JPH07117952B2 - Failure diagnostic equipment for manufacturing equipment - Google Patents

Failure diagnostic equipment for manufacturing equipment

Info

Publication number
JPH07117952B2
JPH07117952B2 JP17554186A JP17554186A JPH07117952B2 JP H07117952 B2 JPH07117952 B2 JP H07117952B2 JP 17554186 A JP17554186 A JP 17554186A JP 17554186 A JP17554186 A JP 17554186A JP H07117952 B2 JPH07117952 B2 JP H07117952B2
Authority
JP
Japan
Prior art keywords
failure
equipment
time
product
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17554186A
Other languages
Japanese (ja)
Other versions
JPS6332650A (en
Inventor
努 津山
勉 高橋
武正 岩崎
純 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17554186A priority Critical patent/JPH07117952B2/en
Publication of JPS6332650A publication Critical patent/JPS6332650A/en
Publication of JPH07117952B2 publication Critical patent/JPH07117952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製造設備の故障診断装置に係り、特に複数の製
造設備を保有する製造ラインに設置するのに好適な故障
診断装置に関する。
The present invention relates to a failure diagnosis device for manufacturing equipment, and more particularly to a failure diagnosis device suitable for installation in a manufacturing line having a plurality of manufacturing equipment.

〔従来の技術〕[Conventional technology]

製造設備の故障診断方法として、「計測と制御」誌、Vo
l.24,No.4(昭和60年4月)における秋月影雄による
“設備診断技術と安全”と題する論文に記載されている
方法が広く普及している。この方法では、対象とする設
備について異常や故障にかかわると考えられる量を測定
し、その測定量を処理し、異常・故障・劣化の指標とな
る量を得て現状を判定している。
As a fault diagnosis method for manufacturing equipment, "Measurement and Control" magazine, Vo
The method described in the paper entitled "Equipment Diagnosis Technology and Safety" by Kageo Akizuki in l.24, No.4 (April 1985) is widely used. In this method, the amount of equipment considered to be involved in an abnormality or failure is measured, the measured quantity is processed, and an amount serving as an index of abnormality, failure, or deterioration is obtained to determine the present situation.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術では、個々の製造設備の各箇所に対して、
測定装置や測定量の処理装置を個別に用意しなければな
らず、そのために要するコストは設備そのものに要する
コストに比べ小さくなるとは限らない。また、事後対策
の決定・指示を行うものではない。
In the above-mentioned conventional technology, for each location of individual manufacturing equipment,
The measuring device and the processing device for the measured amount must be individually prepared, and the cost required for that is not necessarily smaller than the cost required for the equipment itself. In addition, it does not determine or instruct post-measures.

特に、複数の設備を用いて連続して製造を行っているラ
イン生産においては、不稼働設備がライン全体をストッ
プさせるため、事後対策時間の短縮による不稼働時間の
低減を行うことが重要である。
In particular, in line production, where production is performed continuously using multiple equipment, it is important to reduce downtime by shortening the time required for subsequent measures, as non-operation equipment stops the entire line. .

複数の製造設備を保有する製造ラインでは、設備の故障
や稼働状態の経時的な変化により設備を修理、調整しな
ければならない場合が発生する。半導体装置製造ライン
のように、製品の加工を完了するまでに数十種類の設備
を百数十回も繰返して使用する場合は、個々の設備の故
障、調整に伴うわずかな不稼働時間は、製造ライン全体
の大幅な生産性低下をもたらす。しかも、当該故障設備
で加工した製品の再生はほとんど不可能に近い為、不良
品が多数発生してしまう。
In a production line having a plurality of manufacturing equipments, there are cases where the equipments need to be repaired or adjusted due to the failure of the equipments or the change of the operating state with time. When using dozens of types of equipment repeatedly, such as a semiconductor device manufacturing line, to complete product processing hundreds or tens of times, a small downtime due to failure or adjustment of individual equipment is This causes a significant decrease in productivity of the entire production line. Moreover, since it is almost impossible to regenerate the product processed by the faulty equipment, many defective products are generated.

