒータにより脱硫触媒,改質触媒,一酸化
炭素変成触媒を昇温するとともに原燃料を燃料改質装置
に通流して改質を行なわせる。すなわち原燃料を原燃料
供給系7を経て脱硫器1に送出して原燃料に含まれる硫
黄分を脱硫する。そして脱硫した原燃料を改質器2に送
出して原燃料を水蒸気改質して水素に富むガスに改質す
る。つぎにこのガスを一酸化炭素変成器3に送出してこ
のガスに含まれる一酸化炭素を変成して一酸化炭素濃度
を低減する。
The battery nitrogen supply system 25 branches to join the reformed gas supply system 10 and the air supply system 17, while the battery nitrogen discharge system 26 is provided to branch from the off-gas discharge system 15 to remove nitrogen. The reformed gas and air of the fuel cell body 5 are made to flow. In addition, 27, 28, and 29 are valves. With this configuration, when the fuel cell power generator is started, the valve 2
Opening valves 3 and 24, the combustible gas in the desulfurizer 1, the reformer tubes of the reformer 2 and the carbon monoxide shift converter 3 is gas-purged with nitrogen, and when the gas purging is completed, the valves 23 and 24 are closed. The desulfurizer 1 is operated by an electric heater, the reforming pipe of the reformer 2 is operated by combustion gas from the burner 4, and the carbon monoxide shift converter 3 is driven by an electric heater to desulfurize catalyst, reforming catalyst, carbon monoxide shift catalyst. And the raw fuel is caused to flow through the fuel reforming device for reforming. That is, the raw fuel is sent to the desulfurizer 1 via the raw fuel supply system 7 to desulfurize the sulfur content contained in the raw fuel. Then, the desulfurized raw fuel is sent to the reformer 2 to steam-reform the raw fuel and reform it into a gas rich in hydrogen. Next, this gas is sent to the carbon monoxide shift converter 3 to shift the carbon monoxide contained in this gas to reduce the carbon monoxide concentration.

【0009】このようにして一酸化炭素濃度を低減した
改質ガスは電動弁11,16を閉に、電動弁13を開に
して燃料電池本体5に供給しない間、改質ガスバイパス
系12を経て改質器2のバーナ4に供給して燃料として
使用する。一方、燃料電池本体5においては、弁27,
28,29を開にして窒素を窒素供給系25を経て燃料
電池本体5の改質ガスと空気との通路に通流して水素や
酸素をパージし、燃料電池本体5に通流する高温の冷却
水により燃料電池本体5が電池反応を起こさせるに適す
る温度に昇温する。なお、ガスパージ終了後弁27,2
8,29は閉にする。
The reformed gas whose carbon monoxide concentration has been reduced in this way is supplied to the reformed gas bypass system 12 while the motor-operated valves 11 and 16 are closed and the motor-operated valve 13 is opened to supply the reformed gas to the fuel cell body 5. After that, it is supplied to the burner 4 of the reformer 2 and used as a fuel. On the other hand, in the fuel cell main body 5, the valves 27,
Opening 28 and 29, nitrogen is passed through the nitrogen supply system 25 to the passage of the reformed gas and air of the fuel cell main body 5 to purge hydrogen and oxygen, and to cool the fuel cell main body 5 at high temperature. Water raises the temperature of the fuel cell body 5 to a temperature suitable for causing a cell reaction. In addition, the valves 27 and 2 are used after the gas purging is completed.
8, 29 are closed.

【0010】この燃料電池本体5の温度を温度検出器6
で検出し、この検出温度が電池反応に適する温度になれ
ば、電動弁13を閉、電動弁11,16を開にして一酸
化炭素変成器3からの改質ガスを燃料電池本体5に供給
するとともに、電動弁18を開にして空気供給系17を
経て空気を燃料電池本体5に供給する。この供給された
改質ガスと空気とにより燃料電池本体5は電池反応を起
こして発電する。
The temperature of the fuel cell body 5 is detected by the temperature detector 6
When the detected temperature reaches a temperature suitable for the cell reaction, the electrically operated valve 13 is closed and the electrically operated valves 11 and 16 are opened to supply the reformed gas from the carbon monoxide shift converter 3 to the fuel cell main body 5. At the same time, the electric valve 18 is opened to supply air to the fuel cell body 5 through the air supply system 17. The supplied reformed gas and air cause the fuel cell main body 5 to undergo a cell reaction to generate electricity.

