JPH07116516B2 - Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet - Google Patents

Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Info

Publication number
JPH07116516B2
JPH07116516B2 JP2089602A JP8960290A JPH07116516B2 JP H07116516 B2 JPH07116516 B2 JP H07116516B2 JP 2089602 A JP2089602 A JP 2089602A JP 8960290 A JP8960290 A JP 8960290A JP H07116516 B2 JPH07116516 B2 JP H07116516B2
Authority
JP
Japan
Prior art keywords
annealing
cold rolling
steel sheet
flux density
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2089602A
Other languages
Japanese (ja)
Other versions
JPH03287721A (en
Inventor
裕義 屋鋪
輝雄 金子
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2089602A priority Critical patent/JPH07116516B2/en
Publication of JPH03287721A publication Critical patent/JPH03287721A/en
Publication of JPH07116516B2 publication Critical patent/JPH07116516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、{110}<001>方位を主方位とする磁束密度
の高い方向性電磁鋼板の製造方法に関するものである。
The present invention relates to a method for producing a grain-oriented electrical steel sheet having a {110} <001> orientation as a main orientation and a high magnetic flux density.

(従来の技術) 方向性電磁鋼板は、主として電力用変圧器をはじめ発電
機、電動機等の鉄心材料や磁気シールド材に広く用いら
れている軟磁性材料であり、一般にゴス方位(ミラー指
数で{110}<001>方位と表す)と呼ばれる結晶配向を
もつ結晶粒から構成されており、圧延方向に磁化容易軸
である<100>軸が平行になるため、圧延方向に極めて
良好な磁化特性と鉄損特性を有している。
(Prior Art) Grain-oriented electrical steel sheet is a soft magnetic material that is widely used mainly in iron core materials and magnetic shield materials for power transformers, generators, electric motors, etc. It is composed of crystal grains with a crystal orientation called (110} <001> orientation), and the <100> axis, which is the easy axis of magnetization, is parallel to the rolling direction. Has iron loss characteristics.

このようなゴス方位を主方位とする結晶組織を得るため
には、冷間圧延後の仕上げ焼鈍中に一次再結晶粒が選択
的に成長する、いわゆる二次再結晶を利用する。従っ
て、方向性電磁鋼板の製造の要点は、いかに安定して精
度のよいゴス方位の二次再結晶を仕上げ焼鈍中に発生さ
せるかに尽きる。この二次再結晶を発生させるために
は、ゴス方位以外の粒の成長を抑えるインヒビターとい
われる微細析出物を適度に分散させることが必要であ
る。インヒビターとしてはMnS、MnSe、AlN等が知られて
いる。この中のAlNを主要なインヒビターとする方向性
電磁鋼板の製造方法は、特公昭46−23820号公報、特開
昭58−100627号公報、同62−83421号公報に開示されて
いる。
In order to obtain such a crystal structure having a Goss orientation as a main orientation, so-called secondary recrystallization in which primary recrystallized grains selectively grow during finish annealing after cold rolling is used. Therefore, the point of production of the grain-oriented electrical steel sheet is only how stable and accurate secondary recrystallization of Goss orientation is generated during finish annealing. In order to generate this secondary recrystallization, it is necessary to appropriately disperse fine precipitates called inhibitors that suppress the growth of grains other than the Goss orientation. MnS, MnSe, AlN, etc. are known as inhibitors. A method for producing a grain-oriented electrical steel sheet using AlN as a main inhibitor is disclosed in JP-B-46-23820, JP-A-58-100627, and JP-A-62-83421.

ところが、特公昭46−23820号公報記載の方法は、二次
再結晶を行わせるための仕上げ焼鈍前にコストのかかる
脱炭焼鈍が必要であり、特開昭58−100627号公報記載の
方法は、二次再結晶を行わせるための仕上げ焼鈍が、鋼
板板面に平行な1cm2当り2℃以上の温度差を与えて行う
という極めて特殊な焼鈍であるため、実際の量産には適
さない。これらの方法に対して、特開昭62−83421号公
報記載の方法は、脱炭焼鈍を必要とせず、仕上げ焼鈍も
特殊な条件ではないので、実生産には向いており、しか
も安定した磁気特性の電磁鋼板を製造することができ
る。しかし、最近では更に良好な磁化特性、即ち磁束密
度のより高い製品が求められており、この方法でも近年
の要求品質を満たすのが難しい。
However, the method described in JP-B-46-23820 requires costly decarburization annealing before finish annealing for performing secondary recrystallization, and the method described in JP-A-58-100627 is The final annealing for performing the secondary recrystallization is a very special annealing in which a temperature difference of 2 ° C. or more is applied per 1 cm 2 parallel to the steel plate surface, which is not suitable for actual mass production. In contrast to these methods, the method described in JP-A-62-83421 does not require decarburization annealing, and finishing annealing is not a special condition, so it is suitable for actual production and has stable magnetic properties. It is possible to manufacture a characteristic electromagnetic steel sheet. However, recently, products having even better magnetization characteristics, that is, higher magnetic flux density have been demanded, and it is difficult to meet the recent required quality even with this method.

