JP2700047B2 - Device for maintaining catalyst integrity of fuel reformer for fuel cells - Google Patents

Device for maintaining catalyst integrity of fuel reformer for fuel cells

Info

Publication number
JP2700047B2
JP2700047B2 JP6068966A JP6896694A JP2700047B2 JP 2700047 B2 JP2700047 B2 JP 2700047B2 JP 6068966 A JP6068966 A JP 6068966A JP 6896694 A JP6896694 A JP 6896694A JP 2700047 B2 JP2700047 B2 JP 2700047B2
Authority
JP
Japan
Prior art keywords
catalyst layer
temperature
catalyst
inlet
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6068966A
Other languages
Japanese (ja)
Other versions
JPH07254426A (en
Inventor
勇 大澤
嘉一 佐藤
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6068966A priority Critical patent/JP2700047B2/en
Publication of JPH07254426A publication Critical patent/JPH07254426A/en
Application granted granted Critical
Publication of JP2700047B2 publication Critical patent/JP2700047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池と燃料改質器
とを主要構成部とする燃料電池発電システムにおいて、
燃料改質器に設けられ、炭化水素系の原燃料が通流する
反応管内の触媒層を形成する改質触媒の触媒作用の健全
性を保持する燃料電池用燃料改質器の触媒健全性保持装
置に関する。
The present invention relates to a fuel cell power generation system having a fuel cell and a fuel reformer as main components.
Maintaining the soundness of the catalytic reformer for a fuel cell, which maintains the soundness of the catalytic action of the reforming catalyst that is provided in the fuel reformer and forms a catalyst layer in the reaction tube through which the hydrocarbon-based raw fuel flows. Related to the device.

【0002】[0002]

【従来の技術】炭化水素系の原燃料を水素に富むガスに
水蒸気改質する燃料改質装置と、この燃料改質装置から
の水蒸気改質した水素に富む改質ガスが燃料として供給
される燃料電池とを備える燃料電池発電システムとして
図3に示す系統のものが知られている。図3において、
脱硫器1は脱硫触媒を備え、炭化水素系の原燃料、例え
ばメタンに含まれる硫黄化合物を脱硫する。燃料改質器
2は炉容器3の上部にバーナ4、内部に改質触媒が充填
された触媒層を内蔵する反応管5とを備え、反応管5に
供給される原燃料を水素に富むガスに水蒸気改質する。
2. Description of the Related Art A fuel reformer for steam-reforming a hydrocarbon-based raw fuel into a hydrogen-rich gas, and a steam-reformed hydrogen-rich reformed gas from the fuel reformer is supplied as fuel. As a fuel cell power generation system including a fuel cell, a system shown in FIG. 3 is known. In FIG.
The desulfurizer 1 includes a desulfurization catalyst, and desulfurizes a hydrocarbon-based raw fuel, for example, a sulfur compound contained in methane. The fuel reformer 2 includes a burner 4 at an upper part of a furnace vessel 3 and a reaction tube 5 containing a catalyst layer filled with a reforming catalyst therein, and converts the raw fuel supplied to the reaction tube 5 into a hydrogen-rich gas. To steam reforming.

【0003】エゼクタ7は供給される水蒸気により駆動
され、脱硫器1からの脱硫した原燃料を吸込んで水蒸気
とともに燃料改質器2に供給する。なお、8は熱交換器
である。一酸化炭素変成器10は変成触媒を備え、燃料
改質器2からの水蒸気改質したガスに含まれる一酸化炭
素を変成してその濃度を低減する。燃料電池11は電解
質層12と、これを挟持する燃料極13と空気極14と
から構成され、一酸化炭素変成器10からの改質ガスを
燃料とし、空気を酸化剤として供給され、電池反応を起
こして発電する。
[0003] The ejector 7 is driven by the supplied steam, sucks the desulfurized raw fuel from the desulfurizer 1 and supplies it to the fuel reformer 2 together with the steam. In addition, 8 is a heat exchanger. The carbon monoxide converter 10 includes a shift catalyst, and shifts carbon monoxide contained in the steam reformed gas from the fuel reformer 2 to reduce its concentration. The fuel cell 11 is composed of an electrolyte layer 12, a fuel electrode 13 and an air electrode 14 sandwiching the electrolyte layer 12, and is supplied with the reformed gas from the carbon monoxide converter 10 as a fuel and air as an oxidant. To generate electricity.

【0004】原燃料供給系15は、図示しない原燃料供
給源と脱硫器1の入口とに接続している。脱硫原燃料供
給系16は、脱硫器1の出口からエゼクタ7及び熱交換
器8を経て燃料改質器2の反応管5の入口に接続してい
る。なお、17はエゼクタ7に水蒸気を供給する水蒸気
供給系である。水蒸気改質ガス供給系18は、燃料改質
器2の反応管5の出口から熱交換器8を経て一酸化炭素
変成器10の入口に接続している。
The raw fuel supply system 15 is connected to a raw fuel supply source (not shown) and an inlet of the desulfurizer 1. The desulfurization raw fuel supply system 16 is connected from the outlet of the desulfurizer 1 to the inlet of the reaction tube 5 of the fuel reformer 2 via the ejector 7 and the heat exchanger 8. Reference numeral 17 denotes a steam supply system for supplying steam to the ejector 7. The steam reforming gas supply system 18 is connected from the outlet of the reaction tube 5 of the fuel reformer 2 to the inlet of the carbon monoxide converter 10 via the heat exchanger 8.

【0005】改質ガス供給系20は、一酸化炭素変成器
10の出口と燃料電池11の燃料極13とに接続してい
る。リサイクル系21は、改質ガス供給系20から分岐
して原燃料供給系15に合流し、流量制御弁22と流量
検出器23とを備えている。オフガス排出系26は、燃
料電池11の燃料極13と燃料改質器2のバーナ4とに
接続している。燃焼空気供給系27は、ブロワ28を備
えて燃料改質器2のバーナ4に接続している。空気供給
系30は、ブロワ31を備えて燃料電池11の空気極1
4に接続している。なお、32は空気極14からのオフ
空気を排出するオフ空気排出系である。
The reformed gas supply system 20 is connected to the outlet of the carbon monoxide converter 10 and the fuel electrode 13 of the fuel cell 11. The recycle system 21 branches from the reformed gas supply system 20 and joins the raw fuel supply system 15, and includes a flow control valve 22 and a flow detector 23. The off-gas discharge system 26 is connected to the fuel electrode 13 of the fuel cell 11 and the burner 4 of the fuel reformer 2. The combustion air supply system 27 includes a blower 28 and is connected to the burner 4 of the fuel reformer 2. The air supply system 30 includes a blower 31 and includes an air electrode 1 of the fuel cell 11.
4 is connected. Reference numeral 32 denotes an off-air discharging system for discharging off-air from the air electrode 14.

【0006】このような構成により、炭化水素系の原燃
料が原燃料供給系15を経て脱硫器1に供給される。こ
の際、一酸化炭素変成器10からの後述のように生成さ
れた改質ガスの一部がリサイクル系21を経て原燃料に
付加される。そして、改質ガス中の水素と原燃料とが脱
硫器1を通流することにより、水素添加反応及びこれに
続く化学吸着反応により原燃料に含まれる硫黄化合物は
脱硫される。この場合、原燃料に付加される改質ガス流
量は、水素添加反応に必要にして十分な水素を含む所定
流量に流量検出器23で検出した流量をフィードバック
して流量制御弁22により制御される。
[0006] With such a configuration, the hydrocarbon-based raw fuel is supplied to the desulfurizer 1 via the raw fuel supply system 15. At this time, a part of the reformed gas generated from the carbon monoxide converter 10 as described later is added to the raw fuel via the recycle system 21. Then, when the hydrogen in the reformed gas and the raw fuel flow through the desulfurizer 1, the sulfur compound contained in the raw fuel is desulfurized by the hydrogenation reaction and the subsequent chemical adsorption reaction. In this case, the flow rate of the reformed gas added to the raw fuel is controlled by the flow rate control valve 22 by feeding back the flow rate detected by the flow rate detector 23 to a predetermined flow rate containing sufficient and necessary hydrogen for the hydrogenation reaction. .