【0011】[0011]

【発明が解決しようとする課題】上記のように燃料電池
発電装置の起動時、脱硫器1,改質器2,一酸化炭素変
成器3からなる燃料改質装置の昇温が行なわれ、原燃料
が投入されて改質が行なわれるとともに、燃料電池本体
5も同時に昇温される。ところで、従来燃料電池本体5
へ反応ガスである改質ガスと空気とを供給して発電させ
るガス供給タイミングは、燃料電池本体5の温度のみに
より決定されている。
As described above, when the fuel cell power generator is started, the temperature of the fuel reformer including the desulfurizer 1, the reformer 2 and the carbon monoxide shifter 3 is raised, and The fuel is charged and reformed, and the temperature of the fuel cell main body 5 is simultaneously raised. By the way, the conventional fuel cell body 5
The gas supply timing at which the reformed gas, which is a reaction gas, and air are supplied to generate power is determined only by the temperature of the fuel cell body 5.

【0012】しかしながら、上記のような起動方法では
燃料改質装置の昇温速度と燃料電池本体5の昇温速度は
一般的に一致してないため、燃料電池本体5が十分に昇
温されているにも拘らず、燃料改質装置、特に一酸化炭
素変成器が昇温されてない場合が生じる。また燃料電池
発電装置の運転履歴によっては、常に同一の起動状態で
昇温が開始されるとは限らない。
However, in the starting method as described above, the temperature rising rate of the fuel reformer and the temperature rising rate of the fuel cell body 5 generally do not match, so that the temperature of the fuel cell body 5 is sufficiently raised. Despite this, there is a case where the temperature of the fuel reformer, especially the carbon monoxide transformer, is not raised. Further, depending on the operation history of the fuel cell power generator, the temperature rise does not always start in the same starting state.

【0013】上記のような場合、一酸化炭素変成器3が
所定温度まで昇温されてないと、一酸化炭素を二酸化炭
素に変成する反応が進行せず、このため高濃度の一酸化
炭素を含む改質ガスが燃料電池本体5に供給され、燃料
電池本体5の電極触媒を被毒させる。また、一酸化炭素
変成器3の変成触媒が劣化すると、一酸化炭素変成器は
同じ温度であっても一酸化炭素濃度は十分に低下せず、
前述と同様に電極触媒を被毒させる。
In the above case, unless the temperature of the carbon monoxide shift converter 3 is raised to a predetermined temperature, the reaction for converting carbon monoxide into carbon dioxide does not proceed, so that a high concentration of carbon monoxide is generated. The reformed gas containing the gas is supplied to the fuel cell body 5 to poison the electrode catalyst of the fuel cell body 5. Further, when the shift conversion catalyst of the carbon monoxide shift converter 3 deteriorates, the carbon monoxide concentration does not sufficiently decrease even at the same temperature in the carbon monoxide shift converter,
The electrode catalyst is poisoned as described above.

【0014】また、一酸化炭素変成器3と燃料電池本体
5とが十分に昇温してから燃料電池本体5に一酸化炭素
変成器3からの改質ガスと空気とを供給すると、発電開
始までの時間が長くかかるという問題がある。本発明の
目的は、燃料電池発電装置の起動時、燃料改質装置を昇
温して一酸化炭素変成器からの改質ガスを、この中に含
まれる一酸化炭素濃度が燃料電池の電極触媒に有害な被
毒を与えない濃度で、昇温される燃料電池にタイミング
よく供給して発電を開始できる燃料電池の起動方法及び
その装置を提供することである。
When the carbon monoxide shift converter 3 and the fuel cell main body 5 are sufficiently heated and then the reformed gas and air from the carbon monoxide shift converter 3 are supplied to the fuel cell main body 5, power generation starts. There is a problem that it takes a long time. An object of the present invention is to raise the temperature of a fuel reforming device at the time of starting a fuel cell power generation device to generate a reformed gas from a carbon monoxide shift converter, the carbon monoxide concentration of which is contained in an electrode catalyst of a fuel cell. (EN) A fuel cell start-up method and device capable of supplying power to a fuel cell whose temperature is raised in a timely manner to start power generation at a concentration that does not give harmful poisoning to the fuel cell.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば原燃料を水蒸気改質したガスに含ま
れる一酸化炭素を変成する一酸化炭素変成器から供給さ
れる水素に富む改質ガスとともに供給される空気とによ
り発電するりん酸電解質を有する燃料電池の起動方法に
おいて、起動時、一酸化炭素変成器と燃料電池本体とを
加熱昇温するとともに、一酸化炭素変成器から送出され
る改質ガス中の一酸化炭素濃度と燃料電池本体の温度と
を測定し、一酸化炭素濃度が燃料電池本体の温度に対し
て電極触媒に有害な被毒を与えない濃度に達したとき、
燃料電池本体に改質ガスと空気とを供給するものとす
る。
In order to solve the above-mentioned problems, according to the present invention, hydrogen supplied from a carbon monoxide converter for converting carbon monoxide contained in a gas obtained by steam reforming a raw fuel is used. In a method for starting a fuel cell having a phosphoric acid electrolyte that generates electricity with air supplied together with a rich reformed gas, at the time of start-up, the carbon monoxide shifter and the fuel cell body are heated and heated, and the carbon monoxide shifter is also heated. The carbon monoxide concentration in the reformed gas sent from the fuel cell and the temperature of the fuel cell body were measured, and the carbon monoxide concentration reached a concentration that did not cause harmful poisoning of the electrode catalyst with respect to the temperature of the fuel cell body. When I did
The reformed gas and air are supplied to the fuel cell body.