(発明が解決しようとする課題) 本発明の課題は、コストのかかる脱炭焼鈍や特殊な焼鈍
を必要とせず、安価に且つ安定して磁束密度の一段と高
い方向性電磁鋼板を製造することができる方法を提供す
ることにある。
(Problems to be Solved by the Invention) An object of the present invention is to produce a grain-oriented electrical steel sheet having a much higher magnetic flux density at low cost and stably without requiring costly decarburization annealing or special annealing. To provide a way to do it.

(課題を解決するための手段) 熱延以降の工程で積極的な脱炭焼鈍や特殊焼鈍を採用す
ることなく、磁束密度の優れた方向性電磁鋼板を安く安
定生産することができる方法として、前掲の特開昭62−
83421号公報記載の製造方法がある。この方法とは、熱
延以降の工程で積極的な脱炭焼鈍を必要としない鋼中の
Sol.Al含有量を特定の範囲に調整した極低炭素鋼を素材
とし、巻取りを600℃以下、熱延板焼鈍、冷間圧延にお
ける中間焼鈍および一次焼鈍をそれぞれ5℃/秒以上の
加熱速度で700〜950℃のα域で保持する条件で行うもの
である。この方法では仕上げ焼鈍を除く焼鈍を5℃/秒
以上の急速加熱で行うことで、AlNやSiとMnを含む窒化
物を適正に分散させて二次再結晶で精度のよいゴス方位
粒を選択的に成長させ、磁気特性を改善している。
(Means for solving the problem) As a method capable of inexpensively and stably producing a grain-oriented electrical steel sheet having an excellent magnetic flux density without adopting aggressive decarburization annealing or special annealing in the steps after hot rolling, Japanese Patent Laid-Open No. 62-
There is a manufacturing method described in Japanese Patent No. 83421. This method is used for steels that do not require positive decarburization annealing in the process after hot rolling.
Ultra low carbon steel whose Sol.Al content is adjusted to a specific range is used as the material, and winding is performed at 600 ° C or less, hot-rolled sheet annealing, intermediate annealing in cold rolling and primary annealing at 5 ° C / sec or more. It is performed under the condition that the temperature is maintained in the α range of 700 to 950 ° C. In this method, annealing other than finish annealing is performed at a rapid heating rate of 5 ° C / sec or more to properly disperse AlN and nitrides containing Si and Mn, and to select accurate Goss-oriented grains by secondary recrystallization. Magnetically grown to improve magnetic properties.

ところが、本発明者らは焼鈍をこのような急速加熱で行
わなくても、少なくとも最終板厚とする冷間圧延前の焼
鈍を徐加熱し、その焼鈍を特定の温度で均熱するととも
に最終板厚とする冷間圧延の圧下率を適正に選定する
と、窒化物の分散と一次再結晶集合組織が適正化され、
二次再結晶が安定し、かつ高い磁束密度の方向性電磁鋼
板が得られることを見出した。
However, even if the present inventors do not perform the annealing by such rapid heating, the annealing before cold rolling at least the final plate thickness is gradually heated, and the annealing is soaked at a specific temperature and the final plate is obtained. By properly selecting the reduction ratio of cold rolling to be thick, the dispersion of nitride and the primary recrystallization texture are optimized,
It has been found that a grain-oriented electrical steel sheet having stable secondary recrystallization and a high magnetic flux density can be obtained.

本発明の要旨は下記の高磁束密度方向性電磁鋼板の製造
方法にある。
The gist of the present invention resides in the following method for producing a high magnetic flux density grain-oriented electrical steel sheet.

重量%で、 C:0.01%以下、Si:1.0%超〜2.5%以下、 Mn:1.0%以下、S:0.015%以下、 Sol.Al:0.003〜0.015%、 N:0.0010〜0.0100%、 残部:Fe及び不可避不純物 からなる熱延板に、最終板厚とする冷間圧延前に200℃/
h以下の加熱速度で750〜900℃まで加熱して均熱する焼
鈍を施した後、最終冷間圧延を60〜95%の圧下率で行い
最終板厚となし、その後、800℃以上のα域での一次再
結晶のための連続焼鈍と800℃以上のα域での二次再結
晶のための仕上げ焼鈍とを行うことを特徴とする高磁束
密度方向性電磁鋼板の製造方法。
% By weight, C: 0.01% or less, Si: more than 1.0% to 2.5% or less, Mn: 1.0% or less, S: 0.015% or less, Sol.Al: 0.003 to 0.015%, N: 0.0010 to 0.0100%, balance: A hot-rolled sheet consisting of Fe and unavoidable impurities is added at 200 ° C /
After annealing to heat to 750-900 ℃ at a heating rate of h or less and soaking, final cold rolling is performed with a reduction rate of 60-95% to obtain the final plate thickness, and then α of 800 ℃ or more. A method for producing a high magnetic flux density grain-oriented electrical steel sheet, which comprises performing continuous annealing for primary recrystallization in a temperature range and finish annealing for secondary recrystallization in a temperature range of 800 ° C or higher.