【0007】脱硫器1で脱硫された原燃料は、水蒸気供
給系17を経て供給される水蒸気により駆動されるエゼ
クタ7により吸込まれ、脱硫原燃料供給系16を経て水
蒸気とともに燃料改質器2の反応管5に供給される。な
おこの際、前記水蒸気を混合した原燃料は、熱交換器8
にて後述する反応管5から排出する水蒸気改質ガスと熱
交換して加熱される。
[0007] The raw fuel desulfurized in the desulfurizer 1 is sucked by the ejector 7 driven by the steam supplied through the steam supply system 17 and passes through the desulfurization raw fuel supply system 16 together with the steam to the fuel reformer 2. It is supplied to the reaction tube 5. At this time, the raw fuel mixed with the steam is supplied to the heat exchanger 8.
Is heated and exchanged with steam reformed gas discharged from the reaction tube 5 described later.

【0008】反応管5に供給された水蒸気を混合した原
燃料は、改質触媒が充填された触媒層を有する反応管5
を通流する。この際、バーナ4で後述する燃料電池11
からオフガス排出系26を経て供給されるオフガスを、
燃焼空気供給系27を経てブロワ28により送気される
燃焼空気により燃焼させ、この燃焼熱により反応管5を
加熱して反応管5を通流する水蒸気を混合した原燃料を
水素に富むガスに水蒸気改質する。この際の反応は、原
燃料がメタンであれば下記の反応式で行なわれる。
The raw fuel mixed with steam supplied to the reaction tube 5 is supplied to the reaction tube 5 having a catalyst layer filled with a reforming catalyst.
Flow through. At this time, the burner 4 uses a fuel cell 11 described later.
The off-gas supplied through the off-gas discharge system 26 from
Combustion is performed by combustion air sent by a blower 28 through a combustion air supply system 27, and the reaction heat is heated by the combustion heat to convert the raw fuel obtained by mixing the steam flowing through the reaction tube 5 into a hydrogen-rich gas. Steam reforming. The reaction at this time is performed by the following reaction formula if the raw fuel is methane.

【0009】 CH4 +H2 O → CO+3H2 ・・・・・・・・・ CO+ H2 O → CO2 +H2 ・・・・・・・・・ ととを合わせて CH4 +2H2 O → CO2 +4H2 ・・・・・・・ 上記のようにして得られた水蒸気改質ガスは、水蒸気改
質ガス供給系18を経、熱交換器8にて前述のように水
蒸気を混合した原燃料を加熱することにより、自らは冷
却されて一酸化炭素変成器10に供給される。
CH 4 + H 2 O → CO + 3H 2 ... CO + H 2 O → CO 2 + H 2 ... CH 4 + 2H 2 O → CO 2 + 4H 2 ... The steam reformed gas obtained as described above passes through a steam reformed gas supply system 18 and is mixed with steam in the heat exchanger 8 as described above. Is cooled and supplied to the carbon monoxide converter 10.

【0010】ところで、反応管5から送出される水蒸気
改質ガスは一酸化炭素濃度が高いので、水蒸気改質ガス
が一酸化炭素変成器10を通流することにより、COと
2OとのCO変成反応により、水蒸気改質ガスに含ま
れる燃料電池11の触媒を被毒させる一酸化炭素の濃度
を低減させる。このようにして、一酸化炭素変成器10
からの一酸化炭素濃度の低い水素に富む改質ガスは改質
ガス供給系20を経て燃料電池11の燃料極13に供給
される。一方、空気極14には空気供給系30を経てブ
ロワ31により空気が供給される。そして、燃料電池1
1は供給される改質ガスと空気とにより電池反応を起こ
して発電する。
Since the steam reformed gas sent out from the reaction tube 5 has a high carbon monoxide concentration, the steam reformed gas flows through the carbon monoxide converter 10 to convert CO and H 2 O. By the CO shift reaction, the concentration of carbon monoxide contained in the steam reformed gas and poisoning the catalyst of the fuel cell 11 is reduced. Thus, the carbon monoxide converter 10
The hydrogen-rich reformed gas having a low carbon monoxide concentration is supplied to the fuel electrode 13 of the fuel cell 11 through the reformed gas supply system 20. On the other hand, the air electrode 14 is supplied with air by the blower 31 via the air supply system 30. And fuel cell 1
1 generates electric power by causing a battery reaction by the supplied reformed gas and air.

【0011】なお、電池反応に寄与しない未使用水素を
含むオフガスはオフガス排出系26を経て前述のように
燃料改質器2のバーナ4に燃焼用燃料として供給され
る。なお、空気極14から排出されるオフ空気はオフ空
気排出系32から外部に排出される。
The off-gas containing unused hydrogen that does not contribute to the battery reaction is supplied to the burner 4 of the fuel reformer 2 as a combustion fuel via the off-gas discharge system 26 as described above. The off air discharged from the air electrode 14 is discharged to the outside from the off air discharge system 32.

【0012】[0012]

【発明が解決しようとする課題】上記のように燃料改質
器2の改質触媒が充填された触媒層を内蔵する反応管5
を、水蒸気を混合した原燃料が通流して水蒸気改質され
る場合、改質触媒では原燃料がメタンの場合、 CH4 → C+2H2 又は 2CO → C+CO2 の反応が起こり改質触媒上に炭素が析出する。この炭素
析出傾向は、触媒層の入口部で発生しやすい。また、原
燃料とこれに付加する水蒸気との比、いわゆるスチーム
・カーボン比が低いときや、原燃料の炭化水素の炭化数
が大きいとき等に起こりやすい傾向がある。
As described above, a reaction tube 5 containing a catalyst layer filled with a reforming catalyst of a fuel reformer 2 is provided.
When the raw fuel mixed with steam flows through and reforms the steam, if the raw fuel is methane in the reforming catalyst, a reaction of CH 4 → C + 2H 2 or 2CO → C + CO 2 occurs and carbon is formed on the reforming catalyst. Precipitates. This tendency to deposit carbon tends to occur at the entrance of the catalyst layer. Further, it tends to occur when the ratio between the raw fuel and the steam added thereto, that is, when the so-called steam-carbon ratio is low, or when the number of hydrocarbons of the raw fuel is large.

【0013】上記のように改質触媒上に炭素析出が生じ
ると、改質触媒が炭素で覆われるため、原燃料と水蒸気
との混合ガスと改質触媒が接触できなくなり、前記,
に示す改質反応の起きる場所が、改質触媒が炭素で覆
われてない触媒層後段部へどんどん移動し、この結果、
十分に水蒸気改質されないガスが反応管5から排出さ
れ、あるいは炭素析出により反応管5内の圧力損失が上
昇し、燃料改質器2の運転が不能になるという問題があ
る。
When carbon deposition occurs on the reforming catalyst as described above, the reforming catalyst is covered with carbon, so that the mixed gas of raw fuel and steam cannot come into contact with the reforming catalyst.
The location where the reforming reaction takes place moves rapidly to the rear part of the catalyst layer where the reforming catalyst is not covered with carbon, and as a result,
There is a problem that a gas that is not sufficiently steam reformed is discharged from the reaction tube 5 or a pressure loss in the reaction tube 5 increases due to carbon deposition, and the operation of the fuel reformer 2 becomes impossible.