【0016】また、上記起動方法を採用するときの装置
として、原燃料を水蒸気改質したガスに含まれる一酸化
炭素を変成する一酸化炭素変成器から供給される水素に
富む改質ガスとともに供給される空気とにより発電する
りん酸電解質を有する燃料電池を起動する燃料電池の起
動装置において、一酸化炭素変成器から送出される改質
ガスに含まれる一酸化炭素濃度を検出する濃度検出器
と、燃料電池本体の温度を検出する温度検出器と、燃料
電池本体の温度とこの温度に対して電極触媒に有害な被
毒を与えない一酸化炭素濃度との関係を記憶するメモリ
部と、濃度検出器及び温度検出器で検出した一酸化炭素
濃度と温度の信号が入力され、メモリ部から読み取った
関係に基づいて燃料電池へ改質ガスと空気とをそれぞれ
供給する供給系に設けられた弁を開にする制御部とを備
えるものとする。
Further, as a device when the above-mentioned starting method is adopted, the raw fuel is supplied together with a hydrogen-rich reformed gas supplied from a carbon monoxide shifter for transforming carbon monoxide contained in the steam reformed gas. And a concentration detector for detecting the concentration of carbon monoxide contained in the reformed gas sent from the carbon monoxide shift converter, in a fuel cell starter for starting a fuel cell having a phosphoric acid electrolyte that generates electricity with the generated air. A temperature detector for detecting the temperature of the fuel cell main body, a memory unit for storing the relationship between the temperature of the fuel cell main body and the carbon monoxide concentration which does not cause harmful poisoning to the electrode catalyst with respect to this temperature, The signals of carbon monoxide concentration and temperature detected by the detector and the temperature detector are input, and based on the relationship read from the memory unit, the supply system that supplies the reformed gas and air to the fuel cell is installed. The resulting valve is intended to comprise a control unit to open.

【0017】[0017]

【作用】炭化水素系の原燃料は脱硫器で脱硫され、改質
器で水蒸気改質した後、この改質したガスに含まれる一
酸化炭素を一酸化炭素変成器で変成して一酸化炭素濃度
の低い改質ガスにして燃料電池に供給する。燃料電池は
この改質ガスと別に供給される空気とにより発電する。
[Function] Hydrocarbon-based raw fuel is desulfurized by a desulfurizer, steam-reformed by a reformer, and then carbon monoxide contained in the reformed gas is converted by a carbon monoxide shift converter to form carbon monoxide. The reformed gas with low concentration is supplied to the fuel cell. The fuel cell generates electricity by using this reformed gas and air supplied separately.

【0018】ところで発電開始前の起動時、一酸化炭素
変成器は昇温されるとともに水蒸気改質したガスが投入
されて一酸化炭素の変成が行なわれ、同時に燃料電池本
体は昇温される。この際、一酸化炭素変成器からの一酸
化炭素が変成された改質ガス中の一酸化炭素濃度と燃料
電池本体の温度とを測定し、一酸化炭素濃度が燃料電池
本体の温度に対して電極触媒に有害な被毒を与えない濃
度になったときに燃料電池本体に改質ガスと空気とを供
給して発電を開始する。
By the way, at the time of start-up before the start of power generation, the temperature of the carbon monoxide shift converter is raised and the steam-reformed gas is introduced to transform the carbon monoxide, and at the same time, the temperature of the fuel cell main body is raised. At this time, the concentration of carbon monoxide in the reformed gas in which carbon monoxide was transformed from the carbon monoxide transformer and the temperature of the fuel cell body were measured, and the carbon monoxide concentration was measured with respect to the temperature of the fuel cell body. When the concentration reaches a level that does not give harmful poisoning to the electrode catalyst, reforming gas and air are supplied to the fuel cell body to start power generation.