(作用) 以下、本発明において、素材熱延板の化学組成、最終冷
間圧延の圧下率および各焼鈍条件を前記のように限定し
た理由を説明する。
(Function) In the present invention, the reason why the chemical composition of the material hot-rolled sheet, the reduction ratio of the final cold rolling and each annealing condition are limited as described above will be described below.

(I)熱延板の化学組成 C Cは一般の方向性電磁鋼板では、熱延工程やそれ以降の
工程での析出物や集合組織の制御のために適量添加させ
る。この場合、Cは磁気特性に有害なため一次再結晶を
行わしめる焼鈍を脱炭焼鈍としてC量を減少させてい
る。ところが、本発明では製造コスト低減のため、鋼板
段階での積極的な脱炭を行わないので、磁気特性に悪影
響が出ない範囲まで熱延板の段階ではC含有量を減少さ
せることが必要である。鋼板中のC含有量が0.01%を超
えると鉄損の悪化や磁気時効性の劣化といった磁気特性
への悪影響が著しくなるため、C含有量を0.01%以下と
定めた。
(I) Chemical composition of hot-rolled sheet In a general grain-oriented electrical steel sheet, C is added in an appropriate amount for controlling precipitates and texture in the hot-rolling step and subsequent steps. In this case, since C is detrimental to the magnetic properties, decarburization annealing is used as annealing for performing primary recrystallization to reduce the amount of C. However, in the present invention, in order to reduce the manufacturing cost, active decarburization is not performed in the steel sheet stage, so it is necessary to reduce the C content in the hot rolled sheet stage to the extent that magnetic properties are not adversely affected. is there. When the C content in the steel sheet exceeds 0.01%, adverse effects on magnetic properties such as deterioration of iron loss and deterioration of magnetic aging become significant, so the C content was set to 0.01% or less.

Si Si含有量を増加させると、鋼板の電気抵抗の増加を通じ
て渦電流損が低下し、鉄損は減少する。しかし、1.0%
以下の含有量では鉄損が目標どおりに低くならず、2.5
%を超えて含まれると二次再結晶が不安定になるととも
に冷間圧延性が悪化し、鋼板を安定して製造することが
困難となるため、Si含有量は1.0%超え2.5%以下とし
た。
Si When the Si content is increased, the eddy current loss decreases and the iron loss decreases due to the increase in the electrical resistance of the steel sheet. But 1.0%
With the following contents, iron loss did not decrease as targeted, and
%, The secondary recrystallization becomes unstable and the cold rolling property deteriorates, making it difficult to stably manufacture a steel sheet. Therefore, the Si content is more than 1.0% and not more than 2.5%. did.

Mn: MnはSiと同様に鋼板の電気抵抗を増加して、鉄損を低減
するのに有効な元素である。しかし、1.0%を超えて含
有すると冷間圧延性が悪化するので、Mn含有量は1.0%
以下と定めた。なお、Mnが含有されなくともSiが1%を
超えて含有されておれば鉄損値が十分満足するものも得
られるので、Mn含有量の下限値は定めない。
Mn: Mn is an element effective in increasing the electrical resistance of the steel sheet and reducing the iron loss, similar to Si. However, if the content exceeds 1.0%, the cold rolling property deteriorates, so the Mn content is 1.0%.
The following was set. It should be noted that the lower limit of the Mn content is not specified because even if Mn is not contained, if Si is contained in an amount of more than 1%, the iron loss value may be sufficiently satisfied.

しかし、Siを1.8%以上含有させる場合はMnを添加する
方がよい。本発明で使用する熱延板のような低C鋼にお
いて、Siを1.8%以上含有させてMnを含有させない場
合、α−γ変態が消失し、熱延板の組織が粗大化して、
仕上げ焼鈍での二次再結晶が不安定になりやすいが、Mn
を添加することにより、このような鋼板にα−γ変態を
出現させることができ、鉄損の低減以外に二次再結晶の
安定化を図ることが可能となる。
However, when Si is contained by 1.8% or more, it is better to add Mn. In a low C steel such as a hot rolled sheet used in the present invention, if Si is contained in an amount of 1.8% or more and Mn is not included, the α-γ transformation disappears and the structure of the hot rolled sheet becomes coarse,
Secondary recrystallization during finish annealing tends to be unstable, but Mn
Addition of α can make α-γ transformation appear in such a steel sheet, and it is possible to stabilize secondary recrystallization in addition to reducing iron loss.