【0014】本発明の目的は、燃料改質器の反応管内の
触媒層の改質触媒上への炭素析出を防いで、触媒層の改
質触媒の触媒作用の健全性を保持できる燃料電池用燃料
改質器の触媒健全性保持装置を提供することである。
An object of the present invention is to provide a fuel cell for a fuel cell capable of preventing carbon deposition on a reforming catalyst of a catalyst layer in a reaction tube of a fuel reformer and maintaining the integrity of the catalytic action of the reforming catalyst in the catalyst layer. An object of the present invention is to provide a catalyst integrity maintaining device for a fuel reformer.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば炭化水素系の原燃料に含まれる硫黄
化合物を脱硫する脱硫器と、この脱硫器から脱硫された
原燃料が通流する改質触媒が充填された触媒層を内蔵す
る反応管を熱媒体により加熱して、前記通流する原燃料
を水素に富むガスに水蒸気改質する燃料改質器と、この
燃料改質器からの水蒸気改質したガスに含まれる一酸化
炭素を変成する一酸化炭素変成器と、この一酸化炭素変
成器からの改質ガスが供給される燃料電池と、一酸化炭
素変成器からの改質ガスの一部を、脱硫器に供給する原
燃料に付加する流量制御弁を備えたリサイクル系とを備
える燃料電池発電システムにおける前記反応管内の触媒
層の改質触媒の触媒作用の健全性を保持する燃料電池用
燃料改質器の触媒健全性保持装置において、原燃料が反
応管内の触媒層に流入する触媒層入口の触媒層入口温度
を検出する入口温度検出器と、触媒層の入口近傍の所定
位置の触媒層温度を検出する入口近傍温度検出器と、入
口温度検出器と入口近傍温度検出器との検出温度の温度
差を算出する温度差演算器と、この演算器からの温度差
が触媒層の改質触媒の触媒作用が健全なときの触媒層入
口温度と入口近傍触媒層温度との所定温度差になるよう
にリサイクル系に設けた流量制御弁を制御する制御手段
と、この流量制御弁に設けられ、原燃料に付加する脱硫
に必要な改質ガスの最低流量を確保する弁開度のリミッ
タとを備えるものとする。
According to the present invention, there is provided a desulfurizer for desulfurizing a sulfur compound contained in a hydrocarbon-based raw fuel and a raw fuel desulfurized from the desulfurizer. A fuel reformer for heating a reaction tube containing a catalyst layer filled with a flowing reforming catalyst with a heat medium to steam reform the flowing raw fuel into a hydrogen-rich gas; A carbon monoxide converter that converts carbon monoxide contained in steam reformed gas from a reformer, a fuel cell to which reformed gas is supplied from the carbon monoxide converter, and a carbon monoxide converter. And a recycling system having a flow control valve for adding a part of the reformed gas to the raw fuel supplied to the desulfurizer. Of Fuel Reformer for Fuel Cell Maintaining Performance In the integrity maintaining device, an inlet temperature detector for detecting a catalyst layer inlet temperature at a catalyst layer inlet at which raw fuel flows into a catalyst layer in a reaction tube, and an inlet for detecting a catalyst layer temperature at a predetermined position near the catalyst layer inlet. A proximity temperature detector, a temperature difference calculator for calculating a temperature difference between detected temperatures of the inlet temperature detector and the inlet proximity temperature detector, and a temperature difference from the calculator indicates that the catalytic action of the reforming catalyst of the catalyst layer is performed. Control means for controlling a flow control valve provided in the recycle system so that a predetermined temperature difference between the catalyst bed inlet temperature and the catalyst bed temperature in the vicinity of the inlet at the time of soundness is provided. And a limiter for the valve opening to secure the minimum flow rate of the reformed gas necessary for the desulfurization to be performed.

【0016】または、上記の燃料電池用燃料改質器の触
媒健全性保持装置において、前記リサイクル系に設けら
れた流量制御弁より上流でリサイクル系から分岐させた
改質ガス混合系を設け、この改質ガス混合系が流量制御
弁を有して脱硫器からの脱硫された原燃料にリサイクル
系を通流する改質ガスの一部を付加するものとし、さら
に、原燃料が反応管内の触媒層に流入する触媒層入口の
触媒層入口温度を検出する入口温度検出器と、触媒層の
入口近傍の所定位置の触媒層温度を検出する入口近傍温
度検出器と、入口温度検出器と入口近傍温度検出器との
検出温度の温度差を算出する温度差演算器と、この演算
器からの温度差が触媒層の改質触媒の触媒作用が健全な
ときの触媒層入口温度と入口近傍触媒層温度との所定温
度差になるように前記改質ガス混合系に設けた流量制御
弁を制御する制御手段とを備えるものとする。
Alternatively, in the above-described catalyst soundness maintaining device for a fuel reformer for a fuel cell, a reformed gas mixing system branched from the recycling system upstream of the flow control valve provided in the recycling system is provided. The reformed gas mixing system shall have a flow control valve to add a part of the reformed gas flowing through the recycling system to the desulfurized raw fuel from the desulfurizer, and further, the raw fuel may be a catalyst in the reaction tube. An inlet temperature detector for detecting a catalyst layer inlet temperature at an inlet of the catalyst layer flowing into the bed, an inlet vicinity temperature detector for detecting a catalyst layer temperature at a predetermined position near an inlet of the catalyst layer, an inlet temperature detector, and a vicinity of the inlet A temperature difference calculator for calculating a temperature difference between the detected temperature and the temperature detector; and a temperature difference from the calculator, the catalyst layer inlet temperature and the catalyst layer near the inlet when the catalytic action of the reforming catalyst in the catalyst layer is healthy. So that it has a predetermined temperature difference from the temperature Shall and control means for controlling the flow rate control valve provided on the Kiaratameshitsu gas mixing system.

【0017】なお、上記の制御手段は、温度差演算器か
らの温度差と触媒層の改質触媒の触媒作用が健全なとき
の触媒層入口温度と入口近傍触媒層温度との所定温度差
の目標値との偏差に対応する出力信号を出力する温度差
調節器と、この調節器からの出力信号が入力され、流量
制御弁を断続的に開閉させる断続開,閉信号を出力する
断続開閉信号出力器とを備えるものとする。
The above-mentioned control means determines the difference between the temperature difference from the temperature difference calculator and the predetermined temperature difference between the catalyst layer inlet temperature and the catalyst layer temperature near the inlet when the catalytic action of the reforming catalyst in the catalyst layer is sound. A temperature difference controller that outputs an output signal corresponding to a deviation from a target value, and an intermittent open / close signal that receives an output signal from the adjuster and outputs an intermittent open / close signal for intermittently opening and closing a flow control valve. And an output device.

【0018】[0018]

【作用】燃料電池発電システムおいて、前述のように炭
化水素系の原燃料は、リサイクル系を経て供給される一
酸化炭素変成器からの水素に富む改質ガスの一部が付加
されて、脱硫器にて原燃料に含まれる硫黄化合物が脱硫
される。そして、脱硫された原燃料は、別に供給される
水蒸気と混合して燃料改質器の改質触媒が充填された反
応管を通流し、熱媒体により加熱されて水素に富むガス
に水蒸気改質される。なお、水蒸気改質されたガスは一
酸化炭素変成器を通流することにより、燃料電池の触媒
を被毒させる一酸化炭素の濃度の低い水素に富む改質ガ
スとして燃料電池に供給され、別に供給される空気によ
り燃料電池は電池反応を起こして発電する。
In the fuel cell power generation system, as described above, the hydrocarbon-based raw fuel is added with a part of the hydrogen-rich reformed gas from the carbon monoxide converter supplied through the recycling system, Sulfur compounds contained in the raw fuel are desulfurized in the desulfurizer. Then, the desulfurized raw fuel is mixed with steam supplied separately, flows through a reaction tube filled with a reforming catalyst of a fuel reformer, and is heated by a heat medium to form a hydrogen-rich gas. Is done. The steam-reformed gas is supplied to the fuel cell as a hydrogen-rich reformed gas having a low concentration of carbon monoxide, which poisons the catalyst of the fuel cell, by flowing through the carbon monoxide converter. The supplied air causes the fuel cell to generate a cell reaction to generate power.

