JPS6277446A - Electrode alloy for glass melting furnace - Google Patents

Electrode alloy for glass melting furnace

Info

Publication number
JPS6277446A
JPS6277446A JP21641985A JP21641985A JPS6277446A JP S6277446 A JPS6277446 A JP S6277446A JP 21641985 A JP21641985 A JP 21641985A JP 21641985 A JP21641985 A JP 21641985A JP S6277446 A JPS6277446 A JP S6277446A
Authority
JP
Japan
Prior art keywords
alloy
electrode
corrosion resistance
glass
inconel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21641985A
Other languages
Japanese (ja)
Inventor
Shuichi Komatsu
小松 周一
Masato Kamata
鎌田 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21641985A priority Critical patent/JPS6277446A/en
Publication of JPS6277446A publication Critical patent/JPS6277446A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an electrode having superior corrosion resistance and a high m.p. by using a Cr-Ni-Co-Fe alloy having a specified composition as a material for an electrode used to cake fission products in used nuclear fuel by a glass caking method. CONSTITUTION:An alloy having a composition consisting of, by weight, 24-45% Cr, 5-15% Ni, <20% Co, 0.005-0.5% Al, 0.1-2% Ti, 0.1-1% Mn, 0.01-0.8% Si and the balance Fe is used as a material for an electrode used in a glass melting furnace when high-level waste liquor produced by the reprocessing of used nuclear fuel is caked by a glass caking method by which superior safety and storage stability are provided. An electrode having a higher m.p. than a conventional electrode of 'Inconel 690(R)' and also having superior corrosion resistance is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は吠用済核燃料の再処理によって発生する制レベ
ル廃液のf2ス固化技術におけるガラス溶融炉に用いら
nる電極材料の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in electrode materials used in glass melting furnaces in f2 soot solidification technology for level control waste liquid generated by reprocessing spent nuclear fuel.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

使用済核燃料に含まnる核分裂生成物など編Vペルの放
射性物質は、再処理過程で核物質と分離され、廃液とし
てrlk縮さrt’を後、様々の方法で固化され保存さ
れる。現在、固化方法の1つとして、安全性、貯蔵性に
l&nたガラス固化処理法が考えられている。このガラ
ス固化処理技術については、各国において精力的な研究
がなされている。
The radioactive materials contained in spent nuclear fuel, such as fission products, are separated from nuclear materials during the reprocessing process, and are solidified and stored in various ways after being compressed and treated as waste liquid. Currently, as one of the solidification methods, a vitrification treatment method is being considered that is safe and storable. This vitrification treatment technology is being actively researched in various countries.

ガラス固化処理技術のうちガラスの溶融法としては、電
極から廃液及びガラス原料への直接通電により発生する
ノーール熱を利用する方法がある。この電極は、100
0℃以上の溶融ガラスという苛酷な腐食環境にさらさn
ることになるため、電極の寿命が溶融炉の寿命を決定す
る大きな要因となっている。
Among the vitrification processing techniques, there is a method for melting glass that utilizes the norl heat generated by direct electricity supply from electrodes to waste liquid and glass raw materials. This electrode has 100
Exposure to the harsh corrosive environment of molten glass at temperatures above 0°C
Therefore, the life of the electrode is a major factor in determining the life of the melting furnace.

従来、ガラス溶融炉の電極材料としては、金属モリブデ
ン、酸化スズ、黒鉛などが検討されてきたが、これらは
いずれも溶融ガラス中での耐食性に一点がある。このた
め現在では、種々検討の結果、比較的耐食性のdinた
インコネル690がノ4イロットf2ントなどに採用さ
【ている。しかし、インコネル690の融点は約135
0℃であり、モリブデンなどと比較すると低いため、操
炉条件が限定さnるという欠点がある。
Conventionally, metal molybdenum, tin oxide, graphite, and the like have been considered as electrode materials for glass melting furnaces, but all of these have one drawback: their corrosion resistance in molten glass. For this reason, as a result of various studies, Inconel 690, which is relatively corrosion resistant, is currently being used in 4-pilot, 2-piece, etc. However, the melting point of Inconel 690 is about 135
Since the temperature is 0°C, which is lower than that of molybdenum, etc., there is a drawback that the operating conditions for the furnace are limited.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消Tるためになされたもので!、
インコネル690と比較して同等以上の耐食性を有し、
しかも融点が少なくとも50℃以上高いガラス醗融炉用
−・直材料金提供しようとするものであろう 〔発明の概要〕 本発明のガラス溶融炉用4M合金は、重社チでCr:2
5〜45チ、Nf :5〜15%、co:20fb以下
The present invention has been made to eliminate the above-mentioned drawbacks! ,
Has corrosion resistance equal to or higher than Inconel 690,
In addition, the 4M alloy for glass melting furnaces of the present invention, which has a melting point of at least 50° C. or higher, is intended to be used as a direct material for glass melting furnaces.
5-45chi, Nf: 5-15%, co: 20 fb or less.

AL: 0.005〜0.5% 、 Ti : 0.1
〜2% 、 Mn : 0゜1〜1チ、Si:0.01
〜0.8%  を含有し、残部が実質的にFeからなる
組成を有することを特徴とするものである。
AL: 0.005-0.5%, Ti: 0.1
~2%, Mn: 0°1~1ch, Si: 0.01
-0.8%, with the remainder essentially consisting of Fe.

このような合金は溶融ガラス中においてインコネル69
0より良好な耐良性を有し、しかもインコネル690よ
シも融点が少なくとも50℃以上高くなる。
Such alloys are inconel 69 in molten glass.
Inconel 690 has better good resistance than Inconel 690, and its melting point is at least 50°C higher than Inconel 690.

以下、本発明において各成分の組成を上記の範囲に限定
した理由を説明する。
The reason why the composition of each component is limited to the above range in the present invention will be explained below.

Crは基本的に本発明に係る合金の耐食性全維持するた
めの元素である。Crの組成全25〜45%としたのは
、25チ未満では溶融ガラス中での耐食性を維持するこ
とができず、一方45%を超えると合金が脆くなり、加
工性が著しく低下するためである。
Cr is basically an element for maintaining the corrosion resistance of the alloy according to the invention. The reason why the total Cr content is 25 to 45% is because if it is less than 25%, corrosion resistance in molten glass cannot be maintained, while if it exceeds 45%, the alloy becomes brittle and the workability is significantly reduced. be.

NiはCrとともに合金の耐食性を向上させ、かつ加工
性を向上式せるための元素である。Niの含有量を5〜
15チとしたのは、5チ未満では合金の耐食性及び加工
性全向上させることができず、−万15チを超えると合
金の融点をインコネル690よシ上昇させることが困難
となるためである。
Ni is an element that, together with Cr, improves the corrosion resistance of the alloy and improves the workability. Ni content 5~
The reason why it is set at 15 inches is because if it is less than 5 inches, it is not possible to fully improve the corrosion resistance and workability of the alloy, and if it exceeds -15 inches, it becomes difficult to raise the melting point of the alloy compared to Inconel 690. .

Al、 Tiはいずれも合金の溶融ガラス中での耐食性
全向上式せる目的で添加てnる元素でるる。Alの添加
量を0.005〜0.5チとしたのは、0.005チ未
満では耐食性を向上させる効果が少なく、一方0.5%
を超えると耐食性に対して有害な相が析出するためであ
る。Tiの添加量を0、1〜2%としたのもAlの場合
と同様な理由である。
Both Al and Ti are elements added for the purpose of completely improving the corrosion resistance of the alloy in molten glass. The reason why the amount of Al added is 0.005 to 0.5 inch is because if it is less than 0.005 inch, the effect of improving corrosion resistance is small;
This is because, if the content exceeds 50%, a phase harmful to corrosion resistance will precipitate. The reason why the amount of Ti added is set to 0.1 to 2% is the same as in the case of Al.

Mnは脱酸剤として添加される元素である。Mnの添加
全音0.1〜1チとしたのは、0.1%未満では脱酸剤
としての効果がなく、一方1%を超えると合金の溶製が
困難となるためである。
Mn is an element added as a deoxidizing agent. The reason why Mn is added in an amount of 0.1 to 1% is because if it is less than 0.1%, it is not effective as a deoxidizing agent, whereas if it exceeds 1%, it becomes difficult to melt the alloy.