このため、製造ラインでは、故障に到る以前に設備を保
全する予防保全が行われているが、極めて高清浄な雰囲
気と錯綜した要素装置の微妙な調整を必要とする半導体
装置製造設備の場合は保全そのものに数時間から十数時
間が必要であり、一定単位の処理ごとに点検、確認を行
うのみで、ライン全体を一旦停止し解体、再調整すると
いう保全は設備の完全な故障の際でなければ行わないの
が実情である。
For this reason, in the production line, preventive maintenance is performed to maintain the equipment before the failure, but in the case of semiconductor equipment manufacturing equipment that requires delicate adjustment of the element device that has an extremely clean atmosphere and complicated Requires a few hours to a dozen hours for the maintenance itself, and it is only necessary to inspect and confirm every certain unit of processing, and the entire line is temporarily stopped, dismantled, and readjusted. If not, it is the actual situation.

このように、故障の発生時点から修理を開始するという
事後保全を行なう場合、これを迅速に行なうには次の情
報が必要となる。
As described above, in the case of performing the post-repair maintenance in which the repair is started from the time when the failure occurs, the following information is required to perform the repair promptly.

(1) 設備全体が錯綜した要素装置から成るため、故
障要因や故障箇所を特定するための過去の故障や対策事
例に関する情報。
(1) Information related to past failures and countermeasure examples for identifying failure factors and failure points because the entire equipment is composed of complicated element devices.

(2) 修理方法や修理手順を計画するため、詳細な設
備の構成、故障の状態とその原因に関する因果関係やそ
の発生頻度に関する情報。
(2) In order to plan repair methods and repair procedures, detailed equipment configurations, causal relationships regarding failure states and causes, and frequency of occurrence.

熟練したエンジニアは、上のような情報を過去の経験か
ら専門知識として記憶している為、故障の状態や製品の
加工精度等の情報を手掛りに、記憶している因果関係に
基づいて故障の原因や箇所、対策等を決定することがで
きる。しかし、非熟練者は経験が不足しているので、迅
速な対応ができないという問題がある。
Skilled engineers memorize the above information as expert knowledge from past experience, so information such as failure status and product processing accuracy can be used as clues to determine the cause of failure based on the stored causal relationship. The cause, location, countermeasures, etc. can be determined. However, the unskilled person has a lack of experience, so that there is a problem that quick response cannot be made.

本発明の目的は、熟練者、非熟練者を問わず、誰れでも
故障に対して迅速な対応を可能とする製造設備の故障診
断装置を提供することにある。
An object of the present invention is to provide a failure diagnosis apparatus for manufacturing equipment, which enables any person, regardless of expert or non-expert, to promptly deal with a failure.

〔問題点を解決するための手段〕[Means for solving problems]

要素装置の微妙な経時変化が製品の不良を来すような半
導体装置製造設備の場合、製品不良が多発するために、
「調子が悪い」と呼ばれるあいまいな故障状態が頻発す
る。このように、故障のモードを特定しにく状態におい
ては、設備そのもを監視していたのでは、故障の箇所を
発見しにくいといった問題がある。
In the case of a semiconductor device manufacturing facility where subtle changes in elemental devices cause product defects, product defects often occur.
An ambiguous failure condition called "unwell" frequently occurs. As described above, in a state where it is difficult to specify the failure mode, there is a problem that it is difficult to find the failure location if the equipment itself is monitored.

熟練したエンジニアは、このような故障状態を次のよう
な方法で発見している。
A skilled engineer finds such a failure state by the following method.

(1) 製品の加工寸法や精度の経時的変化や傾向、寸
法精度のバラツキの大きさ、そのような不良が多発する
装置名称といった製品の加工状態を幾つかの特徴的なパ
ターンに分けて想起する。
(1) Recall the product processing state such as the change and tendency of the product processing size and accuracy with time, the size of the dimensional accuracy variation, and the device name where such defects frequently occur, divided into several characteristic patterns. To do.

(2) 次に、これら想起した総てのパターンを最も良
く説明できる故障状態とその要因(故障の因果関係)に
関する知識をもとにして、故障箇所を探索する。故障箇
所の探索にあたっては、その故障発生に最も大きく影響
すると予測される要素装置から順に点検を行う。
(2) Next, the failure location is searched based on the knowledge of the failure state and the factor thereof (causal relationship of the failure) that can best explain all of the recalled patterns. When searching for a failure location, the inspection is performed in order from the element devices that are predicted to have the greatest impact on the occurrence of the failure.