【0019】ところで、燃料改質器の反応管内の改質触
媒の下に行なわれる原燃料の水蒸気改質反応時、前述の
ように炭素が析出して改質触媒を覆うことにより、水蒸
気改質反応の起きる場所が、改質触媒が炭素で覆われて
いない触媒層後段部へどんどん移動する。図4は上記の
状態を示す触媒層入口からの距離と触媒層温度との関係
を示す図である。図4において、曲線Aは改質触媒が健
全な、すなわち触媒層の改質触媒に炭素析出がない健全
な状態で、水蒸気改質反応するときの触媒層の入口から
出口までの温度分布を示している。曲線Aにおいて、F
は触媒層の入口Dの温度であり、触媒層入口近傍点Eに
おいては最低温度Gを示している。これは触媒層入口近
傍点Eの部分で、吸熱反応である水蒸気改質反応が最も
起こっていることを示している。
Meanwhile, during the steam reforming reaction of the raw fuel performed under the reforming catalyst in the reaction tube of the fuel reformer, carbon is deposited and covers the reforming catalyst, as described above, so that the steam reforming is performed. The place where the reaction takes place moves more and more to the rear part of the catalyst layer where the reforming catalyst is not covered with carbon. FIG. 4 is a diagram showing the relationship between the distance from the catalyst layer inlet and the catalyst layer temperature, showing the above state. In FIG. 4, curve A shows the temperature distribution from the inlet to the outlet of the catalyst layer when the steam reforming reaction is performed in a state where the reforming catalyst is sound, that is, in a state where the reforming catalyst of the catalyst layer has no sound carbon deposition. ing. In curve A, F
Represents the temperature at the entrance D of the catalyst layer, and shows the lowest temperature G at the point E near the entrance of the catalyst layer. This indicates that the steam reforming reaction, which is an endothermic reaction, occurs most at the point E near the catalyst layer inlet.

【0020】曲線Bでは、触媒層温度が最低温度Gにな
る触媒層の位置が触媒層の入口近傍点Eから触媒層の出
口側に移っており、炭素析出が触媒層入口付近で起きて
いることが示され、曲線Bの曲線全体が触媒層出口側に
移動していることが理解される。曲線Cは曲線Bよりさ
らに炭素析出が進んだ状態の温度分布を示すものであ
り、曲線C全体は曲線Bよりさらに触媒層出口側に移動
していることが理解される。
In the curve B, the position of the catalyst layer at which the catalyst layer temperature reaches the minimum temperature G is shifted from the point E near the entrance of the catalyst layer to the exit side of the catalyst layer, and carbon deposition occurs near the entrance of the catalyst layer. This indicates that the entire curve B moves to the catalyst layer outlet side. The curve C shows the temperature distribution in a state in which the carbon deposition has progressed further than the curve B, and it is understood that the entire curve C has moved further to the catalyst layer outlet side than the curve B.

【0021】このようにして、水蒸気改質反応時の触媒
層の最低温度は触媒層の出口側へ段々進んで行く。これ
は水蒸気改質反応全体を示す前記反応式が大きな吸熱
反応であることを考えれば当然の帰結である。したがっ
て、触媒層入口近傍点Eの触媒層温度は、水蒸気改質反
応が行なわれるとき、触媒層の改質触媒の健全な状態の
最低温度Gから、炭素析出に伴って曲線B,Cでの触媒
層入口近傍点Eの温度であるH,Iへと漸次温度が上昇
する。すなわち、触媒層の入口近傍点Eと炭素析出が生
じない触媒層入口Dの触媒層温度Fとの温度差は、順次
(F−G),(F−H),(F−I)となり、この順で
漸次小さくなっている。
As described above, the minimum temperature of the catalyst layer during the steam reforming reaction gradually advances toward the outlet of the catalyst layer. This is a natural consequence given that the above-mentioned reaction formula representing the entire steam reforming reaction is a large endothermic reaction. Therefore, when the steam reforming reaction is carried out, the temperature of the catalyst layer at the point E near the entrance of the catalyst layer is changed from the lowest temperature G in a healthy state of the reforming catalyst of the catalyst layer to the curves B and C according to the deposition of carbon. The temperature gradually increases to H and I which are the temperatures at the point E near the catalyst layer inlet. That is, the temperature difference between the point E near the entrance of the catalyst layer and the catalyst layer temperature F at the entrance D of the catalyst layer where carbon deposition does not occur becomes (FG), (FH), and (FI) sequentially. In this order, it becomes smaller gradually.

【0022】ところで、改質触媒の下での水蒸気改質反
応時、水素が存在すると下記の反応式 C+2H2 → CH4 によるメタネーション反応により、改質触媒上に析出し
た炭素は直ちに除去され、改質触媒上に蓄積されない。
By the way, in the steam reforming reaction under the reforming catalyst, if hydrogen is present, carbon deposited on the reforming catalyst is immediately removed by a methanation reaction by the following reaction formula C + 2H 2 → CH 4 , Does not accumulate on the reforming catalyst.

【0023】したがって、この原理を利用して水素を反
応管の触媒層に供給して、図4に示す触媒層入口Dと触
媒層入口近傍点Eとの触媒層温度差を(F−G)になる
ように制御することにより、炭素の析出を防止して常に
改質触媒を健全に保持できる。この制御は下記のように
行なわれる。触媒層入口Dの触媒層入口温度を入口温度
検出器で検出し、一方触媒層入口近傍点Eの入口近傍触
媒層温度を入口近傍温度検出器で検出し、検出した触媒
層入口温度と入口近傍触媒層温度との温度差を温度差演
算器で算出する。そして、この演算器からの温度差が触
媒層の改質触媒が健全な状態のとき、すなわち図4の曲
線Aで示す温度分布時の触媒層入口Dと、触媒層入口近
傍点Eとの温度差(F−G)を所定温度とする目標値に
なるように制御手段によりリサイクル系に設けられた流
量制御弁を制御して、原燃料に付加する一酸化炭素変成
器からの水素に富む改質ガスの流量を制御することによ
り、水蒸気改質反応時メタネーション反応により改質触
媒上に炭素が析出しないようにする。
Therefore, by utilizing this principle, hydrogen is supplied to the catalyst layer of the reaction tube, and the catalyst layer temperature difference between the catalyst layer entrance D and the point E near the catalyst layer entrance shown in FIG. By controlling so as to prevent the deposition of carbon, the reforming catalyst can be always kept sound. This control is performed as follows. The catalyst layer inlet temperature at the catalyst layer inlet D is detected by the inlet temperature detector, while the catalyst layer temperature near the inlet at the point E near the catalyst layer inlet is detected by the temperature sensor near the inlet, and the detected catalyst layer inlet temperature and the vicinity of the inlet are detected. The temperature difference from the catalyst layer temperature is calculated by a temperature difference calculator. Then, when the temperature difference from the arithmetic unit is a state where the reforming catalyst of the catalyst layer is in a healthy state, that is, the temperature between the catalyst layer inlet D and the point E near the catalyst layer inlet at the time of the temperature distribution shown by the curve A in FIG. The flow rate control valve provided in the recycle system is controlled by the control means so that the difference (FG) becomes a target value at a predetermined temperature, and the hydrogen-rich reforming from the carbon monoxide converter added to the raw fuel is controlled. By controlling the flow rate of the raw gas, carbon is prevented from being deposited on the reforming catalyst by the methanation reaction during the steam reforming reaction.

【0024】なお、脱硫器の脱硫反応には水素が必要な
ので、リサイクル系に設けられた流量制御弁には弁開度
を制限するリミッタを設けて、リサイクル系には脱硫に
必要な水素の最低量を含む改質ガスの最低流量が流れる
ようにする。なお、上記の触媒層入口Dと触媒層入口近
傍点Eとの触媒層入口温度と入口近傍触媒層温度との温
度差を前記所定温度差の目標値に制御するとき、リサイ
クル系に設けられた流量制御弁を使用する代わりに、リ
サイクル系に設けられた流量制御弁の上流でリサイクル
系より分岐する改質ガス混合系を設けて、この改質ガス
混合系が流量制御弁を有して脱硫器からの脱硫された原
燃料にリサイクル系を通流する改質ガスの一部を付加す
る構成として、前記改質ガス混合系に設けられた流量制
御弁を前述と同じ制御手段により制御して、一酸化炭素
変成器からの改質ガスの流量を制御して反応管内の触媒
層に供給することにより、前述と同じように触媒層の改
質触媒の健全性が保持される。
Since hydrogen is required for the desulfurization reaction of the desulfurizer, the flow control valve provided in the recycle system is provided with a limiter for limiting the valve opening, and the recycle system is provided with a minimum amount of hydrogen required for desulfurization. The minimum flow rate of the reformed gas including the amount is allowed to flow. When controlling the temperature difference between the catalyst layer inlet temperature between the catalyst layer inlet D and the catalyst layer inlet near point E and the catalyst layer temperature near the inlet to the target value of the predetermined temperature difference, the catalyst is provided in the recycling system. Instead of using a flow control valve, a reformed gas mixing system that branches from the recycling system is provided upstream of the flow control valve provided in the recycling system, and this reformed gas mixing system has a flow control valve and desulfurization. As a configuration for adding a part of the reformed gas flowing through the recycling system to the desulfurized raw fuel from the vessel, a flow control valve provided in the reformed gas mixing system is controlled by the same control means as described above. By controlling the flow rate of the reformed gas from the carbon monoxide converter and supplying the reformed gas to the catalyst layer in the reaction tube, the soundness of the reforming catalyst in the catalyst layer is maintained as described above.

【0025】なお、脱硫器に供給される原燃料には従来
と同様にリサイクル系の流量制御弁により、一酸化炭素
変成器からの改質ガスの所定流量が制御されて付加さ
れ、原燃料の脱硫が行なわれる。上記の制御手段は次記
の制御方法によるのが好ましい。温度差演算器からの温
度差の信号を温度差調節器に入力し、この温度差調節器
にて前記所定温度差の目標値と温度差演算器からの温度
差との偏差に対応する出力信号が出力され、この出力信
号を断続開閉信号出力器に入力する。
The raw fuel supplied to the desulfurizer is added to the raw fuel by controlling the predetermined flow rate of the reformed gas from the carbon monoxide converter by the flow control valve of the recycling system in the same manner as before. Desulfurization is performed. The above control means is preferably based on the following control method. A temperature difference signal from the temperature difference calculator is input to the temperature difference controller, and an output signal corresponding to a deviation between the target value of the predetermined temperature difference and the temperature difference from the temperature difference calculator at the temperature difference controller. Is output, and this output signal is input to an intermittent switching signal output device.

【0026】ここで、断続開閉信号出力器は温度差調節
器からの出力信号に応じて所定間隔で所定時間流量制御
弁を開又は閉にする断続開,閉信号を出力する。したが
って、温度差調節器から偏差に対応する出力信号が出力
されると、断続開閉信号出力器から断続開,閉信号が流
量制御弁の操作器に入力され、流量制御弁は断続的に開
又は閉になり、この結果一酸化炭素変成器からの改質ガ
スは階段状の流量で反応管内の触媒層に供給されて触媒
層入口温度と入口近傍触媒層温度との温度差は所定温度
差に制御される。
Here, the intermittent on / off signal output device outputs an intermittent open / close signal for opening or closing the flow control valve at predetermined intervals for a predetermined time in accordance with an output signal from the temperature difference controller. Therefore, when an output signal corresponding to the deviation is output from the temperature difference controller, an intermittent open / close signal is input from the intermittent on / off signal output device to the operation device of the flow control valve, and the flow control valve is opened or closed intermittently. As a result, the reformed gas from the carbon monoxide converter is supplied to the catalyst layer in the reaction tube at a stepwise flow rate, and the temperature difference between the catalyst layer inlet temperature and the catalyst layer temperature near the inlet becomes a predetermined temperature difference. Controlled.

【0027】このように、改質ガスを階段状の流量で反
応管の触媒層に供給するのは、流量制御弁の連続的な開
による急速な流量供給により、燃料電池が一時的に水素
欠乏になるのを防止し、また連続的な閉により燃料電池
からの急速なオフガス流量のバーナへの供給により、バ
ーナでの燃焼の不安定を防ぐためである。
As described above, the reformed gas is supplied to the catalyst layer of the reaction tube at a stepwise flow rate because the fuel cell is temporarily deficient in hydrogen due to the rapid flow rate supply by continuously opening the flow rate control valve. This is to prevent the combustion from becoming unstable in the burner by supplying a rapid off-gas flow rate from the fuel cell to the burner by continuous closing.

【0028】[0028]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は、本発明の実施例による燃料電池用燃
料改質器の触媒健全性保持装置を備えた燃料電池発電シ
ステムの系統図である。なお、図1及び後述する図2に
おいて、図3の従来例と同一部品には同じ符号を付し、
その説明を省略する。図1において従来例と異なるのは
下記の通りである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a fuel cell power generation system including a catalyst integrity maintaining device for a fuel reformer for a fuel cell according to an embodiment of the present invention. 1 and FIG. 2 to be described later, the same parts as those of the conventional example of FIG.
The description is omitted. FIG. 1 differs from the conventional example in the following.

【0029】燃料改質器2の反応管5内の触媒層に流入
する水蒸気を混合した原燃料が流入する触媒層入口の触
媒層入口温度を検出する入口温度検出器35と、反応管
5内の触媒層入口近傍の触媒層温度を検出する入口近傍
温度検出器36と、入口温度検出器35で検出した触媒
層入口温度と、入口近傍温度検出器36で検出した入口
近傍触媒層温度との温度差を算出する温度差演算器37
と、この温度差演算器37からの温度差の信号が入力さ
れ、この温度差と触媒層の改質触媒の触媒作用が前述の
ように健全なときの触媒層入口温度と入口近傍触媒層温
度との所定温度差の目標値との偏差に対応する出力信号
を出力する温度差調節器38と、この温度差調節器38
からの出力信号が入力され、この出力信号に応じて断続
開,閉信号を出力し、この断続開,閉信号により流量制
御弁22の操作器、例えば電動機を断続的に作動させて
流量制御弁22を断続的に開閉させる断続開閉信号出力
器39と、流量制御弁22に、リサイクル系21を経る
一酸化炭素変成器10からの改質ガスが脱硫器1に、脱
硫に必要な水素の最低量を含む改質ガスの最低流量が流
れるように弁開度を制限するリミッタとを設けたことで
ある。
An inlet temperature detector 35 for detecting a catalyst layer inlet temperature at the inlet of the catalyst layer into which raw fuel mixed with steam flowing into the catalyst layer in the reaction tube 5 of the fuel reformer 2 flows; Of the catalyst layer near the inlet of the catalyst layer near the inlet of the catalyst layer, the catalyst layer inlet temperature detected by the inlet temperature detector 35, and the catalyst layer temperature near the inlet detected by the inlet temperature sensor 36. Temperature difference calculator 37 for calculating temperature difference
And a temperature difference signal from the temperature difference calculator 37. The temperature difference and the catalyst layer inlet temperature and the catalyst layer temperature near the inlet when the catalytic action of the reforming catalyst of the catalyst layer is healthy as described above. A temperature difference adjuster 38 for outputting an output signal corresponding to a deviation of the predetermined temperature difference from the target value with respect to the temperature difference adjuster 38;
And outputs an intermittent open / close signal in response to the output signal. The intermittent open / close signal is used to intermittently operate an operation device of the flow control valve 22, for example, an electric motor to intermittently operate the flow control valve. An intermittent on / off signal output device 39 for intermittently opening / closing 22 and a flow control valve 22 are supplied with the reformed gas from the carbon monoxide converter 10 passing through the recycle system 21 to the desulfurizer 1 and the minimum amount of hydrogen required for desulfurization. And a limiter for limiting the valve opening so that the minimum flow rate of the reformed gas including the amount flows.

【0030】このような構成により、燃料電池発電シス
テムの運転により、脱硫器1から脱硫された原燃料が水
蒸気により駆動されるエゼクタ7により吸込まれて水蒸
気を混合した原燃料が燃料改質器2の反応管5に流入す
る。そして、バーナ4での燃焼による燃焼熱により反応
管5を加熱し、反応管5の触媒層を通流する前記水蒸気
を混合した原燃料は水蒸気改質される。この際、入口温
度検出器35で触媒層入口温度が検出され、一方入口近
傍温度検出器36で入口近傍触媒層温度が検出される。
そして、温度差演算器37で前記検出された触媒層入口
温度と入口近傍触媒層温度との温度差が算出される。こ
の温度差の信号は温度差調節器38に入力され、温度差
調節器38にてこの温度差と触媒層入口温度と入口近傍
触媒層温度との前記所定温度差との目標値との偏差に対
応する出力信号が出力される。
With the above configuration, the operation of the fuel cell power generation system causes the raw fuel desulfurized from the desulfurizer 1 to be sucked by the ejector 7 driven by the steam, and the raw fuel mixed with the steam to be converted into the fuel reformer 2. Into the reaction tube 5. Then, the reaction tube 5 is heated by combustion heat generated by the combustion in the burner 4, and the raw fuel mixed with the steam flowing through the catalyst layer of the reaction tube 5 is steam reformed. At this time, the catalyst layer inlet temperature is detected by the inlet temperature detector 35, while the catalyst layer temperature near the inlet is detected by the inlet temperature detector 36.
Then, the temperature difference calculator 37 calculates the temperature difference between the detected catalyst layer inlet temperature and the catalyst layer temperature near the inlet. The signal of the temperature difference is input to a temperature difference controller 38, and the temperature difference controller 38 calculates a deviation between the temperature difference and a target value of the predetermined temperature difference between the catalyst layer inlet temperature and the catalyst layer temperature near the inlet. A corresponding output signal is output.

【0031】この温度差調節器38からの出力信号は、
断続開閉信号出力器39に入力され、この出力信号に応
じた断続開閉信号出力器39からの断続開,閉信号が流
量制御弁22の操作器に入力され、流量制御弁22は断
続的に開又は閉動作を行なう。したがって、リサイクル
系21を流れる改質ガスはその流量が階段状になって流
れ、脱硫器1を経た後燃料改質器2の反応管5内の触媒
層を通流する。そして、この通流する改質ガス中の水素
によって反応管5内の触媒層の改質触媒を覆う炭素の析
出を防止し、前述のように触媒層入口温度と入口近傍触
媒層温度との温度差は所定温度に制御され、触媒の健全
性が保持される。
The output signal from the temperature difference controller 38 is
The intermittent on / off signal output 39 is input to the intermittent on / off signal output unit 39, and the intermittent on / off signal from the on / off on / off signal output unit 39 is input to the operation device of the flow control valve 22, and the flow control valve 22 is opened intermittently. Alternatively, a closing operation is performed. Therefore, the flow rate of the reformed gas flowing through the recycle system 21 flows in a stepwise manner, passes through the desulfurizer 1, and then flows through the catalyst layer in the reaction tube 5 of the fuel reformer 2. The hydrogen in the flowing reformed gas prevents the deposition of carbon covering the reforming catalyst in the catalyst layer in the reaction tube 5, and as described above, the temperature of the catalyst layer inlet temperature and the temperature of the catalyst layer near the inlet are reduced. The difference is controlled to a predetermined temperature, and the soundness of the catalyst is maintained.

【0032】なおこの際、反応管5の触媒層には改質ガ
スが階段状の流量で流れるので、流量制御弁22を流れ
る改質ガスの流量が増加しても、燃料電池11に供給す
る改質ガスが急速に減少して一時的な水素欠乏を生じる
ことがなく、燃料電池11は安定した発電が行なわれ、
また減少しても燃料電池11からのオフガスの燃料改質
器2のバーナ4への一時的なオフガス量増加を生じるこ
とがなく、バーナ4での燃焼が安定して行なわれる。
At this time, since the reformed gas flows in the catalyst layer of the reaction tube 5 at a stepwise flow rate, the reformed gas is supplied to the fuel cell 11 even if the flow rate of the reformed gas flowing through the flow control valve 22 increases. The reformed gas does not rapidly decrease to cause temporary hydrogen deficiency, and the fuel cell 11 performs stable power generation.
Even if the amount decreases, the amount of off-gas from the fuel cell 11 to the burner 4 of the fuel reformer 2 does not temporarily increase, and combustion in the burner 4 is performed stably.

【0033】なお、流量制御弁22はリミッタにより弁
開度が脱硫器1での脱硫に必要とする水素の最低量を含
む改質ガスの最低流量が流れるように制限されるので、
脱硫器1の脱硫作用には支障を来さない。図2は、本発
明の異なる実施例による燃料電池用燃料改質器の触媒健
全性保持装置を備えた燃料電池発電システムの系統図で
ある。図2において、リサイクル系21に設けられた流
量制御弁22より上流でリサイクル系21から分岐して
脱硫原燃料供給系16に合流する改質ガス混合系40
と、この改質ガス混合系40に断続開閉信号出力器39
からの断続開,閉信号により操作器、例えば電動機を作
動させて断続的に開閉する流量制御弁41と、リサイク
ル系21に図3の従来例に示す流量制御弁22,流量検
出器23とを設けた他は図1と同じである。
Since the flow control valve 22 is limited by a limiter so that the minimum flow rate of the reformed gas containing the minimum amount of hydrogen required for desulfurization in the desulfurizer 1 flows,
It does not hinder the desulfurization action of the desulfurizer 1. FIG. 2 is a system diagram of a fuel cell power generation system including a catalyst integrity maintaining device for a fuel cell fuel reformer according to another embodiment of the present invention. In FIG. 2, a reformed gas mixing system 40 branched from the recycling system 21 upstream of the flow control valve 22 provided in the recycling system 21 to join the desulfurization raw fuel supply system 16
And the intermittent open / close signal output device 39
A flow control valve 41 that opens and closes intermittently by operating an operating device, for example, an electric motor, based on an intermittent open / close signal from the controller, and a flow control valve 22 and a flow detector 23 shown in the conventional example of FIG. The other parts are the same as those in FIG.

【0034】このような構成により、一酸化炭素変成器
10からの改質ガスは、改質ガス混合系40を経て燃料
改質器2の反応管5に供給され、流量制御弁41により
入口温度検出器35での検出触媒層入口温度と入口近傍
温度検出器36での検出入口近傍触媒層温度との温度差
が温度差演算器37で算出され、この温度差が温度差調
節器38,断続開閉信号出力器39により流量制御弁4
1を断続的に開閉するように制御して、所定温度差に制
御されるのは前述と同じである。
With this configuration, the reformed gas from the carbon monoxide converter 10 is supplied to the reaction tube 5 of the fuel reformer 2 via the reformed gas mixing system 40, and the inlet temperature is controlled by the flow control valve 41. The temperature difference between the detected catalyst layer inlet temperature at the detector 35 and the detected inlet catalyst temperature at the near-inlet temperature detector 36 is calculated by the temperature difference calculator 37, and this temperature difference is calculated by the temperature difference controller 38, The flow control valve 4 is controlled by the open / close signal output device 39.
1 is controlled so as to open and close intermittently and is controlled to a predetermined temperature difference in the same manner as described above.

【0035】この場合、脱硫器1には従来例のように流
量制御弁22により、所定流量に制御された改質ガスが
リサイクル系21を経て供給される。なお、上記のよう
にリサイクル系21から分岐した改質ガス混合系40を
経て改質ガスを直接燃料改質器2の反応管5に供給する
ことにより、エゼクタ7の吸引力は図1に示す方法に比
べて少なくてすむ利点がある。
In this case, the reformed gas controlled to a predetermined flow rate by the flow control valve 22 is supplied to the desulfurizer 1 through the recycle system 21 as in the conventional example. By supplying the reformed gas directly to the reaction tube 5 of the fuel reformer 2 through the reformed gas mixing system 40 branched from the recycling system 21 as described above, the suction force of the ejector 7 is shown in FIG. There is an advantage that it requires less than the method.

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
によれば前述の構成により、リサイクル系に設けられた
流量制御弁により、また改質ガス混合系に設けられた流
量制御弁により一酸化炭素変成器からの改質ガスの流量
を制御し、この制御に際して改質ガスの流量を階段状に
制御して燃料改質器の反応管内の触媒層の触媒層入口温
度と入口近傍触媒層温度との温度差を所定温度差に制御
するので、触媒層の改質触媒上への炭素析出を防止して
改質触媒の触媒作用の健全性を保持でき、さらに改質触
媒上での炭素析出が原因となって生じる反応管の圧力損
失の増大や、反応管の温度上昇等による異常が減少し、
この結果従来にくらべより長時間燃料電池に良好な改質
ガスを供給できる。
As is clear from the above description, according to the present invention, according to the above-described structure, one of the above-described configurations is achieved by the flow control valve provided in the recycle system and the flow control valve provided in the reformed gas mixing system. The flow rate of the reformed gas from the carbon oxide converter is controlled, and in this control, the flow rate of the reformed gas is controlled in a stepwise manner to control the catalyst layer inlet temperature of the catalyst layer in the reaction tube of the fuel reformer and the catalyst layer near the inlet. Since the temperature difference from the temperature is controlled to a predetermined temperature difference, the deposition of carbon on the reforming catalyst in the catalyst layer can be prevented, and the soundness of the catalytic action of the reforming catalyst can be maintained. Increased pressure loss in the reaction tube caused by precipitation, and reduced abnormalities due to temperature rise in the reaction tube,
As a result, a better reformed gas can be supplied to the fuel cell for a longer time than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による燃料電池用燃料改質器の
触媒健全性保持装置を備えた燃料電池発電システムの系
統図
FIG. 1 is a system diagram of a fuel cell power generation system including a catalyst integrity maintaining device of a fuel reformer for a fuel cell according to an embodiment of the present invention.

【図2】本発明の異なる実施例による燃料電池用燃料改
質器の触媒健全性保持装置を備えた燃料電池発電システ
ムの系統図
FIG. 2 is a system diagram of a fuel cell power generation system including a catalyst soundness maintaining device of a fuel reformer for a fuel cell according to another embodiment of the present invention.

【図3】従来の燃料電池用燃料改質器を備えた燃料電池
発電システムの系統図
FIG. 3 is a system diagram of a fuel cell power generation system including a conventional fuel cell fuel reformer.

【図4】燃料電池用燃料改質器の反応管内の改質触媒が
充填された触媒層における水蒸気改質反応時の触媒層の
温度分布を示す図
FIG. 4 is a diagram showing a temperature distribution of a catalyst layer during a steam reforming reaction in a catalyst layer filled with a reforming catalyst in a reaction tube of a fuel reformer for a fuel cell.

【符号の説明】[Explanation of symbols]

1 脱硫器 2 燃料改質器 5 反応管 7 エゼクタ 10 一酸化炭素変成器 11 燃料電池 21 リサイクル系 22 流量制御弁 35 入口温度検出器 36 入口近傍温度検出器 37 温度差演算器 38 温度差調節器 39 断続開閉信号出力器 40 改質ガス混合系 41 流量制御弁 DESCRIPTION OF SYMBOLS 1 Desulfurizer 2 Fuel reformer 5 Reaction tube 7 Ejector 10 Carbon monoxide converter 11 Fuel cell 21 Recycling system 22 Flow control valve 35 Inlet temperature detector 36 Inlet temperature detector 37 Temperature difference calculator 38 Temperature difference controller 39 intermittent open / close signal output device 40 reformed gas mixing system 41 flow control valve