【0019】なお、上記の起動方法を採用する起動装置
においては、一酸化炭素変成器を昇温し、一酸化炭素の
変成を行なわせた改質ガス中の一酸化炭素濃度を濃度検
出器で検出する。一方、温度検出器により昇温される燃
料電池本体の温度を検出する。そして制御部により前記
検出濃度と検出温度との関係をメモリ部から読み取った
一酸化炭素濃度と電極触媒に有害な被毒を与えない一酸
化炭素濃度に対応する燃料電池本体の温度との関係と比
較し、一酸化炭素濃度が電極触媒に有害な被毒を与えな
い燃料電池本体の温度のとき、改質ガスと空気とを供給
する供給系の弁を開にして燃料電池本体に改質ガスと空
気とを供給して発電を開始する。
In the starting device adopting the above-mentioned starting method, the temperature of the carbon monoxide shift converter is raised so that the concentration of carbon monoxide in the reformed gas which has been subjected to the shift of carbon monoxide is detected by the concentration detector. To detect. On the other hand, the temperature detector detects the temperature of the main body of the fuel cell. And the relationship between the temperature of the fuel cell main body corresponding to the concentration of carbon monoxide read from the memory section the relationship between the detected concentration and the detected temperature by the control section and the carbon monoxide concentration that does not give harmful poisoning to the electrode catalyst, In comparison, when the carbon monoxide concentration is the temperature of the fuel cell main body that does not cause harmful poisoning to the electrode catalyst, the valve of the supply system that supplies the reformed gas and air is opened and the reformed gas is supplied to the fuel cell main body. And air are supplied to start power generation.

【0020】[0020]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による燃料電池の起動
方法を採用するときの燃料電池発電装置の系統図であ
る。なお図1において図3の従来例と同一部品には同じ
符号を付し、その説明を省略する。図1において従来例
と異なるのは下記の通りである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a fuel cell power generator when a method of starting a fuel cell according to an embodiment of the present invention is adopted. In FIG. 1, the same parts as those in the conventional example of FIG. 3 are designated by the same reference numerals and the description thereof will be omitted. 1 is different from the conventional example as follows.

【0021】濃度検出器30は改質ガスバイパス系12
に設けられ、一酸化炭素変成器3から送出される改質ガ
スに含まれる一酸化炭素濃度を検出する。メモリ部31
は燃料電池本体5の温度と、この温度に対して燃料電池
本体の電極触媒に有害な被毒を起こさせない改質ガスに
含まれる一酸化炭素濃度との関係を記憶する。図2はこ
の関係を図示したものであり、横軸に燃料電池本体5の
温度(℃)を、縦軸に一酸化炭素濃度(%)をとり、曲
線Xは燃料電池本体5の温度に対して電極触媒に有害な
被毒を起こさせない一酸化炭素濃度を示し、図から電極
触媒の一酸化炭素による被毒は燃料電池本体5の温度が
高い程受けにくいことが理解される。ここで曲線Xの下
部(斜線部)は改質ガスの燃料電池への供給可能領域、
すなわち発電可能領域である。
The concentration detector 30 is a reformed gas bypass system 12
And detects the concentration of carbon monoxide contained in the reformed gas delivered from the carbon monoxide shift converter 3. Memory unit 31
Stores the relationship between the temperature of the fuel cell body 5 and the concentration of carbon monoxide contained in the reformed gas that does not cause harmful poisoning of the electrode catalyst of the fuel cell body with respect to this temperature. FIG. 2 illustrates this relationship, in which the horizontal axis represents the temperature (° C.) of the fuel cell body 5 and the vertical axis represents the carbon monoxide concentration (%), and the curve X represents the temperature of the fuel cell body 5. The concentration of carbon monoxide that does not cause harmful poisoning of the electrode catalyst is shown. From the figure, it is understood that poisoning by carbon monoxide of the electrode catalyst is less likely to occur as the temperature of the fuel cell body 5 increases. Here, the lower portion of the curve X (hatched portion) is the region where the reformed gas can be supplied to the fuel cell,
That is, it is a power generation possible region.

【0022】制御部32は温度検出器6で検出された燃
料電池本体5の温度の信号と、濃度検出器30で検出さ
れた一酸化炭素濃度の信号とが入力され、これらの温度
と一酸化炭素濃度とが、メモリ部31に記憶されている
燃料電池本体の温度と一酸化炭素濃度との関係、すなわ
ち図2における曲線Xに達したとき、一酸化炭素変成器
3からの改質ガスを燃料電池本体5に供給可能にするよ
うに、電動弁13を閉、電動弁11,16を開に、また
空気を燃料電池本体5に供給可能なように電動弁18を
開にする。
The control unit 32 receives a signal of the temperature of the fuel cell body 5 detected by the temperature detector 6 and a signal of the carbon monoxide concentration detected by the concentration detector 30, and inputs these temperature and monoxide. When the carbon concentration reaches the relationship between the temperature of the fuel cell body and the carbon monoxide concentration stored in the memory unit 31, that is, when the curve X in FIG. 2 is reached, the reformed gas from the carbon monoxide shift converter 3 is discharged. The motor-operated valve 13 is closed, the motor-operated valves 11 and 16 are opened so that the fuel cell body 5 can be supplied, and the motor-operated valve 18 is opened so that air can be supplied to the fuel cell body 5.

【0023】このような構成により燃料電池発電装置の
起動時、前述のように一酸化炭素変成器3は昇温される
とともに一酸化炭素の変成が行なわれ、昇温とともに一
酸化炭素濃度は時間とともに減少し、一方燃料電池本体
5も昇温される。この場合の例として、図2に一酸化炭
素変成器3から送出される改質ガス中の一酸化炭素濃度
を濃度検出器30で検出した一酸化炭素濃度と温度検出
器6で検出した燃料電池本体5の温度との経時変化を線
34で示す。
With such a configuration, when the fuel cell power generator is started, the carbon monoxide shift converter 3 is heated and the carbon monoxide is transformed as described above. Along with this, the fuel cell body 5 is also heated. As an example of this case, in FIG. 2, the carbon monoxide concentration in the reformed gas sent from the carbon monoxide shift converter 3 is detected by the concentration detector 30 and the fuel cell is detected by the temperature detector 6. A change with time of the temperature of the main body 5 is shown by a line 34.

【0024】線34において時間とともに一酸化炭素濃
度と燃料電池本体5の温度との関係はA→B→C→D→
Eと変化する。ここでA,B,C点は曲線Xより上部に
あるので、改質ガスの燃料電池本体5への供給不可の点
であり、D,E点は曲線Xより下部にあるので、改質ガ
スの燃料電池本体5への供給可能、すなわち発電可能の
点である。
In line 34, the relationship between the concentration of carbon monoxide and the temperature of the fuel cell body 5 with time is A → B → C → D →
Change to E. Here, since points A, B, and C are above the curve X, the reformed gas cannot be supplied to the fuel cell body 5, and points D and E are below the curve X. Of the fuel cell body 5, that is, power generation is possible.

【0025】また、燃料電池発電装置が停止してから再
起動するまでの時間が短かい場合には、一酸化炭素変成
器3は十分に冷えていないため、図2の線35に示すよ
うに燃料電池本体5の昇温より早く、一酸化炭素濃度が
低下し、燃料電池本体の温度がより低い温度(F点)で
改質ガスの燃料電池本体5への供給が可能となる。ま
た、図2の線36に示す例においては、一酸化炭素濃度
が高くても燃料電池本体の温度がより高い温度(G点)
で改質ガスの燃料電池本体5への供給が可能となる。
If the time from when the fuel cell power generator is stopped to when it is restarted is short, the carbon monoxide transformer 3 is not sufficiently cooled, and as shown by the line 35 in FIG. It is possible to supply the reformed gas to the fuel cell main body 5 at a temperature (point F) where the carbon monoxide concentration is lowered earlier than the temperature rise of the fuel cell main body 5 and the temperature of the fuel cell main body is lower. In the example shown by the line 36 in FIG. 2, the temperature of the fuel cell body is higher (point G) even if the carbon monoxide concentration is high.
Thus, the reformed gas can be supplied to the fuel cell body 5.

