JPH07109014B2 - Method for melting titanium and titanium alloys - Google Patents

Method for melting titanium and titanium alloys

Info

Publication number
JPH07109014B2
JPH07109014B2 JP4716588A JP4716588A JPH07109014B2 JP H07109014 B2 JPH07109014 B2 JP H07109014B2 JP 4716588 A JP4716588 A JP 4716588A JP 4716588 A JP4716588 A JP 4716588A JP H07109014 B2 JPH07109014 B2 JP H07109014B2
Authority
JP
Japan
Prior art keywords
titanium
melting
carbon
ductility
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4716588A
Other languages
Japanese (ja)
Other versions
JPH01222026A (en
Inventor
英人 大山
善郎 芦田
厚 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4716588A priority Critical patent/JPH07109014B2/en
Publication of JPH01222026A publication Critical patent/JPH01222026A/en
Publication of JPH07109014B2 publication Critical patent/JPH07109014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタンおよびチタン合金の溶解方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for melting titanium and titanium alloys.

[従来の技術] 従来においては、チタンおよびチタン合金の溶解は、水
冷坩堝を使用し、消耗電極式アーク溶解法により行なわ
れている。この場合、被溶解材により電極を製造してか
ら溶解するのであるが、一度の溶解では溶け残りがあっ
たり或いは合金の場合には偏析等の問題が生じるため、
一度溶解した材料を電極にして再度溶解する二重溶解を
行なうのが通常であった。
[Prior Art] Conventionally, melting of titanium and titanium alloys has been performed by a consumable electrode type arc melting method using a water-cooled crucible. In this case, the material is melted after the electrode is manufactured using the material to be melted, but there is a problem of segregation or the like in the case of an unmelted material in the case of once melting or in the case of an alloy,
It was usual to carry out double melting in which the once melted material is used as an electrode to dissolve again.

このような溶解方法では、健全な鋳塊を製造するまでに
非常に多くの工程を行なわなければならず製造工程が煩
雑であった。
In such a melting method, a large number of steps have to be performed until a sound ingot is manufactured, and the manufacturing process is complicated.

これを解決したのが、例えば、スクラップのプラズマ溶
解法または高周波溶解法等の溶解方法が検討されてお
り、中でも注目されている溶解方法は高周波溶解法であ
る。
To solve this problem, for example, a melting method such as a scrap plasma melting method or a high frequency melting method has been studied, and the melting method that has been drawing attention is the high frequency melting method.

そして、この高周波溶解法を行なうためには、耐火物か
らなる坩堝を使用する必要があり、最近、CaO、BN、C
等の耐火物の坩堝を使用する高周波溶解法の研究報告が
なされているが、極めて活性な金属であるチタン(チタ
ン合金を含む)においては、坩堝からの不純物元素によ
る汚染で常温における延性の低下が問題となり、実用化
は困難であった。この不純物元素による汚染を最小限に
抑えるために、例えば、耐火物の最適化或いは溶解時間
の短縮等の技術開発が行なわれてきているが、充分な成
果は得られていない。
In order to carry out this high-frequency melting method, it is necessary to use a crucible made of refractory material. Recently, CaO, BN, C
There have been research reports on the high-frequency melting method that uses refractory crucibles such as titanium, but in the case of titanium (including titanium alloys), which is an extremely active metal, ductility decreases at room temperature due to contamination by impurity elements from the crucible Became a problem and it was difficult to put it into practical use. In order to minimize the contamination by this impurity element, for example, technological developments such as optimization of refractory or shortening of melting time have been carried out, but sufficient results have not been obtained.

[発明が解決しようとする課題] 本発明は上記に説明したような従来のチタンおよびチタ
ン合金の溶解方法の種々の問題点に鑑み、本発明者が鋭
意研究を行ない、検討を重ねた結果、不純物元素の含有
量を最小限に抑制するのではなく、逆に含有量を適正な
範囲で上昇させることにより、例えば、スクラップ溶解
を可能にし、常温で高延性を有するチタンおよびチタン
合金の溶解方法を開発したのである。
[Problems to be Solved by the Invention] In view of various problems of the conventional methods for melting titanium and titanium alloys as described above, the present invention has been earnestly studied by the present inventors, and as a result of repeated studies, Instead of suppressing the content of the impurity element to the minimum, on the contrary, by increasing the content within an appropriate range, for example, a melting method of titanium and titanium alloys that enables scrap melting and has high ductility at room temperature. Was developed.

[課題を解決するための手段] 本発明に係るチタンおよびチタン合金の溶解方法の特徴
とするところは、 グラファイト坩堝中で炭素0.5wt%以上1.8wt%未満であ
ってチタンα相中への固溶限以上の量を含有させながら
高周波溶解を行ない、次に、冷却過程において該固溶炭
素をTiCとして析出させることにある。
[Means for Solving the Problems] A feature of the method for melting titanium and titanium alloys according to the present invention is that the carbon content in the graphite crucible is 0.5 wt% or more and less than 1.8 wt% and the solid content in the titanium α phase is high. This is to perform high frequency melting while containing an amount equal to or more than the melting limit, and then precipitate the solid solution carbon as TiC in the cooling process.