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化水素系の原燃料に含まれる硫黄化合物
を脱硫する脱硫器と、この脱硫器からの脱硫された原燃
料が通流する改質触媒が充填された触媒層を内蔵する反
応管を熱媒体により加熱して、前記通流する原燃料を水
素に富むガスに水蒸気改質する燃料改質器と、この燃料
改質器からの水蒸気改質したガスに含まれる一酸化炭素
を変成する一酸化炭素変成器と、この一酸化炭素変成器
からの改質ガスが供給される燃料電池と、一酸化炭素変
成器からの改質ガスの一部を、脱硫器に供給する原燃料
に付加する流量制御弁を備えたリサイクル系とを備える
燃料電池発電システムにおける前記反応管内の触媒層の
改質触媒の触媒作用の健全性を保持する燃料電池用燃料
改質器の触媒健全性保持装置において、原燃料が反応管
内の触媒層に流入する触媒層入口の触媒層入口温度を検
出する入口温度検出器と、触媒層の入口近傍の所定位置
の触媒層温度を検出する入口近傍温度検出器と、入口温
度検出器と入口近傍温度検出器との検出温度の温度差を
算出する温度差演算器と、この演算器からの温度差が触
媒層の改質触媒の触媒作用が健全なときの触媒層入口温
度と入口近傍触媒層温度との所定温度差になるようにリ
サイクル系に設けた流量制御弁を制御する制御手段と、
この流量制御弁に設けられ、原燃料に付加する脱硫に必
要な改質ガスの最低流量を確保する弁開度のリミッタと
を備えたことを特徴とする燃料電池用燃料改質器の触媒
健全性保持装置。
1. A reaction including a desulfurizer for desulfurizing a sulfur compound contained in a hydrocarbon-based raw fuel, and a catalyst layer filled with a reforming catalyst through which the desulfurized raw fuel from the desulfurizer flows. A fuel reformer that heats the tube with a heat medium to steam reform the flowing raw fuel into a gas rich in hydrogen, and a carbon monoxide contained in the steam reformed gas from the fuel reformer. Metamorphic carbon monoxide converter, fuel cell to which reformed gas from this carbon monoxide converter is supplied, and raw fuel to supply a part of reformed gas from carbon monoxide converter to desulfurizer Maintaining catalyst integrity of a fuel cell fuel reformer for maintaining the integrity of the catalytic action of a reforming catalyst in a catalyst layer in the reaction tube in a fuel cell power generation system including a recycle system having a flow control valve added to a fuel cell In the system, raw fuel flows into the catalyst layer in the reaction tube Temperature detector for detecting a catalyst layer inlet temperature at the catalyst layer inlet, an inlet temperature detector for detecting a catalyst layer temperature at a predetermined position near the catalyst layer inlet, an inlet temperature detector, and an inlet temperature detector A temperature difference calculator for calculating a temperature difference between the detected temperature of the catalyst layer and a temperature difference from the calculator. The temperature difference between the catalyst layer inlet temperature and the catalyst layer temperature near the inlet when the catalytic action of the reforming catalyst of the catalyst layer is sound. Control means for controlling a flow control valve provided in the recycling system so as to have a predetermined temperature difference,
And a limiter for valve opening provided in the flow control valve to secure a minimum flow rate of reformed gas required for desulfurization added to the raw fuel. Sex retention device.
【請求項2】炭化水素系の原燃料に含まれる硫黄化合物
を脱硫する脱硫器と、この脱硫された原燃料が通流する
改質触媒が充填された触媒層を内蔵する反応管を熱媒体
により加熱して、前記通流する原燃料を水素に富むガス
に水蒸気改質する燃料改質器と、この燃料改質器からの
水蒸気改質した改質ガスに含まれる一酸化炭素を変成す
る一酸化炭素変成器と、この一酸化炭素変成器からの改
質ガスが供給される燃料電池と、一酸化炭素変成器から
の改質ガスの一部を、脱硫器に供給する原燃料に付加す
る流量制御弁を備えたリサイクル系とを備える燃料電池
発電システムにおける前記反応管内の触媒層の改質触媒
の触媒作用の健全性を保持する燃料電池用燃料改質器の
触媒健全性保持装置において、前記リサイクル系に設け
られた流量制御弁の上流でリサイクル系より分岐し、リ
サイクル系を通流する改質ガスの一部を脱硫器からの脱
硫された原燃料に付加する改質ガス混合系と、前記改質
ガス混合系に設けられた流量制御弁と、原燃料が反応管
内の触媒層に流入する触媒層入口の触媒層入口温度を検
出する入口温度検出器と、触媒層の入口近傍の所定位置
の触媒層温度を検出する入口近傍温度検出器と、入口温
度検出器と入口近傍温度検出器との検出温度の温度差を
算出する温度演算器と、この演算器からの温度差が触媒
層の改質触媒の触媒作用が健全なときの触媒層入口温度
と入口近傍触媒層温度との所定温度差になるように前記
改質ガス混合系に設けた流量制御弁を制御する制御手段
とを備えたことを特徴とする燃料電池用燃料改質器の触
媒健全性保持装置。
2. A reaction tube containing a desulfurizer for desulfurizing sulfur compounds contained in a hydrocarbon-based raw fuel and a catalyst layer filled with a reforming catalyst through which the desulfurized raw fuel flows, is used as a heating medium. And a steam reformer for steam reforming the flowing raw fuel into a hydrogen-rich gas, and a carbon monoxide contained in the steam reformed gas from the fuel reformer. A carbon monoxide converter, a fuel cell supplied with reformed gas from the carbon monoxide converter, and a part of the reformed gas from the carbon monoxide converter added to the raw fuel supplied to the desulfurizer In a fuel cell power generation system including a recycle system having a flow control valve, a catalyst soundness maintaining device of a fuel reformer for a fuel cell, which maintains soundness of a catalytic action of a reforming catalyst in a catalyst layer in the reaction tube. , Provided in the recycling system
From the recycling system upstream of the flow control valve
Part of the reformed gas flowing through the cycle system is removed from the desulfurizer.
A reformed gas mixture system to be added to the sulfurized raw fuel;
A flow control valve provided in the gas mixing system, an inlet temperature detector for detecting a catalyst layer inlet temperature at a catalyst layer inlet at which raw fuel flows into the catalyst layer in the reaction tube, and a catalyst at a predetermined position near the catalyst layer inlet A temperature detector near the inlet for detecting the bed temperature, a temperature calculator for calculating a temperature difference between the detected temperatures of the inlet temperature detector and the temperature near the inlet, and a temperature difference from the calculator indicates that the catalyst layer is reformed. and control means for controlling the flow control valve catalytic action of the catalyst is provided in the <br/> reformed gas mixed system to a predetermined temperature difference between the catalyst layer inlet temperature and the inlet near the catalyst layer temperature when healthy A catalyst integrity maintaining device for a fuel reformer for a fuel cell, comprising:
【請求項3】請求項1又は2記載のものにおいて、制御
手段は温度演算器からの温度差と、触媒層の改質触媒の
触媒作用が健全なときの触媒層入口温度と入口近傍触媒
層温度との所定温度差の目標値との偏差に対応する出力
信号を出力する温度差調節器と、この調節器からの出力
信号が入力され、流量制御弁を断続的に開閉させる断続
開,閉信号を出力する断続開閉信号出力器とを備えたこ
とを特徴とする燃料電池用燃料改質器の触媒健全性保持
装置。
3. The catalyst device according to claim 1, wherein the control means includes a temperature difference from a temperature calculator, a catalyst layer inlet temperature when the catalytic action of the reforming catalyst in the catalyst layer is sound, and a catalyst layer near the inlet. A temperature difference controller for outputting an output signal corresponding to a deviation of a predetermined temperature difference from a target value from a temperature, and an intermittent opening and closing for intermittently opening and closing the flow control valve when an output signal from the controller is inputted. A catalyst integrity maintaining device for a fuel reformer for a fuel cell, comprising: an intermittent on-off signal output device for outputting a signal.
JP6068966A 1994-03-15 1994-03-15 Device for maintaining catalyst integrity of fuel reformer for fuel cells Expired - Lifetime JP2700047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068966A JP2700047B2 (en) 1994-03-15 1994-03-15 Device for maintaining catalyst integrity of fuel reformer for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6068966A JP2700047B2 (en) 1994-03-15 1994-03-15 Device for maintaining catalyst integrity of fuel reformer for fuel cells

Publications (2)

Publication Number Publication Date
JPH07254426A JPH07254426A (en) 1995-10-03
JP2700047B2 true JP2700047B2 (en) 1998-01-19

Family

ID=13388932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068966A Expired - Lifetime JP2700047B2 (en) 1994-03-15 1994-03-15 Device for maintaining catalyst integrity of fuel reformer for fuel cells

Country Status (1)

Country Link
JP (1) JP2700047B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652610B1 (en) * 2000-12-29 2006-12-01 주식회사 엘지이아이 Fuelquantity control apparatus for fuel cell
US6979503B2 (en) * 2003-04-04 2005-12-27 Texaco Inc. Method and apparatus for burst disk identification

Also Published As

Publication number Publication date
JPH07254426A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
US6730271B2 (en) Fuel-cell system with autothermal fuel-reforming apparatus incorporating input air regulation
US7838161B2 (en) Reformer and fuel cell system using the same
JP3658866B2 (en) Fuel cell power generator
US6290913B1 (en) Apparatus for reducing concentration of carbon monoxide
EP1557897A1 (en) Fuel cell power generation system
EP3981739A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
KR100623572B1 (en) Fuel reforming system and warmup method thereof
JPWO2007091632A1 (en) Fuel cell system
JP4939114B2 (en) Fuel processing apparatus and fuel cell system
EP2138456B1 (en) Method for stopping the operation of hydrogen generator
JP2700047B2 (en) Device for maintaining catalyst integrity of fuel reformer for fuel cells
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JPH0676847A (en) Starting method for fuel cell and device thereof
JP4201605B2 (en) Method for stopping hydrogen-containing gas generator and hydrogen-containing gas generator
JP3515438B2 (en) CO removal device and fuel cell power generation system
JPH11149931A (en) Starting method of reforming equipment for fuel cell
JP2004018357A (en) Reforming reactor system
JP2006282452A (en) Hydrogen fuel feeding system
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP4442204B2 (en) Fuel cell power generation system
JPH0992316A (en) Method of raising temperature of fuel cell power generating device
JPH06196189A (en) Fuel cell power generating device
JP2005067952A (en) Modification system, and warming-up method in modification system
JPS58133783A (en) Fuel cell power generating system
JPH07114933A (en) Fuel cell power generator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term