S 本発明ではAlNやSiとMnを含む窒化物を二次再結晶を制
御するためのインヒビターとしている。従って、MnSを
主要なインヒビターとする従来の方向性電磁鋼板のよう
にSを多量に添加する必要はない。Sの多量添加は寧ろ
鉄損を劣化させる傾向となるので、Sの含有量は0.015
%以下とした。
S In the present invention, AlN or a nitride containing Si and Mn is used as an inhibitor for controlling secondary recrystallization. Therefore, it is not necessary to add a large amount of S as in the conventional grain-oriented electrical steel sheet using MnS as a main inhibitor. Addition of a large amount of S tends to deteriorate iron loss, so the S content is 0.015
% Or less.

Sol.Al: Alは主要なインヒビターであるAlNを形成する重要な元
素である。Alの含有量をSol.Al量で0.003〜0.015%と定
めたのは、0.003%未満ではインヒビターとしてのAlNの
絶対量が不足し、十分なインヒビター効果が期待できな
いからであり、0.015%を超えるとインヒビターの量が
多くなり過ぎるとともに、分布の形態も適当でなくな
り、安定した二次再結晶が生じ難くなるからである。
Sol.Al: Al is an important element forming AlN which is a major inhibitor. The content of Al is set to 0.003 to 0.015% in terms of Sol.Al content because if it is less than 0.003%, the absolute amount of AlN as an inhibitor is insufficient and a sufficient inhibitory effect cannot be expected, and it exceeds 0.015%. And the amount of the inhibitor becomes too large, the distribution morphology becomes unsuitable, and stable secondary recrystallization hardly occurs.

N: NはAlNやSiとMnを含む窒化物を形成し、二次再結晶が
生じるまでの粒成長を抑制するインヒビターとなる重要
な元素である。しかし、その含有量が0.0010%未満では
所望のインヒビター効果が得られず、0.0100%を超えて
含有させてもインヒビターとしての効果が飽和すること
から、N含有量を0.0010〜0.0100%の範囲と定めた。
N: N is an important element that forms a nitride containing AlN or Si and Mn and serves as an inhibitor that suppresses grain growth until secondary recrystallization occurs. However, if the content is less than 0.0010%, the desired inhibitory effect cannot be obtained, and even if the content exceeds 0.0100%, the effect as an inhibitor is saturated. Therefore, the N content is defined as 0.0010 to 0.0100%. It was

(ii)製造条件 (a) 最終板厚とする冷間圧延前の焼鈍 最終板厚とする冷間圧延前の焼鈍とは、前記組成の熱延
板を1回の冷間圧延法で最終板厚とする場合は、熱延板
焼鈍が最終板厚とする冷間圧延前の焼鈍となる。一方、
中間焼鈍を挟む2回以上の冷間圧延法で最終板厚とする
場合は、最終冷間圧延の前に行う中間焼鈍が最終板厚と
する冷間圧延前の焼鈍となる。
(Ii) Manufacturing conditions (a) Annealing before cold rolling to obtain the final plate thickness Annealing before cold rolling to obtain the final plate thickness means that a hot-rolled sheet having the above-mentioned composition is obtained by one cold rolling method. When the thickness is set, the hot rolled sheet annealing is the annealing before cold rolling to obtain the final sheet thickness. on the other hand,
When the final plate thickness is obtained by two or more cold rolling methods sandwiching the intermediate annealing, the intermediate annealing performed before the final cold rolling is the annealing before the cold rolling to obtain the final plate thickness.

この最終板厚とする冷間圧延前の焼鈍、即ち、1回の冷
間圧延法の場合には熱延板焼鈍を200℃/h以下の加熱速
度で750〜900℃まで加熱して均熱する条件で行うことが
重要である。一方、中間焼鈍を挟む2回以上の冷間圧延
法の場合は、少なくとも最終冷間圧延前の中間焼鈍を同
じ条件で行うことが重要である。最終板厚とする冷間圧
延前の焼鈍を、前記範囲から外れる加熱速度および均熱
温度で行うと、仕上げ焼鈍後に高い磁束密度が得られな
い。
Annealing before cold rolling to obtain this final plate thickness, that is, in the case of one cold rolling method, hot-rolled sheet annealing is heated to 750 to 900 ° C at a heating rate of 200 ° C / h or less and soaked. It is important to do it under the conditions. On the other hand, in the case of two or more cold rolling methods sandwiching the intermediate annealing, it is important to perform at least the intermediate annealing before the final cold rolling under the same conditions. If the annealing before cold rolling to obtain the final plate thickness is performed at a heating rate and a soaking temperature outside the above range, a high magnetic flux density cannot be obtained after finish annealing.