【0026】なお、燃料電池発電装置の運転時間の経過
により一酸化炭素変成器の変成触媒が劣化した場合、一
酸化炭素変成器の昇温速度が同じでも一酸化炭素濃度は
高くなる。この場合も改質ガスの燃料電池本体5への供
給可能な燃料電池本体5の温度は図2の曲線Xに従う温
度となる。ところで、従来のように燃料電池本体5の温
度が、例えば150℃以上になったならば、改質ガスと
空気とを燃料電池本体に供給して発電開始するような起
動を行なうと、線34のような履歴の場合は問題がない
が、線35のような履歴の場合、燃料電池本体のより低
い温度で発電開始が可能であるに拘らず、発電までの時
間が長くなる。また線36のような履歴の場合、一酸化
炭素濃度が高くても発電開始を行なうという不都合が生
じる。
When the shift catalyst of the carbon monoxide shift converter deteriorates with the lapse of the operating time of the fuel cell power generator, the carbon monoxide concentration increases even if the heating rate of the carbon monoxide shift converter is the same. Also in this case, the temperature of the fuel cell main body 5 that can supply the reformed gas to the fuel cell main body 5 is the temperature according to the curve X in FIG. By the way, if the temperature of the fuel cell main body 5 becomes 150 ° C. or higher as in the conventional case, the reforming gas and the air are supplied to the fuel cell main body to start power generation, and the line 34 is generated. In the case of the history like this, there is no problem, but in the case of the history like the line 35, the time until the power generation becomes long regardless of whether the power generation can be started at a lower temperature of the fuel cell main body. Further, in the case of the history as shown by the line 36, there is a disadvantage that power generation is started even if the carbon monoxide concentration is high.

【0027】しかしながら、本発明によれば濃度検出器
30と温度検出器6とで検出した改質ガス中の一酸化炭
素濃度と燃料電池本体の温度との関係がメモリ部31か
ら読み取った燃料電池本体の温度と一酸化炭素濃度との
関係、すなわち図2に示す曲線Xの発電可能領域に入れ
ば、制御部32により電動弁13を閉、電動弁11,1
6を開にして改質ガスを、また電動弁18を開にして空
気を燃料電池本体5に供給して発電することができる。
すなわち、例えば線34のような履歴ではD点で燃料電
池は改質ガスと空気とが供給されて発電する。なお、発
電後は燃料電池本体5,一酸化炭素変成器3は通常の運
転温度(E点)に上昇,保持される。また線35のよう
な履歴ではF点で前述のように燃料電池本体5に改質ガ
スと空気とが供給されて発電する。なお、線36のよう
な履歴ではG点で前述のように発電する。したがって上
記いずれの場合でも改質ガスは、その中に含まれる一酸
化炭素濃度に応じてタイミングよく昇温される燃料電池
本体5に供給されて発電し、電極触媒に有害な被毒を与
えない。
However, according to the present invention, the relationship between the concentration of carbon monoxide in the reformed gas detected by the concentration detector 30 and the temperature detector 6 and the temperature of the fuel cell body is read from the memory unit 31. If the relationship between the temperature of the main body and the concentration of carbon monoxide, that is, the power generation possible region of the curve X shown in FIG.
6 can be opened to supply reformed gas, and the motor-operated valve 18 can be opened to supply air to the fuel cell main body 5 to generate electric power.
That is, for example, in the history such as the line 34, the reformed gas and air are supplied to the fuel cell at point D to generate power. After power generation, the fuel cell main body 5 and the carbon monoxide shift converter 3 are raised and maintained at the normal operating temperature (point E). Further, in the history like the line 35, at the point F, the reformed gas and air are supplied to the fuel cell main body 5 as described above to generate power. In the history like the line 36, power is generated at point G as described above. Therefore, in any of the above cases, the reformed gas is supplied to the fuel cell body 5 whose temperature is raised in a timely manner according to the concentration of carbon monoxide contained in the reformed gas to generate electric power, and does not give harmful poisoning to the electrode catalyst. .

【0028】なお、本実施例では燃料電池の空気極に空
気を供給しているが、酸素を供給してもよい。
Although air is supplied to the air electrode of the fuel cell in this embodiment, oxygen may be supplied.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
によれば前述のような起動方法及びその装置の構成によ
り、燃料電池発電装置の種々な起動状態においても、ま
た一酸化炭素変成器の変成触媒が劣化しても、一酸化炭
素変成器から送出される改質ガス中の一酸化炭素濃度に
応じて燃料電池の電極触媒に有害な被毒を起こさせない
燃料電池本体の温度で発電するので、電極触媒に悪影響
を与えることの少ない最短の時間で燃料電池の発電を開
始できる。
As is apparent from the above description, according to the present invention, the carbon monoxide transformer can be used in various starting states of the fuel cell power generator by the starting method and the configuration of the apparatus. Power generation at the temperature of the main body of the fuel cell that does not cause harmful poisoning to the electrode catalyst of the fuel cell according to the concentration of carbon monoxide in the reformed gas sent from the carbon monoxide shifter even if the shift catalyst of Therefore, the power generation of the fuel cell can be started in the shortest time with less adverse effect on the electrode catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による燃料電池の起動装置を備
えたりん酸形燃料電池発電装置の系統図
FIG. 1 is a system diagram of a phosphoric acid fuel cell power generator including a fuel cell starter according to an embodiment of the present invention.