Slも合金の耐食性を向上させるために添加される元素
でるる。Siの添加量を0,01〜0.8%としたのは
、0.01チ未満では合金の耐食性を向上させる効果が
少なく、一方0.8%金超えると合金が脆化するためで
ある。
Sl is also an element added to improve the corrosion resistance of the alloy. The reason why the amount of Si added is set to 0.01 to 0.8% is that less than 0.01% gold has little effect on improving the corrosion resistance of the alloy, while if it exceeds 0.8% gold, the alloy becomes brittle. .

COを20係以下宮有し、残部を実質的にFe(すなわ
ちFeとP、S、Sn@の不可避不純物)としたのは、
Cr −Ni −Fe−Co系合金はインコネル690
よりも高い融点を有するためである。
The reason for having less than 20 units of CO and the remainder being essentially Fe (that is, unavoidable impurities of Fe and P, S, and Sn@) is because
Cr-Ni-Fe-Co alloy is Inconel 690
This is because it has a higher melting point.

COの含有蓋?20%以下としたのは、20%を超える
と加工性が低下するためである。
CO-containing lid? The reason why it is set to 20% or less is because if it exceeds 20%, workability will deteriorate.

なお、本発明に係る合金において、強度を向上させる作
用を有するCの添加iについては特に限定しないが、C
の添加量が多すぎると粒界に粗大な炭化物が形成され、
耐食性が劣化するおそnがあるため、0.5%以下とす
ることが望ましい。
Note that in the alloy according to the present invention, the addition i of C, which has the effect of improving strength, is not particularly limited;
If the amount of addition is too large, coarse carbides will be formed at the grain boundaries,
Since there is a possibility that corrosion resistance may deteriorate, it is desirable that the content be 0.5% or less.

〔発明の実施例〕[Embodiments of the invention]

下B12表に示す組成を有する合金全溶製した。 An alloy having the composition shown in Table B12 below was completely melted.

なお、比較例1はインコネル690である。これらの合
金について、浸漬試験を行ない、耐食性を評価した。こ
の浸漬試験は各合金をアルミするつぼ内で1270℃の
胚棄物模擬ガラス中に7日間浸漬した後の減肉祉を調べ
たものである。1だ、各合金の融点も測定した。上叱減
肉誼及び融点を下記表に併記する。
Note that Comparative Example 1 is Inconel 690. These alloys were subjected to an immersion test to evaluate their corrosion resistance. In this immersion test, each alloy was immersed in an aluminum crucible in simulated embryo waste glass at 1270° C. for 7 days, and then the thinning behavior was investigated. 1. The melting points of each alloy were also measured. The weight loss and melting point are also listed in the table below.

上記表から明らかなように、夷厖例1〜3の合金はいず
れもインコネル690(比較例1)よりも減肉量が少な
く、耐×性に5nているとともに、融点が50℃以上−
μ昇している。また、本発明の組成からはずnている比
較例2.3よりも減肉量が大幅に少なく 、+:vf艮
性に諌nておジ、融点も高い。
As is clear from the above table, all of the alloys of Inconel Examples 1 to 3 have less thickness loss than Inconel 690 (Comparative Example 1), have a resistance of 5N, and have a melting point of 50°C or higher.
μ is rising. Further, the amount of thinning was significantly smaller than that of Comparative Example 2.3, which was not based on the composition of the present invention, and the melting point was also high in addition to the +:vf resistance.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、#食性が良好で、し
かも融点の旨いガラス浴融炉用−憾台金全提供すること
ができ、ひいてはガラス溶融炉の操炉条件を安定化でき
る等顕著な効果を奏するものである。
As detailed above, according to the present invention, it is possible to provide a metal for glass bath melting furnaces that has good eating properties and a good melting point, and as a result, it is possible to stabilize the operation conditions of glass melting furnaces. This has a remarkable effect.

Claims (1)

【特許請求の範囲】[Claims] 重量%でCr:25〜45%、Ni:5〜15%、Co
:20%以下、Al:0.005〜0.5%、Ti:0
.1〜2%、Mn:0.1〜1%、Si:0.01〜0
.8%を含有し、残部が実質的にFeからなる組成を有
することを特徴とするガラス溶融炉用電極合金。
Cr: 25-45%, Ni: 5-15%, Co
: 20% or less, Al: 0.005-0.5%, Ti: 0
.. 1-2%, Mn: 0.1-1%, Si: 0.01-0
.. An electrode alloy for a glass melting furnace, characterized in that the electrode alloy contains 8% Fe and the remainder substantially consists of Fe.
JP21641985A 1985-09-30 1985-09-30 Electrode alloy for glass melting furnace Pending JPS6277446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21641985A JPS6277446A (en) 1985-09-30 1985-09-30 Electrode alloy for glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21641985A JPS6277446A (en) 1985-09-30 1985-09-30 Electrode alloy for glass melting furnace

