JPH01222026A - Melting method for titanium and titanium alloy - Google Patents

Melting method for titanium and titanium alloy

Info

Publication number
JPH01222026A
JPH01222026A JP4716588A JP4716588A JPH01222026A JP H01222026 A JPH01222026 A JP H01222026A JP 4716588 A JP4716588 A JP 4716588A JP 4716588 A JP4716588 A JP 4716588A JP H01222026 A JPH01222026 A JP H01222026A
Authority
JP
Japan
Prior art keywords
titanium
carbon
melting
solid solution
alpha phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4716588A
Other languages
Japanese (ja)
Other versions
JPH07109014B2 (en
Inventor
Hideto Oyama
英人 大山
Yoshiro Ashida
芦田 善郎
Atsushi Takemura
武村 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4716588A priority Critical patent/JPH07109014B2/en
Publication of JPH01222026A publication Critical patent/JPH01222026A/en
Publication of JPH07109014B2 publication Critical patent/JPH07109014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To melt titanium having high ductility at an ordinary temp. by subjecting titanium and titanium alloy to high-frequency melting in a graphitic crucible while carbon having the specific amounts which are also those of solid solution limit or above into a titanium alpha phase thereto and depositing TIC in a cooling stage. CONSTITUTION:The titanium and titanium alloy are subjected to high-frequency melting in a graphitic crucible. At this time, carbon, 0.5-<1.8wt.%, as well as having the amounts of solid solution limit or above into a titanium alpha phase is incorporated thereto. Carbon which forms solid solution is then deposited as TIC in the cooling stage of the molten metal. As the result, the amounts of carbon which forms solid solution into the alpha phase are reduced. By this method, titanium or titanium alloy having high ductility can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタンおよびチタン合金の溶解方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for melting titanium and titanium alloys.

[従来の技術] 従来においては、チタンおよびチタン合金の溶解は、°
水冷坩堝を使用し、消耗電極式アーク溶解法により行な
われている。この場合、被溶解材により電極を製造して
から溶解するのであるが、−度の溶解では溶は残りがあ
ったり或いは合金の場合には偏析等の問題が生じるため
、−度溶解した材料を電極にして再度溶解する二重溶解
を行なうのが通常であった。
[Prior art] In the past, titanium and titanium alloys were melted by
It is performed using a consumable electrode arc melting method using a water-cooled crucible. In this case, electrodes are manufactured from the material to be melted and then melted. However, if the material is melted to a certain degree, there may be residual melt, or if it is an alloy, problems such as segregation may occur, so the material melted at a certain degree is not used. It was usual to carry out double melting, in which electrodes were used to melt the material again.

このような溶解方法では、健全な鋳塊を製造するまでに
非常に多くの工程を行なわなければならず製造工程が煩
雑であった。
In such a melting method, a large number of steps must be performed before producing a sound ingot, making the production process complicated.

これを解決したのが、例えば、スクラップのプラズマ溶
解法または高周波溶解法等の溶解方法が検討されており
、中でも注目されている溶解方法は高周波溶解法である
To solve this problem, melting methods such as scrap plasma melting method or high frequency melting method are being considered, and the melting method that is attracting attention among them is high frequency melting method.

そして、この高周波溶解法を行なうためには、耐火物か
らなる坩堝を使用する必要があり、最近、Cab、BN
%C等の耐火物の坩堝を使用する高周波溶解法め研究報
告がなされているが、極めて活性な金属であるチタン(
チタン合金を含む)においては、坩堝からの不純物元素
による汚染で常温における延性の低下が問題となり、実
用化は困難であった。この不純物元素による汚染を最小
限に抑えるために、例えば、耐火物の最適化或いは溶解
時間の短縮等の技術開発が行なわれてきているが、充分
な成果は得られていない。
In order to perform this high frequency melting method, it is necessary to use a crucible made of refractory material, and recently, Cab, BN,
There have been research reports on high-frequency melting methods using refractory crucibles such as %C, but titanium, which is an extremely active metal (
(including titanium alloys), contamination by impurity elements from the crucible caused a problem of reduced ductility at room temperature, making it difficult to put them into practical use. In order to minimize contamination by impurity elements, technological developments such as optimization of refractories and shortening of melting time have been carried out, but sufficient results have not been obtained.

[発明が解決しようとする課題] 本発明は上記に説明したような従来のチタンおよびチタ
ン合金の溶解方法の種々の問題点に鑑み、本発明者が鋭
意研究を行ない、検討を重ねた結果、不純物元素の含有
量を最小限に抑制するのではなく、逆に含有量を適正な
範囲まで上昇させることにより、例えば、スクラップ溶
解を可能にし、常温で高延性を有するチタンおよびチタ
ン合金の溶解方法を開発したのである。
[Problems to be Solved by the Invention] In view of the various problems of the conventional melting methods for titanium and titanium alloys as explained above, the present inventor has conducted intensive research and has made numerous considerations. A method for melting titanium and titanium alloys that does not minimize the content of impurity elements, but instead increases the content to an appropriate range, making scrap melting possible and having high ductility at room temperature. was developed.

[課題を解決するための手段] 本発明に係るチタンおよびチタン合金の溶解方法の特徴
とするところは、 グラファイト坩堝中で炭素0.5wt%以上1.8wt
%未満であってチタンα相中への固溶限以上の量を含有
させながら高周波溶解を行ない、次に、冷却過程におい
て該固溶炭素をTiCとして析出させることにある。
[Means for Solving the Problems] The method for melting titanium and titanium alloys according to the present invention is characterized by: 0.5 wt% or more of carbon 1.8 wt% in a graphite crucible
% and above the solid solubility limit in the titanium alpha phase, and then performs high frequency dissolution while causing the solid solute carbon to precipitate as TiC in the cooling process.

本発明に係るチタンおよびチタン合金の溶解方法につい
て、以下詳細に説明する。
The method for melting titanium and titanium alloys according to the present invention will be described in detail below.

本発明に係るチタンおよびチタン合金の溶解方法におい
ては、グラファイト坩堝を使用するのであるが、従来の
高周波溶解法においてはCaO坩堝を使用しており、こ
のCaO坩堝を使用した場合、汚染物質は酸素であり、
通常の高周波溶解では0 、5wt%まで酸素含有量が
増加するもので、チタンに酸素が多量に含有されると、
強度は上昇するが延性は極端に劣化するため、実用的な
材料としては不適である。また、α相チタンに対しては
酸素は約15vt%まで固溶してしまうので、それ以上
意図的に酸素含有量を増加させても延性を改善すること
は不可能である。
In the method for melting titanium and titanium alloys according to the present invention, a graphite crucible is used, but in the conventional high-frequency melting method, a CaO crucible is used. and
In normal high-frequency melting, the oxygen content increases to 0.5 wt%, and when titanium contains a large amount of oxygen,
Although the strength increases, the ductility deteriorates extremely, making it unsuitable as a practical material. Further, since oxygen is dissolved in α-phase titanium up to about 15% by volume, it is impossible to improve the ductility even if the oxygen content is intentionally increased further.

しかし、本発明に係るチタンおよびチタン合金の溶解方
法におけるように、グラファイト坩堝を使用すると、汚
染物質は炭素であり、この炭素はα相チタンに対して固
溶限が小さく、包析温度において約0.5wt%であり
、固溶限近傍まで炭素が混入してもTiCの析出は少な
く、固溶炭素として存在し、酸素の場合と同様に、固溶
体強化による強度上昇に伴い、延性は低下し、常温にお
ける伸び、絞りは零となる。しかして、従来においては
炭素は低下すべきであると考えられていたため、グラフ
ァイト坩堝を使用した高周波溶解材の炭素含有量は、固
溶限以下に抑制され、それが逆に低延性となる結果にな
った。
However, when a graphite crucible is used as in the method for melting titanium and titanium alloys according to the present invention, the contaminant is carbon, which has a small solid solubility limit with respect to alpha-phase titanium and has a 0.5 wt%, even if carbon is mixed near the solid solution limit, TiC will not precipitate much and will exist as solid solution carbon, and as with oxygen, the ductility will decrease as the strength increases due to solid solution strengthening. , elongation and aperture at room temperature are zero. However, since it was conventionally believed that carbon should be reduced, the carbon content of high-frequency melted materials using graphite crucibles was suppressed to below the solid solubility limit, which resulted in low ductility. Became.

そして、包析点におけるα相中へ固溶限以上に炭素が含
有した場合、冷却過程で炭素の大部分がTiCとして析
出するため、α相中の炭素の固溶量は低下し、延性が得
られるのである。
If carbon is contained in the α phase at the envelopment point in an amount exceeding the solid solubility limit, most of the carbon will precipitate as TiC during the cooling process, so the amount of carbon dissolved in the α phase will decrease and the ductility will decrease. You can get it.

従って、炭素の含有量を低下させることが特性改善につ
ながるものではなく、かえって、炭素含有量0.5vt
%以上を意図的に含有させることが最も重要な要件であ
り、また、炭素含有量が多くなり過ぎると元々延性のな
いTiCが冷却過程において多量に析出するため、延性
が低下するので、炭素含有量は1.8wt%未満とする
必要がある。
Therefore, lowering the carbon content does not lead to improvement in characteristics, and on the contrary, reducing the carbon content by 0.5vt
The most important requirement is to intentionally contain at least % of The amount should be less than 1.8 wt%.

[実 施 例] 本発明に係るチタンおよびチタン合金の溶解方法の実施
例を説明する。
[Example] An example of the method for melting titanium and titanium alloy according to the present invention will be described.

実施例1 グラファイト坩堝を使用し、真空中においてT+−6A
I−4Vスクラツプ材を高周波溶解炉(約5 kgf)
で溶解し、溶解時間を変化させることにより炭素含有量
を変化させ、鍛造後焼鈍した場合の常温引張試験を行な
った。この時の、鍛造条件は950℃の温度に加熱し、
鍛錬比を5とした。焼鈍は700℃の温度で2時間行な
った。
Example 1 T+-6A in vacuum using a graphite crucible
I-4V scrap material is melted in a high frequency melting furnace (approximately 5 kgf)
The carbon content was varied by changing the melting time, and a room temperature tensile test was conducted when the steel was forged and then annealed. At this time, the forging conditions were heating to a temperature of 950°C,
The training ratio was set to 5. Annealing was performed at a temperature of 700°C for 2 hours.

第1表に炭素の化学分析結果および常温の引張性質を示
しである。
Table 1 shows the results of chemical analysis of carbon and its tensile properties at room temperature.

この第1表から炭素含有量が0.5wt%以上、1 、
8wt%未満において、高延性(伸び)が得られている
ことがわかる。
From this Table 1, if the carbon content is 0.5 wt% or more, 1,
It can be seen that high ductility (elongation) is obtained at less than 8 wt%.

第1表 実施例2 実施例1と同様な方法で、スポンジチタンを高周波溶解
法(約5 kgf)により溶解し、製造された鋳塊を鍛
造後、焼鈍し、常温で引張試験を行なった。鍛造条件は
800℃の温度で加熱し、鍛錬比は5である。焼鈍は7
00℃の温度で2時間である。
Table 1 Example 2 In the same manner as in Example 1, titanium sponge was melted by high frequency melting (approximately 5 kgf), and the produced ingot was forged, annealed, and subjected to a tensile test at room temperature. The forging conditions were heating at a temperature of 800°C and a forging ratio of 5. Annealing is 7
2 hours at a temperature of 00°C.

第2表にその結果を示す。Table 2 shows the results.

炭素含有量が0 、5wt%以上、1 、8wt%未膚
において、高延性が得られていることがわかる。
It can be seen that high ductility is obtained when the carbon content is 0.5 wt% or more and 1.8 wt% or less.

第2表 [発明の効果] 以上説明したように、本発明に係るチタンおよびチタン
合金の溶解方法は上記の構成であるから、高周波溶解法
により高延性を有するチタンおよびチタン合金を製造す
ることができるという効果を有している。
Table 2 [Effects of the Invention] As explained above, since the method for melting titanium and titanium alloys according to the present invention has the above configuration, titanium and titanium alloys having high ductility can be manufactured by high frequency melting method. It has the effect of being possible.

Claims (1)

【特許請求の範囲】[Claims] グラファイト坩堝中で炭素0.5wt%以上1.8wt
%未満であってチタンα相中への固溶限以上の量を含有
させながら高周波溶解を行ない、次に、冷却過程におい
て該固溶炭素をTiCとして析出させることを特徴とす
るチタンおよびチタン合金の溶解方法。
0.5wt% or more of carbon 1.8wt in graphite crucible
Titanium and titanium alloys, characterized in that high-frequency melting is carried out while containing less than % and above the solid solubility limit in the titanium alpha phase, and then the solid solute carbon is precipitated as TiC in the cooling process. How to dissolve.
JP4716588A 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys Expired - Lifetime JPH07109014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4716588A JPH07109014B2 (en) 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4716588A JPH07109014B2 (en) 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys

Publications (2)

Publication Number Publication Date
JPH01222026A true JPH01222026A (en) 1989-09-05
JPH07109014B2 JPH07109014B2 (en) 1995-11-22

Family

ID=12767458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4716588A Expired - Lifetime JPH07109014B2 (en) 1988-02-29 1988-02-29 Method for melting titanium and titanium alloys

Country Status (1)

Country Link
JP (1) JPH07109014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007035422A2 (en) * 2005-09-19 2007-03-29 Titanium Metals Corporation Titanium alloy having improved corrosion resistance and strength

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007035422A2 (en) * 2005-09-19 2007-03-29 Titanium Metals Corporation Titanium alloy having improved corrosion resistance and strength
WO2007035422A3 (en) * 2005-09-19 2007-06-07 Titanium Metals Corp Titanium alloy having improved corrosion resistance and strength
JP2009509038A (en) * 2005-09-19 2009-03-05 テイタニウム メタルス コーポレイシヨン Titanium alloy with excellent corrosion resistance and strength
US7776257B2 (en) 2005-09-19 2010-08-17 Titanium Metals Corporation Titanium alloy having improved corrosion resistance and strength
AU2006292595B2 (en) * 2005-09-19 2011-03-17 Titanium Metals Corporation Titanium alloy having improved corrosion resistance and strength
JP4657349B2 (en) * 2005-09-19 2011-03-23 テイタニウム メタルス コーポレイシヨン Titanium alloy with excellent corrosion resistance and strength
EP2311999A3 (en) * 2005-09-19 2011-07-13 Titanium Metals Corporation Titanium alloy having improved corrosion resistance and strength
US8025747B2 (en) 2005-09-19 2011-09-27 Titanium Metals Corporation Titanium alloy having improved corrosion resistance and strength
EP2314726A3 (en) * 2005-09-19 2012-08-08 Titanium Metals Corporation Titanium alloy having improved corrosion resistance and strength

Also Published As

Publication number Publication date
JPH07109014B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US4684506A (en) Master alloy for the production of titanium-based alloys and method for producing the master alloy
CN114214534A (en) Modified aluminum alloy and preparation method thereof
Sandrock The metallurgy and production of rechargeable hydrides
CN116676521A (en) CrCoNi-based medium entropy alloy with heterogeneous grain heterostructure and preparation method thereof
JPH01222026A (en) Melting method for titanium and titanium alloy
KR20240029059A (en) High-strength composite modified aluminum alloy parts and manufacturing method thereof
CN115141947A (en) 5000 series aluminum alloy slab ingot with high-proportion added waste materials, preparation method thereof and aluminum material
US2721137A (en) Titanium base alloys
JP2010275630A (en) METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY CONTAINING BORON HAVING HIGH FATIGUE STRENGTH, AND METHOD FOR MANUFACTURING TITANIUM ALLOY MATERIAL BEING USED FOR THE SAME
JPH0621303B2 (en) Method for producing low oxygen Ti alloy
JP3632722B2 (en) Method for producing vanadium-containing master alloy for titanium alloy production
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
KR102472842B1 (en) Method for producing ferrotitanium with improved elongation and ferrotitanium produced thereby
US3676114A (en) Improvement in the process relating to alloys containing platinum group metals
CN113564376B (en) Method for preparing H13 steel through electroslag remelting
RU2349657C1 (en) Method of molybdenum of high purity manufacturing
JPH04120225A (en) Manufacture of ti-al series alloy
JP2015516512A (en) Method for producing oxide dispersion strengthened platinum-gold alloy powder using dry method
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
JPH0116289B2 (en)
US5234486A (en) Method for remelting reactive metals
RU2349658C1 (en) Method of manufacturing tungsten of high purity
JPH03197624A (en) Vacuum esr method for component control
JPH05140670A (en) Manufacture of ti al alloy
CN117144166A (en) Production method and production device of medical nickel-titanium alloy wire