【図2】図1において、燃料電池に一酸化炭素変成器か
らの改質ガスの供給が可能となる改質ガス中の一酸化炭
素濃度と燃料電池本体の温度との関係を示す図
FIG. 2 is a diagram showing the relationship between the concentration of carbon monoxide in the reformed gas and the temperature of the fuel cell body, which enables the reformed gas to be supplied from the carbon monoxide shift converter to the fuel cell in FIG.

【図3】従来のりん酸形燃料電池発電装置の系統図FIG. 3 is a system diagram of a conventional phosphoric acid fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 脱硫器 2 改質器 3 一酸化炭素変成器 5 燃料電池本体 6 温度検出器 10 改質ガス供給系 11 電動弁 13 電動弁 16 電動弁 17 空気供給系 18 電動弁 30 温度検出器 31 メモリ部 32 制御部 1 desulfurizer 2 reformer 3 carbon monoxide shifter 5 fuel cell body 6 temperature detector 10 reformed gas supply system 11 electric valve 13 electric valve 16 electric valve 17 air supply system 18 electric valve 30 temperature detector 31 memory unit 32 control unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原燃料を水蒸気改質したガスに含まれる一
酸化炭素を変成する一酸化炭素変成器から供給される水
素に富む改質ガスとともに供給される空気とにより発電
するりん酸電解質を有する燃料電池の起動方法におい
て、起動時、一酸化炭素変成器と燃料電池本体とを昇温
するとともに、一酸化炭素変成器から送出される改質ガ
ス中の一酸化炭素濃度と燃料電池本体の温度とを測定
し、一酸化炭素濃度が燃料電池本体の温度に対して電極
触媒に有害な被毒を与えない濃度に達したとき、燃料電
池本体に改質ガスと空気とを供給することを特徴とする
燃料電池の起動方法。
1. A phosphoric acid electrolyte for generating electricity by the hydrogen-rich reformed gas supplied from a carbon monoxide converter for converting carbon monoxide contained in a gas obtained by steam reforming a raw fuel and air supplied together with the hydrogen-rich reformed gas. In the fuel cell starting method, the temperature of the carbon monoxide shift converter and the fuel cell main body is raised at the time of starting, and the carbon monoxide concentration in the reformed gas delivered from the carbon monoxide shift converter and the fuel cell main body The temperature is measured, and when the carbon monoxide concentration reaches a concentration that does not give harmful poisoning to the electrode catalyst with respect to the temperature of the fuel cell body, it is necessary to supply reformed gas and air to the fuel cell body. Characteristic fuel cell startup method.
【請求項2】原燃料を水蒸気改質したガスに含まれる一
酸化炭素を変成する一酸化炭素変成器から供給される水
素に富む改質ガスとともに供給される空気とにより発電
するりん酸電解質を有する燃料電池の起動装置におい
て、一酸化炭素変成器から送出される改質ガスの一酸化
炭素濃度を検出する濃度検出器と、燃料電池本体の温度
を検出する温度検出器と、燃料電池本体の温度とこの温
度に対して電極触媒に有害な被毒を与えない一酸化炭素
濃度との関係を記憶するメモリ部と、濃度検出器及び温
度検出器で検出した一酸化炭素濃度及び温度の信号が入
力され、メモリ部から読み取った関係に基づいて燃料電
池へ改質ガスと空気とをそれぞれ供給する供給系に設け
られた弁を開にする制御部とを備えたことを特徴とする
燃料電池の起動装置。
2. A phosphoric acid electrolyte for generating electricity by the hydrogen-rich reformed gas supplied from a carbon monoxide converter for converting carbon monoxide contained in a gas obtained by steam reforming a raw fuel and the air supplied together with the hydrogen-rich reformed gas. A fuel cell starter having the concentration detector for detecting the carbon monoxide concentration of the reformed gas delivered from the carbon monoxide shift converter, the temperature detector for detecting the temperature of the fuel cell body, and the fuel cell body A memory unit that stores the relationship between the temperature and the concentration of carbon monoxide that does not cause harmful poisoning to the electrode catalyst with respect to this temperature, and the signals of the concentration and temperature of carbon monoxide detected by the concentration detector and the temperature detector A fuel cell comprising: a control unit that opens valves provided in a supply system that respectively supplies reformed gas and air to the fuel cell based on the relationship input and read from the memory unit. Starter
JP4226303A 1992-08-26 1992-08-26 Starting method for fuel cell and device thereof Pending JPH0676847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4226303A JPH0676847A (en) 1992-08-26 1992-08-26 Starting method for fuel cell and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4226303A JPH0676847A (en) 1992-08-26 1992-08-26 Starting method for fuel cell and device thereof