非熟練者でも、このような方法により故障の診断が行え
るためには、製品検査により観測可能なこれら製品状態
を幾つかの特徴的なパターンに分け、そのパターンの総
てに最も良く合致する故障の因果関係を探索できるよう
にすることが必要である。
In order for even an unskilled person to be able to diagnose a failure by such a method, these product states that can be observed by product inspection are divided into some characteristic patterns, and a failure that best matches all of the patterns is detected. It is necessary to be able to search the causal relationship of.

そこで、本発明では、上記目的を達成するため、製造設
備で製造される各製品の複数の製品状態を夫々時系列的
に検査する検査手段と、前記複数の製品状態の各時系列
的変化を夫々累積和法に基づきプロットしグラフ化する
手段と、各グラフの時間軸進行方向にその頂点がくるよ
うに夫々V字状マスクを各グラフに重ね合わせグラフが
V字状マスクと交差したとき該交差の時刻に前記製造設
備に異常が発生したと判断する手段と、前記製造設備を
構成する要素装置の経時的変化状態と前記複数の製品状
態のうち異常な変化を示す組との対応を示す過去のパタ
ーン分類から前記交差時刻に発生した異常の原因を特定
し該原因に対する保全対策を指示する手段とで、製造設
備の故障診断装置を構成する。
Therefore, in the present invention, in order to achieve the above-mentioned object, an inspection means for inspecting a plurality of product states of each product manufactured in a manufacturing facility in a time-series manner, and a time-series change of the plurality of product states, respectively. Means for plotting and graphing each based on the cumulative sum method, and superimposing V-shaped masks on the respective graphs so that their vertices are located in the time axis advance direction of each graph, and when the graph intersects the V-shaped mask, The correspondence between the means for determining that an abnormality has occurred in the manufacturing equipment at the time of intersection, the time-dependent change state of the element devices constituting the manufacturing equipment, and the set indicating an abnormal change among the plurality of product states is shown. A failure diagnosis apparatus for manufacturing equipment is configured by means for identifying the cause of the abnormality that occurred at the crossing time from the past pattern classification and instructing maintenance measures for the cause.

〔作用〕[Action]

本装置では、ある時点で観測された製品の加工寸法や精
度に関する異常な状態を入力することにより、その状態
に適合する総ての特徴パターンを記憶装置から取り出す
とともに、このパターンに対応する設備故障状態を探索
し、その故障状態が生じるために必要な要素装置の故障
に関する総ての基本事象を影響度の大きい順に故障箇所
として示す。これにより、故障の診断に関する経験的知
識が不充分な非熟練者でも故障箇所の特定が迅速的確に
行えるだけでなく、過去における故障箇所とその故障対
策履歴を参照することにより修理計画の立案と実施が可
能となる。
In this device, by inputting an abnormal state related to the processing size and accuracy of the product observed at a certain point, all the characteristic patterns that match the state are retrieved from the storage device, and the equipment failure corresponding to this pattern is also taken out. The state is searched, and all the basic events related to the failure of the element device necessary for the occurrence of the failure state are shown as failure locations in descending order of the degree of influence. This not only allows unskilled personnel who have insufficient empirical knowledge about failure diagnosis to identify the failure point quickly and accurately, but also to formulate a repair plan by referring to the past failure point and its failure countermeasure history. Can be implemented.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る故障診断装置の構成図
である。故障診断装置は、中央処理装置(CPU)1と、
保全データベース2と、入出力装置3からなる。この中
央処理装置1には工程データベース4も接続されてお
り、各製造設備Aと中央処理装置1とはオンライン制御
装置5を介して情報データの送受を行なうようになって
いる。
FIG. 1 is a configuration diagram of a failure diagnosis device according to an embodiment of the present invention. The failure diagnosis device is a central processing unit (CPU) 1,
It comprises a maintenance database 2 and an input / output device 3. A process database 4 is also connected to the central processing unit 1 so that each manufacturing facility A and the central processing unit 1 can send and receive information data via an online control unit 5.