第1図は、C:0.003%、Si:1.2%、Mn:0.16%、S:0.00
5、Sol.Al:0.007%、N:0.0051%、残部Fe及び不可避不
純物からなる鋼スラブを、2.3mm厚まで熱間圧延した
後、加熱速度を変えて850℃まで昇温し、この温度で1
時間均熱の焼鈍を行い、次いで、87%の圧下率で0.3mm
厚まで冷間圧延した後、一次再結晶を行わせるために87
5℃で30秒の連続焼鈍と二次再結晶を行わせるために仕
上げ焼鈍とを行った鋼板から試験片を採取し、圧延方向
の磁束密度B8(800A/mの磁化力で磁化した時の磁束密
度)を調べた結果である。なお、仕上げ焼鈍は870℃で2
4時間の均熱後、さらに925℃で24時間の均熱を行い、焼
鈍の雰囲気は875℃で24時間の均熱までは75%N2と25%H
2の混合ガスで、その後は100%のH2ガスで行った。
Fig. 1 shows C: 0.003%, Si: 1.2%, Mn: 0.16%, S: 0.00
5.Sol.Al: 0.007%, N: 0.0051%, steel slab consisting of balance Fe and unavoidable impurities is hot-rolled to 2.3mm thickness, and then heating rate is changed to 850 ℃, and at this temperature 1
Annealed for time soaking, then 0.3 mm with 87% rolling reduction
After cold-rolling to thickness, 87 to perform primary recrystallization
A test piece was taken from a steel sheet that had been continuously annealed at 5 ° C for 30 seconds and finish annealed for secondary recrystallization, and was magnetized with a magnetic force of B 8 (800 A / m) in the rolling direction. Is the result of examining the magnetic flux density). The final annealing is 2 at 870 ℃.
After soaking for 4 hours, soaking is further performed at 925 ° C for 24 hours, and the annealing atmosphere is 875 ° C at 75% N 2 and 25% H until soaking for 24 hours.
A mixed gas of 2 and then 100% H 2 gas were used.

第1図から明らかなように、冷間圧延前の焼鈍の加熱速
度が200℃/h以下の場合には極めて高い磁束密度が得ら
れることがわかる。
As is apparent from FIG. 1, when the heating rate of the annealing before cold rolling is 200 ° C./h or less, it is understood that an extremely high magnetic flux density can be obtained.

第2図は、同一の組成の熱延板を30℃/hの加熱速度で70
0〜1000℃の温度まで加熱し、それぞれの温度で1時間
均熱焼鈍した後、冷間圧延、一次再結晶のための連続焼
鈍および二次再結晶のための仕上げ焼鈍を行った鋼板か
ら試験片を採取し、圧延方向の磁束密度B8を調べた結果
である。冷間圧延、連続焼鈍および仕上げ焼鈍の条件は
前記と同じとした。
Fig. 2 shows hot-rolled sheet with the same composition at a heating rate of 30 ° C / h.
Tested from steel sheets that have been heated to a temperature of 0 to 1000 ° C, soaked and annealed at each temperature for 1 hour, then cold-rolled, continuously annealed for primary recrystallization and finish annealed for secondary recrystallization The results are obtained by collecting pieces and examining the magnetic flux density B 8 in the rolling direction. The conditions of cold rolling, continuous annealing and finish annealing were the same as above.

第2図から、均熱温度が750〜900℃である場合に極めて
高い磁束密度が得られることがわかる。これらの結果か
ら、最終板厚とする冷間圧延前に施す焼鈍を、加熱速度
200℃/h以下、均熱温度750〜900℃としたのである。こ
のような条件で高磁束密度が得られる理由は、インヒビ
ターとなるAlN等の窒化物の分散状態が適正化され、仕
上げ焼鈍で精度のよいゴス方位粒が選択的に成長するよ
うな二次再結晶が生じるためと考えられる。
From FIG. 2, it can be seen that an extremely high magnetic flux density can be obtained when the soaking temperature is 750 to 900 ° C. From these results, the annealing performed before cold rolling to obtain the final plate thickness is
The temperature was 200 ℃ / h or less and the soaking temperature was 750-900 ℃. The reason why a high magnetic flux density can be obtained under such conditions is that the dispersed state of nitride such as AlN, which becomes an inhibitor, is optimized, and that secondary re-growth such that accurate Goss-oriented grains selectively grow by finish annealing is performed. It is considered that crystals are generated.

なお、この最終板厚とする冷間圧延前の焼鈍は、加熱速
度が遅いので連続焼鈍炉よりは箱焼鈍炉で行うのがよ
い。また、中間焼鈍を挟む2回以上の冷間圧延で最終板
厚となす場合、最終の冷間圧延前の中間焼鈍の前に行わ
れる焼鈍は、その条件を特に規定する必要がない。少な
くとも最終の冷間圧延前の中間焼鈍を前記条件で行え
ば、その前の焼鈍は通常の条件でもかまわない。
It should be noted that the annealing before cold rolling to obtain the final plate thickness is preferably performed in a box annealing furnace rather than a continuous annealing furnace because the heating rate is slow. When the final plate thickness is obtained by cold rolling two or more times with the intermediate annealing sandwiched between them, the annealing performed before the intermediate annealing before the final cold rolling does not need to specify the conditions. If at least the final intermediate annealing before cold rolling is performed under the above conditions, the annealing before that may be normal conditions.