Publications (1)

Publication Number Publication Date
JPH0676847A true JPH0676847A (en) 1994-03-18

Family

ID=16843100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4226303A Pending JPH0676847A (en) 1992-08-26 1992-08-26 Starting method for fuel cell and device thereof

Country Status (1)

Country Link
JP (1) JPH0676847A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050374A (en) * 2000-08-07 2002-02-15 New Cosmos Electric Corp Fuel cell system
WO2002026620A1 (en) * 2000-09-27 2002-04-04 Matsushita Electric Industrial Co., Ltd. Hydrogen forming device
JP2005209547A (en) * 2004-01-23 2005-08-04 Osaka Gas Co Ltd Fuel cell power generator and operating method for fuel cell power generator
JP2007095561A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Operation method of fuel cell system
JP2008124047A (en) * 2008-02-14 2008-05-29 Sanyo Electric Co Ltd Method of operating fuel cell system
US8158287B2 (en) 2004-11-30 2012-04-17 Sanyo Electric Co., Ltd. Fuel cell
JP2013213661A (en) * 2007-07-23 2013-10-17 Samsung Electronics Co Ltd Fuel reformer burner and fuel cell system
KR101435395B1 (en) * 2012-08-31 2014-08-28 삼성중공업 주식회사 Fuel Cell System

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050374A (en) * 2000-08-07 2002-02-15 New Cosmos Electric Corp Fuel cell system
WO2002026620A1 (en) * 2000-09-27 2002-04-04 Matsushita Electric Industrial Co., Ltd. Hydrogen forming device
JP2005209547A (en) * 2004-01-23 2005-08-04 Osaka Gas Co Ltd Fuel cell power generator and operating method for fuel cell power generator
US8158287B2 (en) 2004-11-30 2012-04-17 Sanyo Electric Co., Ltd. Fuel cell
JP2007095561A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Operation method of fuel cell system
JP2013213661A (en) * 2007-07-23 2013-10-17 Samsung Electronics Co Ltd Fuel reformer burner and fuel cell system
JP2008124047A (en) * 2008-02-14 2008-05-29 Sanyo Electric Co Ltd Method of operating fuel cell system
KR101435395B1 (en) * 2012-08-31 2014-08-28 삼성중공업 주식회사 Fuel Cell System

Similar Documents

Publication Publication Date Title
JP4248182B2 (en) Fuel cell power generation system and fuel cell purging method
US9509006B2 (en) Fuel cell system
JP2003229149A (en) Fuel cell generating system and fuel cell generating method
JPH11191426A (en) Fuel cell power generating system
JPH0676847A (en) Starting method for fuel cell and device thereof
WO2005057705A1 (en) Method of operating fuel cell system and fuel cell system
JP3722868B2 (en) Fuel cell system
JPH0668894A (en) Fuel cell generator and its gas purging method at starting
JP5002220B2 (en) Fuel cell system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JPH09161832A (en) Fuel cell generating device, and its operation method and operation control method
JPH05147903A (en) Reformer
JP4304975B2 (en) Fuel cell power generator
JPH09298065A (en) Fuel cell generating device
JPH10106592A (en) Module of solid electrolyte fuel cell
JP3983020B2 (en) Method for starting reformer in fuel cell system
JPH1064571A (en) Fuel cell power generating system
JP2004217435A (en) Method for stopping hydrogen-containing gas generation equipment, and hydrogen-containing gas generation equipment
JPH076781A (en) Phosphoric acid fuel cell power generating device
JPH0992316A (en) Method of raising temperature of fuel cell power generating device
KR102216661B1 (en) Fuel cell system and start-up method thereof
JPH05303970A (en) Fuel cell generating device and its starting method
JP2700047B2 (en) Device for maintaining catalyst integrity of fuel reformer for fuel cells
JPH08162137A (en) Fuel cell system and its starting method
KR101362209B1 (en) Regeneration method and apparatus for sulfur-poisoned reform catalyst in the fuel processor of fuel cell system