斯かる故障診断装置は、第2図に例示するような、複数
の製造設備A1,…,Anを保有する製造ラインに設けられ
る。この製造ラインでは、素材Bを製造設備Aで加工
し、この加工が正常に行なわれたか否かを検査装置Cで
検査し、加工寸法や精度等の工程データがオンライン制
御装置5(第1図)を介して中央処理装置1に送られ
る。
Such a failure diagnosing device is provided in a manufacturing line having a plurality of manufacturing facilities A1, ..., An as illustrated in FIG. In this manufacturing line, the material B is processed by the manufacturing equipment A, and whether or not this processing is normally performed is inspected by the inspection device C, and the process data such as the processing size and the accuracy is obtained by the online control device 5 (see FIG. 1). ) To the central processing unit 1.

第1図に示す保全データベース2は、製造設備A1〜Anに
おける過去の故障箇所、故障の状態、原因、その故障の
修理対策、故障状態で加工された製品の加工寸法および
精度の測定値に関する履歴を、故障箇所、故障状態、原
因および故障状態における加工精度、対策すべき修理内
容の因果関係を付けて累積しておく記憶装置である。
The maintenance database 2 shown in FIG. 1 is a history of past failure points in the manufacturing facilities A1 to An, failure conditions, causes, repair measures for the failures, processing dimensions of products processed in the failed state, and measured values of accuracy. Is a storage device for accumulating a failure location, a failure condition, a cause, a processing accuracy in the failure condition, and a causal relationship of repair contents to be taken.

中央処理装置1は、故障状態を発見した作業者が、記憶
装置2に蓄積してある一連の因果関係を取り出すため
に、故障の状態や考えられる故障の原因、および加工製
品の精度に関するキーワードを入出力装置3から入力し
たとき、該キーワードに最も合致する故障の因果関係の
一つを記憶装置2内のデータから選択して入出力装置3
に表示し故障の対策を指示するとともに、その指示に基
づいて作業者が実際に行った修理の箇所や修理の内容に
関する履歴を、一連の因果関係に添えて記憶装置2に蓄
積する。
The central processing unit 1 uses the keywords related to the failure state, the possible cause of the failure, and the accuracy of the processed product so that the worker who discovers the failure state can retrieve the series of causal relationships stored in the storage device 2. When input from the input / output device 3, one of the causal relations of the failure that best matches the keyword is selected from the data in the storage device 2 and the input / output device 3 is selected.
Is displayed on the screen to instruct a countermeasure against the failure, and a history of the location of the repair and the content of the repair actually performed by the operator based on the instruction is stored in the storage device 2 together with a series of causal relationships.

第3図は故障診断の対象とする製造設備の一例で、半導
体集積回路の製造に用いられるプラズマエッチング装置
の概念図である。
FIG. 3 is an example of a manufacturing facility targeted for failure diagnosis, and is a conceptual diagram of a plasma etching apparatus used for manufacturing a semiconductor integrated circuit.

プラズマエッチング装置は、ウェハ状のSi単結晶表面
を、ホトリソグラフィ技術で描画されたレジストパター
ンに沿ってエッチングするものである。エッチングは、
高周波放電プラズマによって励起されたラジカルがSiと
化学反応することにより行われる。
The plasma etching apparatus etches a wafer-shaped Si single crystal surface along a resist pattern drawn by a photolithography technique. Etching
It is performed by the radicals excited by the high frequency discharge plasma chemically reacting with Si.

11は加工素材であるウェハ状のSi単結晶、12はSiと反応
するラジカルのもとになるガスの格納ボンベ、13はこの
ガスに高周波を印加しラジカルを発生させる電極、14は
高周波電源発生装置、15はSiとラジカルのガス状の反応
物をエッチングチャンバ外に排気するための真空ポン
プ、16は反応物をチャンバ外に排気する際これを捕獲す
るためのトラップである。
11 is a wafer-shaped Si single crystal that is a processing material, 12 is a storage container for a gas that is a source of radicals that react with Si, 13 is an electrode that applies a high frequency to this gas to generate radicals, and 14 is a high frequency power source An apparatus, 15 is a vacuum pump for exhausting a gaseous reactant of Si and radicals to the outside of the etching chamber, and 16 is a trap for trapping the reactant when exhausting the reactant to the outside of the chamber.