(b) 冷間圧延 冷間圧延で重要なことは、1回の冷間圧延で最終板厚ま
でに加工する場合は、その冷間圧延は60〜95%の圧下率
で行うことである。中間焼鈍を挟む2回以上の冷間圧延
で最終板厚までに加工する場合は、最終の冷間圧延前の
冷間圧延は、任意の圧下率でよいが最終の冷間圧延は60
〜95%の圧下率で行う必要がある。最終の冷間圧延の圧
下率が60〜95%の範囲を外れると良好な磁気特性が得ら
れない。この原因は、次の連続焼鈍で行う一次再結晶の
焼鈍で適切な一次再結晶集合組織が得られず、これが仕
上げ焼鈍での二次再結晶での精度のよいゴス方位集合組
織の形成を妨げるためであると考えられる。
(B) Cold Rolling What is important in cold rolling is that when cold rolling is performed once to the final sheet thickness, the cold rolling is performed at a reduction rate of 60 to 95%. When processing to the final thickness by two or more cold rolling processes with intermediate annealing, the cold rolling before the final cold rolling may be performed at any reduction rate, but the final cold rolling is 60%.
It is necessary to carry out the reduction rate of ~ 95%. If the final cold rolling reduction falls outside the range of 60 to 95%, good magnetic properties cannot be obtained. The reason for this is that the appropriate primary recrystallized texture cannot be obtained by the annealing of the primary recrystallization performed in the next continuous annealing, and this hinders the formation of an accurate Goss-oriented texture in the secondary recrystallization in the final annealing. It is thought to be because of this.

(c) 一次再結晶焼鈍 一次再結晶焼鈍は最終板厚に仕上げる冷間圧延の後、二
次再結晶を行わせる仕上げ焼鈍に先立って行われる。こ
の焼鈍はAlN等の窒化物の分散状態及び一次再結晶集合
組織を調整し、仕上げ焼鈍で望ましい二次再結晶を生じ
させるために重要である。このためには、800℃以上の
α領域で行うのがよい。焼鈍温度が800℃より低いと適
正な一次再結晶集合組織が得られない。また、γ相の生
じるような高温で焼鈍しても適正なAlNの分散状態や良
好な一次再結晶集合組織が得られない。
(C) Primary Recrystallization Annealing The primary recrystallization annealing is performed after cold rolling for finishing to the final plate thickness and before finish annealing for performing secondary recrystallization. This annealing is important for adjusting the dispersion state and primary recrystallization texture of the nitride such as AlN and for producing the desired secondary recrystallization in the final annealing. For this purpose, it is preferable to perform it in the α region of 800 ° C. or higher. If the annealing temperature is lower than 800 ° C, proper primary recrystallization texture cannot be obtained. Further, even if it is annealed at a high temperature such that a γ phase is generated, a proper AlN dispersion state and a good primary recrystallization texture cannot be obtained.

前記800℃以上のα領域には5℃/秒以上の加熱速度で
昇温するのが望ましい。従って、この一次再結晶焼鈍は
連続焼鈍が適している。このように急速加熱すると、イ
ンヒビターとなるAlN等の窒化物が微細に分散析出し、
二次再結晶で精度のよいゴス方位粒が成長する。
In the α region above 800 ° C, it is desirable to raise the temperature at a heating rate of 5 ° C / sec or more. Therefore, continuous annealing is suitable for this primary recrystallization annealing. When heated rapidly in this way, nitrides such as AlN that act as inhibitors are finely dispersed and precipitated,
Accurate Goss-oriented grains grow by secondary recrystallization.

(d) 仕上げ焼鈍 仕上げ焼鈍は、二次再結晶が十分に生じる温度が必要で
あり、800℃以上のα域とすることが必要である。ま
た、本発明ではAlN等の窒化物をインヒビターとして使
用するため、二次再結晶が発生する前に脱窒が生じると
窒化物の析出量が減少し、インヒビター効果が弱まるた
め、良好な二次再結晶が生じないことがある。従って、
二次再結晶が完了するまではN2を含有する雰囲気で仕上
げ焼鈍を行うのが望ましい。
(D) Finish annealing The finish annealing requires a temperature at which secondary recrystallization is sufficiently generated, and it is necessary to set the temperature to an α range of 800 ° C or higher. Further, in the present invention, since a nitride such as AlN is used as an inhibitor, if denitrification occurs before secondary recrystallization occurs, the amount of nitride precipitation is reduced, and the inhibitor effect is weakened. Recrystallization may not occur. Therefore,
It is desirable to perform finish annealing in an atmosphere containing N 2 until secondary recrystallization is completed.

以上の最終板厚とする冷間圧延前の焼鈍、一次再結晶焼
鈍および仕上げ焼鈍における保持時間は特に限定する必
要がないが、短いとそれぞれの焼鈍の効果が十分に得ら
れず、長いと生産性が低下するので、最終板厚とする冷
間圧延前の焼鈍は30分〜10時間、一次再結晶焼鈍は5秒
〜10分および仕上げ焼鈍は10〜60時間程度が望ましい。
Annealing before cold rolling with the final plate thickness above, the holding time in primary recrystallization annealing and finish annealing does not have to be particularly limited, but the effect of each annealing is not sufficiently obtained when it is short, and the production is long. Therefore, it is desirable that the annealing before cold rolling to obtain the final plate thickness is 30 minutes to 10 hours, the primary recrystallization annealing is 5 seconds to 10 minutes, and the final annealing is 10 to 60 hours.

実施例により本発明を更に説明する。The invention is further described by the examples.

(実施例1) 第1表に示す組成の鋼スラブを、2.3mm厚まで熱間圧延
し、酸洗してから25℃/hの平均加熱速度で850℃まで加
熱し、4時間の均熱の箱焼鈍を行った。次いで、0.3mm
厚まで冷間圧延した後、一次再結晶を行わせるために88
0℃で30秒の均熱の連続焼鈍を行い、焼鈍分離剤を塗布
して二次再結晶を行わせるために仕上げ焼鈍を行った。
仕上げ焼鈍は、875℃で24時間の均熱後、さらに925℃で
24時間の均熱を行い、焼鈍の雰囲気は、875℃で24時間
の均熱までは75%N2と25%H2の混合ガスで、その後は10
0%H2で行った。なお、仕上げ焼鈍の後半の925℃で24時
間の焼鈍は、窒化物等を除去するための純化焼鈍が目的
である。
(Example 1) A steel slab having the composition shown in Table 1 was hot-rolled to a thickness of 2.3 mm, pickled, and then heated to 850 ° C at an average heating rate of 25 ° C / h and soaked for 4 hours. The box was annealed. Then 0.3 mm
After cold rolling to thickness, 88 in order to carry out primary recrystallization.
Continuous annealing was performed at 0 ° C. for 30 seconds soaking, and finish annealing was performed in order to apply an annealing separator and perform secondary recrystallization.
Finish annealing is soaked at 875 ℃ for 24 hours, then at 925 ℃.
After soaking for 24 hours, the annealing atmosphere is a mixed gas of 75% N 2 and 25% H 2 until soaking at 875 ° C for 24 hours, then 10
Performed at 0% H 2 . Note that the latter half of the finish annealing, that is, the annealing for 24 hours at 925 ° C., is intended for purification annealing for removing nitrides and the like.

仕上げ焼鈍後、それぞれの鋼板から試験片を切り出し、
磁気特性を調べた。その結果を第1表に併記する。
After finish annealing, cut out test pieces from each steel plate,
The magnetic properties were investigated. The results are also shown in Table 1.

第1表において、鋼種A〜EはSol.Al以外はほぼ同一組
成のものである。この場合、Sol.Al量が本発明で規定す
る範囲より低い鋼種A及び高い鋼種Eは、磁気特性が著
しく悪い。鋼種F〜Iは硫黄(S)以外はほぼ同一組成
のものであるが、硫黄量の高い鋼種Iは磁気特性に劣っ
ており、鋼種Jは珪素(Si)量が低目であるが、珪素以
外はほぼ同一組成の鋼種Cと比べ鉄損に劣り、炭素
(C)量が高目の鋼種Kは炭素以外はほぼ同一組成の鋼
種Gに比べ鉄損が劣っている。これらに対し、本発明例
はいずれも良好な磁気特性を示している。
In Table 1, steel types A to E have almost the same composition except Sol.Al. In this case, the steel type A and the steel type E in which the amount of Sol.Al is lower than the range specified in the present invention have remarkably poor magnetic properties. Steel types F to I have almost the same composition except sulfur (S), but steel type I having a high sulfur content is inferior in magnetic properties, and steel type J has a low silicon (Si) content, Other than that, the steel loss is inferior to the steel type C having almost the same composition, and the steel type K having a high carbon (C) content is inferior to the steel type G having almost the same composition except carbon. On the other hand, all of the examples of the present invention show good magnetic characteristics.

(実施例2) 実施例1における鋼種Cと同一組成の鋼スラブを、2.3m
m厚まで熱間圧延し、酸洗後、熱延板焼鈍してから1回
の冷間圧延、或いは熱延板焼鈍を施すことなく中間焼鈍
を挟む2回の冷間圧延で最終板厚とした(但し、試験番
号5は酸洗を熱延板焼鈍後に実施した)。次いで、一次
再結晶を行わせる連続焼鈍を行った後、焼鈍分離剤を塗
布して二次再結晶を行わせる仕上げ焼鈍を行った。仕上
げ焼鈍は、875℃で24時間の均熱後更に925℃で24時間の
均熱を行い、雰囲気は実施例1と同一とした。
(Example 2) A steel slab having the same composition as the steel type C in Example 1 was set to 2.3 m.
After hot rolling to m thickness, after pickling, hot rolled sheet annealing followed by one cold rolling, or two cold rolling steps with intermediate annealing without hot rolled sheet annealing to obtain final sheet thickness. (However, in Test No. 5, pickling was performed after annealing the hot rolled sheet). Then, after performing continuous annealing for performing primary recrystallization, finish annealing was performed for applying an annealing separator and performing secondary recrystallization. The finish annealing was soaked at 875 ° C. for 24 hours and then at 925 ° C. for 24 hours, and the atmosphere was the same as in Example 1.

第2表に熱延板焼鈍、中間焼鈍、冷間圧延および連続焼
鈍の条件と、磁気特性を調べた結果を示す。
Table 2 shows the conditions of hot-rolled sheet annealing, intermediate annealing, cold rolling and continuous annealing, and the results of examining the magnetic properties.

本発明例はすべて良好な磁気特性が得られているのに対
して、最終冷間圧延前の焼鈍温度が本発明で規定する範
囲より低い試験番号1、高すぎる試験番号4、最終冷間
圧延前の焼鈍の加熱速度が速すぎる試験番号5、一次再
結晶のための連続焼鈍の均熱温度が低すぎる試験番号6
及び最終冷間圧延の圧下率が低すぎる試験番号8は、い
ずれも磁気特性が劣っている。
In all of the examples of the present invention, good magnetic properties were obtained, whereas test number 1 in which the annealing temperature before final cold rolling was lower than the range specified in the present invention, test number 4 was too high, and final cold rolling. Test No. 5 in which the heating rate of the previous annealing was too fast, Test No. 6 in which the soaking temperature of continuous annealing for primary recrystallization was too low
And, the test number 8 in which the reduction ratio of the final cold rolling is too low is inferior in the magnetic properties.

(発明の効果) 以上説明した如く、本発明の製造方法によれば、コスト
のかかる脱炭焼鈍や特殊な焼鈍条件を必要とせず、高磁
束密度の方向性電磁鋼板を安価に且つ安定して製造する
ことができる。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, costly decarburization annealing and special annealing conditions are not required, and a high magnetic flux density grain-oriented electrical steel sheet can be manufactured inexpensively and stably. It can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は、最終板厚とする冷間圧延前の焼鈍の加熱速度
と磁束密度との関係を示すグラフ、 第2図は、最終板厚とする冷間圧延前の焼鈍の均熱温度
と磁束密度との関係を示すグラフ、である。
FIG. 1 is a graph showing the relationship between the heating rate and the magnetic flux density of the annealing before cold rolling, which is the final thickness, and FIG. 2 is the soaking temperature of the annealing before cold rolling, which is the final thickness. It is a graph which shows the relationship with magnetic flux density.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、 C:0.01%以下、Si:1.0%超〜2.5%以下、 Mn:1.0%以下、S:0.015%以下、 Sol.Al:0.003〜0.015%、 N:0.0010〜0.0100%、 残部:Fe及び不可避不純物 からなる熱延板に、最終板厚とする冷間圧延前に200℃/
h以下の加熱速度で750〜900℃まで加熱して均熱する焼
鈍を施した後、最終冷間圧延を60〜95%の圧下率で行い
最終板厚となし、その後、800℃以上のα域での一次再
結晶のための連続焼鈍と800℃以上のα域での二次再結
晶のための仕上げ焼鈍とを行うことを特徴とする高磁束
密度方向性電磁鋼板の製造方法。
1. By weight%, C: 0.01% or less, Si: more than 1.0% to 2.5% or less, Mn: 1.0% or less, S: 0.015% or less, Sol.Al: 0.003 to 0.015%, N: 0.0010 to 0.0100%, balance: Fe and unavoidable impurities on hot-rolled sheet, 200 ℃ /
After annealing to 750 to 900 ℃ at a heating rate of less than h and soaking, final cold rolling is performed at a reduction rate of 60 to 95% to obtain the final plate thickness, and then 800 ° C or higher α A method for producing a high magnetic flux density grain-oriented electrical steel sheet, which comprises performing continuous annealing for primary recrystallization in a temperature range and finish annealing for secondary recrystallization in a temperature range of 800 ° C or higher.
JP2089602A 1990-04-04 1990-04-04 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet Expired - Lifetime JPH07116516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2089602A JPH07116516B2 (en) 1990-04-04 1990-04-04 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2089602A JPH07116516B2 (en) 1990-04-04 1990-04-04 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH03287721A JPH03287721A (en) 1991-12-18
JPH07116516B2 true JPH07116516B2 (en) 1995-12-13

Family

ID=13975311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2089602A Expired - Lifetime JPH07116516B2 (en) 1990-04-04 1990-04-04 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH07116516B2 (en)

Also Published As

Publication number Publication date
JPH03287721A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0121851B2 (en)
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0784615B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
WO2023157938A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH07116516B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
CN114829657A (en) Oriented electrical steel sheet and method for manufacturing the same
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JPH10158740A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPH1180835A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss
JPS60135524A (en) Production of grain oriented silicon steel sheet