Publications (1)

Publication Number Publication Date
JPS6277446A true JPS6277446A (en) 1987-04-09

Family

ID=16688268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21641985A Pending JPS6277446A (en) 1985-09-30 1985-09-30 Electrode alloy for glass melting furnace

Country Status (1)

Country Link
JP (1) JPS6277446A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001076A1 (en) * 1989-01-09 1992-01-23 Doryokuro Kakunenryo Kaihatsu Jigyodan Nickel-based alloy for glass-contacting member used in unelectrified state
WO1992001077A1 (en) * 1989-01-09 1992-01-23 Doryokuro Kakunenryo Kaihatsu Jigyodan Electrode material for glass melting furnace
US5100637A (en) * 1988-07-21 1992-03-31 Tokai Carbon Co., Ltd. Carbon black for compounding into tire tread rubber
JP2011046996A (en) * 2009-08-26 2011-03-10 Mitsubishi Materials Corp MEMBER MADE OF Co-BASED ALLOY FOR ELECTRIC MELTING FURNACE FOR SUBJECTING HIGH LEVEL RADIOACTIVE WASTE GLASS TO SOLIDIFICATION TREATMENT, AND ELECTRIC MELTING FURNACE THEREFOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100637A (en) * 1988-07-21 1992-03-31 Tokai Carbon Co., Ltd. Carbon black for compounding into tire tread rubber
WO1992001076A1 (en) * 1989-01-09 1992-01-23 Doryokuro Kakunenryo Kaihatsu Jigyodan Nickel-based alloy for glass-contacting member used in unelectrified state
WO1992001077A1 (en) * 1989-01-09 1992-01-23 Doryokuro Kakunenryo Kaihatsu Jigyodan Electrode material for glass melting furnace
US5330710A (en) * 1989-01-09 1994-07-19 Doryokuro Kakunenryo Kaihatsu Jigyodan Nickel-base alloy for glass-contracting member used in unenergized state
JP2011046996A (en) * 2009-08-26 2011-03-10 Mitsubishi Materials Corp MEMBER MADE OF Co-BASED ALLOY FOR ELECTRIC MELTING FURNACE FOR SUBJECTING HIGH LEVEL RADIOACTIVE WASTE GLASS TO SOLIDIFICATION TREATMENT, AND ELECTRIC MELTING FURNACE THEREFOR

Similar Documents

Publication Publication Date Title
JP2818195B2 (en) Nickel-based chromium alloy, resistant to sulfuric acid and oxidation
CA1066922A (en) Heat-resistant allow for welded structures
US2190486A (en) Austenitic chromium nickel steel alloy
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JPS649387B2 (en)
US3161503A (en) Corrosion resistant alloy
EP1149181B1 (en) Alloys for high temperature service in aggressive environments
JPS6277446A (en) Electrode alloy for glass melting furnace
US2780545A (en) High-temperature alloy
EP0398264B1 (en) Precipitation hardening type nickel base single crystal cast alloy
KR100264709B1 (en) Corrosion resistant nickel base alloy having high resistance to stress corrosion cracking
US3174853A (en) Chromium base alloys
JPH076018B2 (en) Zr alloy with excellent corrosion resistance for reactor fuel cladding
JPH01168833A (en) Boron-containing titanium alloy
JPS6130645A (en) Tantalum-niobium-molybdenum-tangsten alloy
US3969160A (en) High-strength ductile uranium alloy
US2839396A (en) Alloy
CA1193115A (en) Nickel-chromium-iron alloy
JPS6277445A (en) Electrode alloy for glass melting furnace
JPS61279659A (en) Electrode alloy for glass melting furnace
JPS62127452A (en) Electrode alloy for glass-melting furnace
JPS61190046A (en) Electrode alloy for glass melting furnace
US2886431A (en) Vanadium alloys
US3205070A (en) Corrosion resistant zirconium base alloys containing cb, cr, and sn
JPH0143833B2 (en)