エッチングされる量は、Siとラジカルとの反応時間に比
例するので、所要のエッチング寸法精度を得るために一
定の時間だけ反応させる。ところが、反応物がチャンバ
の内壁に付着したり、真空度が低下したり、電極の劣化
によりラジカルの密度が下るといった設備状態の経時的
な変化により、一定量をエッチングするための反応時間
が変動する。最悪の場合は、エッチングが進行しないた
め製品不良となる場合がある。
Since the amount of etching is proportional to the reaction time of Si and radicals, the reaction is performed for a certain time to obtain the required etching dimensional accuracy. However, the reaction time for etching a certain amount fluctuates due to changes over time in the equipment state, such as reactants adhering to the inner wall of the chamber, the degree of vacuum decreasing, and the density of radicals decreasing due to electrode deterioration. To do. In the worst case, the etching may not proceed and the product may be defective.

この場合、エッチングの進行状態やチャンバ内壁の汚染
の程度を直接計測できないため、故障の要因を発見する
手掛りは製品の加工精度や電気特性に依らざるを得な
い。
In this case, since the progress of etching and the degree of contamination of the inner wall of the chamber cannot be directly measured, the clue to find the cause of failure must depend on the processing accuracy and electrical characteristics of the product.

このような製品の加工精度や電気特性の変化は、前述し
た設備状態の経時的な変化と対応付けることが可能であ
り、従来はこのような方法によって装置の保全や調整を
行っていた。
Such changes in the processing accuracy and electrical characteristics of the product can be associated with the above-described changes in the equipment state over time. Conventionally, maintenance and adjustment of the device have been performed by such a method.

第4図は、一定量のエッチングを行うまでの時間が真空
度の調整やチャンバ内壁の汚染クリーニングによって、
どのように変化するかを示したものである。第4図にお
いて、オイル交換とは真空ポンプ15の潤滑油を交換する
ことであり、真空度調整とは圧力計の調整により真空度
を調整することであり、全掃とはチャンバ内壁を清掃す
ることをいう。第4図に示すように、オイル交換,真空
度調整,全掃を行なうことにより、エッチング時間累積
和が減少することが分かる。しかし、設備状態の経時的
な変化が複合して生じた場合、製品状態のどのような変
化を設備状態のどのような経時的な変化に対応させたら
良いかが不明確である。
Fig. 4 shows that the time until a certain amount of etching is performed is adjusted by adjusting the vacuum level and cleaning the inner wall of the chamber.
It shows how it changes. In FIG. 4, the oil exchange is to replace the lubricating oil of the vacuum pump 15, the vacuum degree adjustment is to adjust the vacuum degree by adjusting the pressure gauge, and the complete cleaning is to clean the inner wall of the chamber. Say that. As shown in FIG. 4, it can be seen that the cumulative sum of etching times is reduced by changing the oil, adjusting the degree of vacuum, and completely sweeping. However, when the changes over time in the equipment state occur in a complex manner, it is unclear what changes in the product state should correspond to changes over time in the equipment state.

加工精度のバラツキや表面抵抗値といった製品状態のど
れか一つの変化を、複合的に生じた設備状態の経時的な
変化に対応付けることは困難である。しかし、複数の製
品状態の変化の組を複合的に生じた装置状態の経時的な
変化に対応付けることは、例えば以下のような方法によ
って可能である。まず、検査装置により測定できる総て
の製品状態の時系列的変化を、累積和法に従って使用設
備別にプロットする。累積和法は、製品状態を表す測定
値と一定値(参照値)との間の差の累積和を時刻に対し
てプロットするものであり、この累積和法によって例え
ば第5図に示すようなグラフが得られる。
It is difficult to associate any one change in the product state such as variation in processing accuracy or surface resistance value with a change over time in a complex equipment state. However, it is possible to associate a set of changes in a plurality of product states with a composite change in device state over time, for example, by the following method. First, the time series changes of all product states that can be measured by the inspection device are plotted for each equipment used according to the cumulative sum method. The cumulative sum method plots the cumulative sum of the difference between the measured value representing the product state and a constant value (reference value) against time, and by this cumulative sum method, for example, as shown in FIG. A graph is obtained.

プロットした点を結んだ曲線に対し、一定の角度と長さ
を有するV字状のマスクを重ね合わせたとき、それらが
交差した時刻において、設備の異常な状態変化が生じた
と解釈できる。V字状マスクは、プロットした各点に対
して先行距離dをもって重ね合わせる。ここで、V字状
マスクの形状は、測定値のサンプル数や必要な予測精度
によって定まるが、角度θおよび先行距離dの標準を次
の様に定める。
When a V-shaped mask having a certain angle and length is superposed on the curve connecting the plotted points, it can be interpreted that an abnormal state change of equipment occurs at the time when they intersect. The V-shaped mask is superimposed on each plotted point with a leading distance d. Here, the shape of the V-shaped mask is determined by the number of samples of the measurement value and the required prediction accuracy, but the standard of the angle θ and the leading distance d is determined as follows.