本発明に係るチタンおよびチタン合金の溶解方法につい
て、以下詳細に説明する。
The method for melting titanium and titanium alloy according to the present invention will be described in detail below.

本発明に係るチタンおよびチタン合金の溶解方法におい
ては、グラファイト坩堝を使用するのであるが、従来の
高周波溶解法においてはCaO坩堝を使用しており、このC
aO坩堝を使用した場合、汚染物質は酸素であり、通常の
高周波溶解では0.5wt%まで酸素含有量が増加するもの
で、チタンに酸素が多量に含有されると、強度は上昇す
るが延性は極端に劣化するため、実用的な材料としては
不適である。また、α相チタンに対しては酸素は約15wt
%まで固溶してしまうので、それ以上意図的に酸素含有
量を増加させても延性を改善することは不可能である。
In the titanium and titanium alloy melting method according to the present invention, a graphite crucible is used, but in the conventional high-frequency melting method, a CaO crucible is used.
When aO crucible is used, the pollutant is oxygen, and the oxygen content increases to 0.5 wt% in normal high frequency melting.If a large amount of oxygen is contained in titanium, the strength increases but the ductility does not increase. Since it deteriorates extremely, it is not suitable as a practical material. Also, oxygen is about 15 wt% for α phase titanium.
However, even if the oxygen content is increased intentionally, it is impossible to improve the ductility.

しかし、本発明に係るチタン及びチタン合金の溶解方法
におけるように、グラファイト坩堝を使用すると、汚染
物質は炭素であり、この炭素はα相チタンに対して固溶
限が小さく、包析温度において約0.5wt%であり、固溶
限近傍まで炭素が混入てもTiCの析出は少なく、固溶炭
素として存在し、酸素の場合と同様に、固溶体強化によ
る強度上昇に伴い、延性は低下し、常温における伸び、
絞りは零となる。しかして、従来においては炭素は低下
すべきであると考えられていたため、グラファイト坩堝
を使用した高周波溶解材の炭素含有量は、固溶限以下に
抑制され、それが逆に低延性となる結果になった。
However, when a graphite crucible is used as in the method for melting titanium and titanium alloys according to the present invention, the contaminant is carbon, and this carbon has a small solid solubility limit with respect to α-phase titanium, and at the encapsulation temperature, 0.5% by weight, TiC does not precipitate even when carbon is mixed up to near the solid solution limit, exists as solid solution carbon, and as with oxygen, the ductility decreases as the strength increases due to solid solution strengthening, and Growth in
The diaphragm becomes zero. However, since it was thought that carbon should be lowered in the past, the carbon content of the high-frequency melting material using a graphite crucible was suppressed below the solid solubility limit, which on the contrary resulted in low ductility. Became.

そして、包析点におけるα相中へ固溶限以上に炭素が含
有した場合、冷却過程で炭素の大部分がTiCとして析出
するため、α相中の炭素の固溶量は低下し、延性が得ら
れるのである。
Then, when carbon is contained in the α phase at the encapsulation point in an amount higher than the solid solution limit, most of the carbon precipitates as TiC during the cooling process, so the solid solution amount of carbon in the α phase decreases and the ductility increases. You can get it.

従って、炭素の含有量を低下させることが特性改善につ
ながるものではなく、かえって、炭素含有量0.5wt%を
意図的に含有させることが最も重要な要件であり、ま
た、炭素含有量が多くなり過ぎると元々延性のないTiC
が冷却過程において多量に析出するため、延性が低下す
るので、炭素含有量は1.8wt%未満とする必要がある。
Therefore, lowering the carbon content does not lead to improvement of the characteristics, but rather the intentional inclusion of a carbon content of 0.5 wt% is the most important requirement. Originally non-ductile TiC
Since a large amount is precipitated during the cooling process, the ductility is reduced, so the carbon content must be less than 1.8 wt%.

[実 施 例] 本発明に係るチタンおよびチタン合金の溶解方法の実施
例を説明する。
[Examples] Examples of the method for melting titanium and titanium alloys according to the present invention will be described.

実施例1 グラファイト坩堝を使用し、真空中においてTi−6Al−4
Vスクラップ材を高周波溶解炉(約5kgf)で溶解し、溶
解時間を変化させることにより炭素含有量を変化させ、
鍛造後焼鈍した場合の常温引張試験を行なった。この時
の、鍛造条件は950℃の温度に加熱し、鍛錬比を5とし
た。焼鈍は700℃の温度で2時間行なった。
Example 1 Using a graphite crucible, Ti-6Al-4 in vacuum
V scrap material is melted in a high frequency melting furnace (about 5 kgf) and the melting time is changed to change the carbon content,
A room temperature tensile test was performed when annealing was performed after forging. At this time, the forging conditions were heating to a temperature of 950 ° C. and a forging ratio of 5. The annealing was performed at a temperature of 700 ° C. for 2 hours.

第1表に炭素の化学分析結果および常温の引張性質を示
してある。
Table 1 shows the chemical analysis results of carbon and the tensile properties at room temperature.

この第1表から炭素含有量が0.5wt%以上、1.8wt%未満
において、高延性(伸び)が得られていることがわか
る。
It can be seen from Table 1 that high ductility (elongation) is obtained when the carbon content is 0.5 wt% or more and less than 1.8 wt%.

実施例2 実施例1と同様な方法で、スポンジチタンを高周波溶解
法(約5kgf)により溶解し、製造された鋳塊を鍛造後、
焼鈍し、常温で引張試験を行なった。鍛造条件は800℃
の温度で加熱し、鍛錬比は5である。焼鈍は700℃の温
度で2時間である。
Example 2 In the same manner as in Example 1, titanium sponge was melted by a high frequency melting method (about 5 kgf), and the manufactured ingot was forged,
It was annealed and a tensile test was performed at room temperature. Forging condition is 800 ℃
It is heated at the temperature of, and the training ratio is 5. Annealing is at a temperature of 700 ° C. for 2 hours.

第2表にその結果を示す。The results are shown in Table 2.

炭素含有量が0.5wt%以上、1.8wt%未満において、高延
性が得られていることがわかる。
It can be seen that high ductility is obtained when the carbon content is 0.5 wt% or more and less than 1.8 wt%.

[発明の効果] 以上説明したように、本発明に係るチタンおよびチタン
合金の溶解方法は上記の構成であるから、高周波溶解法
により高延性を有するチタンおよびチタン合金を製造す
ることあできるという効果を有している。
[Effects of the Invention] As described above, since the method for melting titanium and titanium alloy according to the present invention has the above-described structure, it is possible to manufacture titanium and titanium alloy having high ductility by the high frequency melting method. have.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】グラファイト坩堝中で炭素0.5wt%以上1.8
wt%未満であってチタンα相中への固溶限以上の量を含
有させながら高周波溶解を行ない、次に、冷却過程にお
いて該固溶炭素をTiCとして析出させることを特徴とす
るチタンおよびチタン合金の溶解方法。
1. Carbon 0.5 wt% or more 1.8 in a graphite crucible
Titanium and titanium characterized by performing high frequency melting while containing less than wt% and more than the solid solubility limit in the titanium α phase, and then precipitating the solid solution carbon as TiC in the cooling process. Method of melting alloy.
JP4716588A 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys Expired - Lifetime JPH07109014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4716588A JPH07109014B2 (en) 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4716588A JPH07109014B2 (en) 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys

Publications (2)

Publication Number Publication Date
JPH01222026A JPH01222026A (en) 1989-09-05
JPH07109014B2 true JPH07109014B2 (en) 1995-11-22

Family

ID=12767458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4716588A Expired - Lifetime JPH07109014B2 (en) 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys

Country Status (1)

Country Link
JP (1) JPH07109014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070062614A1 (en) * 2005-09-19 2007-03-22 Grauman James S Titanium alloy having improved corrosion resistance and strength

Also Published As

Publication number Publication date
JPH01222026A (en) 1989-09-05

Similar Documents

Publication Publication Date Title
AU2006203712B2 (en) Method for producing large diameter ingots of nickel base alloys
US4386976A (en) Dispersion-strengthened nickel-base alloy
US5759303A (en) Clean single crystal nickel base superalloy
EP0322087A2 (en) High strength titanium material having improved ductility and method for producing same
JP3894987B2 (en) Heat-resistant platinum material
JPH07109014B2 (en) Method for melting titanium and titanium alloys
JP2002531709A (en) Alloys for high temperature use in aggressive environments
WO2023015608A1 (en) High strength, high conductivity, intergranular corrosion-resistant aluminum alloy and preparation method therefor
JP2010275630A (en) METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY CONTAINING BORON HAVING HIGH FATIGUE STRENGTH, AND METHOD FOR MANUFACTURING TITANIUM ALLOY MATERIAL BEING USED FOR THE SAME
EP0763604A1 (en) Clean single crystal nickel base superalloy
US3676114A (en) Improvement in the process relating to alloys containing platinum group metals
Ostermann et al. Molybdenum in Nb-C alloys
KR20200077966A (en) Cast type alpha+beta titanium alloy and method for manufacturing the same
JP2646430B2 (en) High conductivity and high heat resistant copper alloy and method for producing the same
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JPH05339688A (en) Production of molding material for casting metal
JPH0559466A (en) Production of low oxygen ti-al alloy and low oxygen ti-al alloy
KR102472842B1 (en) Method for producing ferrotitanium with improved elongation and ferrotitanium produced thereby
JPH10265866A (en) Production of vanadium-containing base alloy for producing titanium alloy
CN117144166A (en) Production method and production device of medical nickel-titanium alloy wire
Sikka et al. Processing and properties of Nb-Ti-base alloys
JPS6277446A (en) Electrode alloy for glass melting furnace
KR100209305B1 (en) Manufacturing method of gamma titanium aluminaid alloy
Mathews et al. Mechanical properties of Vanadium-Carbon alloys
CN115948670A (en) AM decomposition type shape memory alloy and preparation method thereof