ただし、δはサンプルの平均値の標準偏差は、α0は検
定の危険率である。
However, δ is the standard deviation of the average value of the sample, and α 0 is the risk rate of the test.

製造現場ではこれら設備の重大な異常が発生する都度、
当該設備を停止して事後的な保全を行う。保全の効果
は、逆に、累積和法に従った測定値のプロット曲線がV
字マスク内に入ってくることによって確認できる。この
際、保全の内容や保全の対象となった要素装置につい
て、その履歴を記録しておく。
Whenever a serious abnormality of these facilities occurs at the manufacturing site,
Shut down the facility and perform ex-post maintenance. On the contrary, the effect of conservation is that the plot curve of the measured value according to the cumulative sum method is V
It can be confirmed by entering the character mask. At this time, the history of the contents of the maintenance and the element device targeted for the maintenance is recorded.

次に、この記録と先の累積和法による測定値のプロット
曲線の時刻を合せ重ね合わせる。これにより、プロット
曲線とV字マスクの交点が表れた時刻以降において施さ
れた保全の対策のうちで、製品状態を表わす測定値のプ
ロット曲線がV字マスク内に入ることに効果のあった対
策を摘出できる。
Next, this record and the time of the plot curve of the measured value by the cumulative sum method are matched and overlapped. As a result, among the measures for maintenance performed after the time when the intersection of the plot curve and the V-shaped mask appears, the measure that is effective in that the plot curve of the measured value indicating the product state falls within the V-shaped mask. Can be extracted.

個々の対策は、要素装置の異常な状態と一対一に対応付
けられることから、複数の製品状態の異常な変化とその
変化の要因となる装置状態の組を対応付けることができ
る。
Since each countermeasure is associated with the abnormal state of the element device on a one-to-one basis, it is possible to associate a plurality of abnormal changes in the product state with a set of device states that cause the changes.

このようにして、幾つかの製品状態の変化に影響する要
素装置の状態変化すなわち故障状態が把握できる。更
に、要素装置のそのような故障状態を生じさせる基本事
象の組がわかれば、故障の箇所を特定できることにな
る。
In this way, it is possible to grasp the state change, that is, the failure state of the element device that affects some changes in the product state. Further, if the set of basic events that cause such a failure state of the element device is known, the location of the failure can be identified.

このような故障の状態と、それを生じさせる基本事象の
関連を解析する手法として、フォールトツリー解析法が
ある。
A fault tree analysis method is a method for analyzing the relationship between such a failure state and the basic event that causes it.

第6図は、前述のエッチング装置の要素装置である真空
ポンプのフォールトツリーの例である。エッチング量が
不足でゲート酸化膜厚が厚くなるといった製品状態の異
常な変化の原因として、真空度の低下とラジカル濃度の
減少状態が考えられる。このとき真空度の低下は、真空
ポンプ系のロータ不良、リーク弁不良などのような基本
事象が発生していると考えられ、しかも、それぞれの故
障確率は異なる。中央処理装置は、保全データベースに
格納されているフォールトツリーに基づき、かつその故
障確率の大きな順に点検を指示する表示を入出力装置に
出力する。
FIG. 6 is an example of a fault tree of a vacuum pump which is a component device of the above-mentioned etching apparatus. As a cause of the abnormal change in the product state in which the etching amount is insufficient and the gate oxide film thickness is increased, it is conceivable that the vacuum degree is reduced and the radical concentration is reduced. At this time, it is considered that the decrease in the degree of vacuum is caused by a basic phenomenon such as a defective rotor of the vacuum pump system and a defective leak valve, and the failure probabilities are different. The central processing unit outputs to the input / output device a display instructing inspection based on the fault tree stored in the maintenance database and in descending order of failure probability.

また、この故障対策の都度その対策履歴をもとに確率の
計算を行って、値を更新する。
In addition, the probability is calculated based on the history of countermeasures for each failure countermeasure, and the value is updated.

以上述べたように、本実施例では、製品状態を特徴的に
表わす基本事象の組を累積和法によりパターン化すると
ともに、設備状態の基本事象と故障の因果関係を故障要
因予測法の一つであるフォールトツリー解析法により、
それぞれ統計処理して蓄積する。従って、非熟練者でも
容易かつ迅速に故障に対処できる指示を出力できる。
As described above, in the present embodiment, the set of basic events characteristic of the product state is patterned by the cumulative sum method, and the causal relationship between the basic event of the equipment state and the failure is one of the failure factor prediction methods. By the fault tree analysis method that is
Each is statistically processed and accumulated. Therefore, even an unskilled person can output an instruction to easily and promptly deal with a failure.

〔発明の効果〕〔The invention's effect〕

本発明によれば、製造ラインにおいて製造設備の故障が
発生した場合、各製造設備の非専門家でも、認識した設
備状態や考えられる故障の要因を入力することにより、
故障の箇所や対策を知ることができるので、事後対策の
省力化および故障による不稼働時間の低減を図ることが
できる。
According to the present invention, when a failure occurs in the manufacturing equipment in the manufacturing line, even by a non-specialist of each manufacturing equipment, by inputting the recognized equipment state and the factor of the possible failure,
Since it is possible to know the location of the failure and the countermeasure, it is possible to save the labor of the subsequent countermeasure and reduce the downtime due to the failure.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る故障診断装置の構成
図、第2図は製造設備を複数保有する製造ラインの概念
図、第3図は製造設備の一例であるプラズマエッチング
装置の概略構成図、第4図は保全作業とエッチング時間
の相関図、第5図はV字マスクを用いた累積和管理の説
明図、第6図は真空ポンプのフォールトツリー図であ
る。 A1〜An……製造設備、1……中央処理装置、2……保全
データベース、3……入出力装置。
FIG. 1 is a configuration diagram of a failure diagnosis apparatus according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of a production line having a plurality of production equipments, and FIG. 3 is a schematic of a plasma etching apparatus which is an example of the production equipments. 4 is a correlation diagram of maintenance work and etching time, FIG. 5 is an explanatory diagram of cumulative sum management using a V-shaped mask, and FIG. 6 is a fault tree diagram of a vacuum pump. A1 to An: Manufacturing equipment, 1 Central processing unit, 2 Maintenance database, 3 Input / output device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】製造設備で製造される各製品の複数の製品
状態を夫々時系列的に検査する検査手段と、前記複数の
製品状態の各時系列的変化を夫々累積和法に基づきプロ
ットしグラフ化する手段と、各グラフの時間軸進行方向
にその頂点がくるように夫々V字状マスクを各グラフに
重ね合わせグラフがV字状マスクと交差したとき該交差
時刻に前記製造設備に異常が発生したと判断する手段
と、前記製造設備を構成する要素装置の経時的変化状態
と前記複数の製品状態のうち異常な変化を示す組との対
応を示す過去のパターン分類から前記交差時刻に発生し
た異常の原因を特定し該原因に対する保全対策を指示す
る手段とを備えることを特徴とする製造設備の故障診断
装置。
1. An inspection means for inspecting a plurality of product states of each product manufactured at a manufacturing facility in a time series, and a time series change of the plurality of product states are plotted based on a cumulative sum method. A means for making a graph and a V-shaped mask superimposed on each graph so that the apex thereof is located in the direction of time axis advancement of each graph, and when the graph intersects the V-shaped mask, the manufacturing equipment is abnormal at the intersection time. From the past pattern classification showing the correspondence between the means for judging the occurrence of a change in the manufacturing apparatus, the time-dependent change state of the element devices constituting the manufacturing equipment, and the set showing an abnormal change among the plurality of product states at the crossing time. A failure diagnosis device for manufacturing equipment, comprising: means for specifying a cause of an abnormality that has occurred and instructing a maintenance measure against the cause.
JP17554186A 1986-07-28 1986-07-28 Failure diagnostic equipment for manufacturing equipment Expired - Fee Related JPH07117952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17554186A JPH07117952B2 (en) 1986-07-28 1986-07-28 Failure diagnostic equipment for manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17554186A JPH07117952B2 (en) 1986-07-28 1986-07-28 Failure diagnostic equipment for manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS6332650A JPS6332650A (en) 1988-02-12
JPH07117952B2 true JPH07117952B2 (en) 1995-12-18

Family

ID=15997879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17554186A Expired - Fee Related JPH07117952B2 (en) 1986-07-28 1986-07-28 Failure diagnostic equipment for manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH07117952B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181186A (en) * 1988-01-13 1989-07-19 Nec Corp Quality deterioration supervising system
JPH0644264A (en) * 1992-07-22 1994-02-18 Nec Corp Device fault information control system
JPH06127831A (en) * 1992-10-16 1994-05-10 Murata Mach Ltd Failure diagnostic system for automatic winder
JPH06127834A (en) * 1992-10-16 1994-05-10 Murata Mach Ltd Failure diagnostic system for automatic winder
JPH06127832A (en) * 1992-10-16 1994-05-10 Murata Mach Ltd Failure diagnostic system for automatic winder
JP2747193B2 (en) * 1993-05-07 1998-05-06 リンナイ株式会社 Heating device failure management device
JPH0994740A (en) * 1995-10-03 1997-04-08 Matsushita Electric Ind Co Ltd Facility maintenance method
KR100414437B1 (en) * 2001-04-06 2004-01-07 전영민 Factory automation control method
JP2007258630A (en) * 2006-03-27 2007-10-04 Hitachi Kokusai Electric Inc Board processing device
CN114265390B (en) * 2021-12-22 2024-02-20 苏州华星光电技术有限公司 Equipment data acquisition diagnosis method, device, server and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628650A (en) * 1979-08-16 1981-03-20 Mitsubishi Petrochemical Co Method of crushing epoxy resin or epoxy resin composition
JPS58165337A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Method for defect analysis used in semiconductor manufacturing plant
JPS60233709A (en) * 1984-12-05 1985-11-20 Hitachi Ltd Integrated security controller
JPS621061A (en) * 1985-06-26 1987-01-07 Hitachi Ltd Diagnosis and back-up device for fault of device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628650A (en) * 1979-08-16 1981-03-20 Mitsubishi Petrochemical Co Method of crushing epoxy resin or epoxy resin composition
JPS58165337A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Method for defect analysis used in semiconductor manufacturing plant
JPS60233709A (en) * 1984-12-05 1985-11-20 Hitachi Ltd Integrated security controller
JPS621061A (en) * 1985-06-26 1987-01-07 Hitachi Ltd Diagnosis and back-up device for fault of device

Also Published As

Publication number Publication date
JPS6332650A (en) 1988-02-12

Similar Documents

Publication Publication Date Title
KR100273505B1 (en) Method and apparatus for analyzing a fabrication line
US7221991B2 (en) System and method for monitoring manufacturing apparatuses
JP5102488B2 (en) Method for fault detection in manufacturing equipment
US6797526B2 (en) Method for manufacturing semiconductor devices and method and its apparatus for processing detected defect data
US5896294A (en) Method and apparatus for inspecting manufactured products for defects in response to in-situ monitoring
US6542830B1 (en) Process control system
US20050159835A1 (en) Device for and method of creating a model for determining relationship between process and quality
KR20020019022A (en) Semiconductor processing techniques
US7570174B2 (en) Real time alarm classification and method of use
US20080004823A1 (en) Defect detection system, defect detection method, and defect detection program
JP2000259222A (en) Device monitoring and preventive maintenance system
JPH0716864B2 (en) Diagnostic equipment for manufacturing equipment
JPH07117952B2 (en) Failure diagnostic equipment for manufacturing equipment
JP2006146459A (en) Method and system for manufacturing semiconductor device
JP5538955B2 (en) Method and system for predicting apparatus abnormality in semiconductor manufacturing
JP4355193B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
JP3024760B2 (en) Real-time in-situ monitoring method and system for semiconductor wafer fabrication process
JP3926478B2 (en) Semiconductor manufacturing method
JPH05253797A (en) Judging system for abnormality on line
Ison et al. Robust fault detection and fault classification of semiconductor manufacturing equipment
JPH10223499A (en) Method and system for manufacture of product as well as operating method for a plurality of working and treatment devices
CN116686076A (en) System and method for evaluating reliability of semiconductor die package
JPH09113673A (en) Anomaly surveillance method and device for plant
US7849366B1 (en) Method and apparatus for predicting yield parameters based on fault classification
KR100576819B1 (en) Process data management system for semiconductor processing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees