JPH07107945B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH07107945B2
JPH07107945B2 JP1083985A JP1083985A JPH07107945B2 JP H07107945 B2 JPH07107945 B2 JP H07107945B2 JP 1083985 A JP1083985 A JP 1083985A JP 1083985 A JP1083985 A JP 1083985A JP H07107945 B2 JPH07107945 B2 JP H07107945B2
Authority
JP
Japan
Prior art keywords
layer
type
diffusion
active region
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1083985A
Other languages
Japanese (ja)
Other versions
JPS61171184A (en
Inventor
俊久 塚田
董 福沢
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP1083985A priority Critical patent/JPH07107945B2/en
Publication of JPS61171184A publication Critical patent/JPS61171184A/en
Publication of JPH07107945B2 publication Critical patent/JPH07107945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体発光装置あるいは半導体レーザの構造と
製造方法に係り、特に光情報処理用光源および光通信用
光源に好適な半導体発光装置(半導体レーザ)に関す
る。
Description: FIELD OF THE INVENTION The present invention relates to a structure and a manufacturing method of a semiconductor light emitting device or a semiconductor laser, and particularly to a semiconductor light emitting device (semiconductor laser) suitable for a light source for optical information processing and a light source for optical communication. ) Concerning.
〔発明の背景〕[Background of the Invention]
従来の装置はテイー・フクザワ他 アプライド・フィジ
ックス・レターズ 45(1)第1頁,1984年7月(T.Fuk
uzawa et al.Appl.phys.Letters,45(1)P.1 July 1
984)に記載されているようにMQW(Multiple Quantun W
ell)構造のレーザのBH構造をDIDを利用して拡散により
作製したものである。二回成長を必要としないなどの特
徴があり、リーク電流が大きい、活性領域の幅を狭く出
来ないなどの点があり改善が望まれていた。
The conventional device is T. Fukuzawa et al. Applied Physics Letters 45 (1) page 1, July 1984 (T. Fuk
uzawa et al. Appl.phys.Letters, 45 (1) P.1 July 1
984), MQW (Multiple Quantun W
The BH structure of the laser of the ell) structure is produced by diffusion using DID. It has characteristics that it does not require double growth, has a large leak current, and cannot narrow the width of the active region. Therefore, improvement has been desired.
〔発明の目的〕[Object of the Invention]
本発明の目的は単位モード、低電流で発振する信頼性の
高い半導体レーザを簡単な作製方法により提供すること
にある。
It is an object of the present invention to provide a highly reliable semiconductor laser which oscillates in a unit mode and a low current by a simple manufacturing method.
〔発明の概要〕 AlGaAs系超格子構造にZn拡散を行うと均一な平均塑性混
晶となる。拡散を行う前の超格子の屈折率が、拡散後の
平均組成混晶の屈折率より高いことを利用して半導体レ
ーザの横モード制御を行うことができる(前記文献)。
しかしながら上記文献の構造では第1図に示すように電
流を縦方向に流すことに固執しているため、セルフアラ
インメントが厳しい、直列抵抗が高い、リーク電流が大
きい、p形GaAs基板の使用、幅広い活性領域などの問題
点を有していた。本発明では横方向の電流パスを設ける
ことによりこれらの問題点を解決することを可能とした
ものである。
[Summary of the Invention] If Zn diffusion is performed on an AlGaAs superlattice structure, a uniform average plastic mixed crystal is formed. The transverse mode control of the semiconductor laser can be performed by utilizing the fact that the refractive index of the superlattice before the diffusion is higher than the refractive index of the average composition mixed crystal after the diffusion (the above-mentioned document).
However, in the structure of the above document, as shown in FIG. 1, since the current is fixed in the vertical direction, the self-alignment is severe, the series resistance is high, the leakage current is large, the p-type GaAs substrate is used, and the wide range is wide. There were problems such as the active area. In the present invention, these problems can be solved by providing a current path in the lateral direction.
〔発明の実施例〕Example of Invention
以下、本発明の一実施例を第2図により説明する。 An embodiment of the present invention will be described below with reference to FIG.
n型GaAs基板12上にMBE(Molecular Beam Epitaxy)法
によりつぎの各層を成長させる。n型Ga0.6Al0.4As(1
3)、MQW活性層(4)、n型Ga0.6Al0.4As(14)、p型
Ga0.6Al0.4As(15)、undoped GaAs(16)をこの順にそ
れぞれ10μ,0.1μ.0.5μ,0.5μ,2μの厚さに成長させ
た。MQW活性層は80ÅのGaAsと120ÅのGa0.7Al0.3As層の
5周期積層構造で、全体の厚さは1,000Åである。成長
後Si3N4絶縁膜を堆積し、8μのストライプ状に加工し
てこれを拡散マスクとしてZn拡散およびこれに続く熱処
理を実施した。拡散の条件は温度650℃で熱処理は950℃
にて2時間である。これによりn型GaAlAs(13)に達す
る深さ約4μの拡散層を得た。これにより活性領域のMQ
W層4の幅は2μmとなつた。なお、n型GaAlAs(14)
は省略することができ、層16はn型も可である 拡散後Si3N4層を除去し全面に金属電極を形成する。上
記電極はp型GaAsコンタクト層(17)への電極(11)で
Cr,Au、下部電極はn型GaAs基板12へのコンタクトでAu
−Ge−Niである。これをへき開して加工後Cuヒートシン
クヘボンデイングしてレーザ素子とした。
The following layers are grown on the n-type GaAs substrate 12 by the MBE (Molecular Beam Epitaxy) method. n-type Ga 0.6 Al 0.4 As (1
3), MQW active layer (4), n-type Ga 0.6 Al 0.4 As (14), p-type
Ga 0.6 Al 0.4 As (15) and undoped GaAs (16) were grown in this order to a thickness of 10μ, 0.1μ. 0.5μ, 0.5μ, 2μ, respectively. The MQW active layer is a 5-period laminated structure of 80Å GaAs and 120Å Ga 0.7 Al 0.3 As layer, and the total thickness is 1,000Å. After the growth, a Si 3 N 4 insulating film was deposited, processed into a stripe shape of 8 μm, and Zn diffusion and subsequent heat treatment were performed using this as a diffusion mask. Diffusion conditions are 650 ℃ and 950 ℃.
It is 2 hours. As a result, a diffusion layer reaching the n-type GaAlAs (13) with a depth of about 4 μm was obtained. This allows the active region MQ
The width of the W layer 4 was 2 μm. In addition, n-type GaAlAs (14)
Can be omitted, and the layer 16 may be n-type. After diffusion, the Si 3 N 4 layer is removed and a metal electrode is formed on the entire surface. The electrode is the electrode (11) to the p-type GaAs contact layer (17).
Cr, Au and lower electrodes are Au for contact to n-type GaAs substrate 12.
-Ge-Ni. This was cleaved, processed, and bonded to a Cu heat sink to form a laser element.
第3図は本発明の別の実施例を示したもので、アレー化
した半導体レーザを示している。作製方法は第2図の場
合と略々同じであるがMOCVD法により結晶成長を行い最
後の二層が異なる。p型Ga0.65Al0.35As層15のあとn型
GaAs層18、p型あるいはundoped GaAs層を成長させる。
これにより活性領域4の縦方向の構造はpnpn構造とな
る。したがつてこの方向に流れる電流は極めて小さくな
る。また構造としては、MQW後p型GaAlAs、n型GaAs、
p型GaAsを順次成長させる構造も可能で同様の効果が期
待できる。この場合、電流はDID層および活性領域上部
のp型GaAlAs層を通して流れるためより均一な励起が可
能となる。またMQW層は活性領域と同一としているが、M
QW層が活性領域の一部を構成する構造も可能である。
FIG. 3 shows another embodiment of the present invention, showing an arrayed semiconductor laser. The manufacturing method is almost the same as in the case of FIG. 2, but the last two layers are different by crystal growth by MOCVD. p-type Ga 0.65 Al 0.35 As layer 15 followed by n-type
GaAs layer 18, p-type or undoped GaAs layer is grown.
As a result, the vertical structure of the active region 4 becomes a pnpn structure. Therefore, the current flowing in this direction becomes extremely small. As the structure, after MQW, p-type GaAlAs, n-type GaAs,
A structure in which p-type GaAs is sequentially grown is also possible, and similar effects can be expected. In this case, since the current flows through the DID layer and the p-type GaAlAs layer above the active region, more uniform excitation is possible. The MQW layer is the same as the active region, but M
A structure in which the QW layer constitutes a part of the active region is also possible.
前実施例と同様にZn拡散、電極形、ボンデイングを行つ
てレーザアレイ素子を作製した。
A laser array element was manufactured by performing Zn diffusion, electrode shape, and bonding in the same manner as in the previous example.
上記実施例において拡散ポテンシヤルの差があるため電
流は拡散層9から活性領域4を通つて基板に抜ける。再
結合発光はMQW活性領域においておこりレーザ発振の活
性領域となる。拡散ポテンシヤル差があるためリーク電
流は低レベルに抑えられる。
Due to the difference in diffusion potential in the above embodiment, the current flows from the diffusion layer 9 through the active region 4 to the substrate. Recombination emission occurs in the MQW active region and becomes the active region of laser oscillation. Due to the difference in diffusion potential, the leak current can be suppressed to a low level.
第4図は本発明のSQW(Single Quantum Well)構造の実
施例を示したものである。n形GaAs基板12上にn形Ga
0.4Al0.6As13,n形GaAs層20,n型Ga0.75Al0.25層21,p形Ga
0.4Al0.6As層22,n形GaAs層23層を成長させる。層20はQW
層で厚さ80Åであり、層21は光ガイド層で0.15μの厚さ
である。
FIG. 4 shows an embodiment of the SQW (Single Quantum Well) structure of the present invention. n-type Ga on n-type GaAs substrate 12
0.4 Al 0.6 As 13, n-type GaAs layer 20, n-type Ga 0.75 Al 0.25 layer 21, p-type Ga
0.4 Al 0.6 As layer 22, n-type GaAs layer 23 are grown. Layer 20 is QW
The layer has a thickness of 80Å, and the layer 21 is a light guide layer having a thickness of 0.15μ.
成長後上記実施例で述べたと同様のZn拡散を行つてQWの
Disorder化を実現した。
After growth, Zn diffusion similar to that described in the above example is performed to
Realized Disorder.
本構造においてはQW層の上下方向がnpn構造となつてお
り、活性領域がn形となつている。これにより拡散ポテ
ンシヤルの差がより顕著となつて働き本発明の主旨が差
に徹底されるものである。
In this structure, the vertical direction of the QW layer is an npn structure, and the active region is an n-type. As a result, the difference in the diffusion potential becomes more remarkable, and the gist of the present invention is thoroughly emphasized.
従来例(第1図)においてはn型GaAs層6を通して電流
を通すため、コンタクト抵抗、加工性等の観点から、そ
の層の下の活性領域4の幅を狭くするには問題があつ
た。本発明においてはこのような制限がないため、活性
領域幅を十分狭くすることができ(<1μm)横モード
制御を極めて効果的に行うことができる。
In the conventional example (FIG. 1), since current is passed through the n-type GaAs layer 6, there is a problem in narrowing the width of the active region 4 below the layer from the viewpoint of contact resistance, workability and the like. In the present invention, since there is no such limitation, the width of the active region can be sufficiently narrowed (<1 μm), and the transverse mode control can be performed extremely effectively.
本発明においてはメサエツチング等を行わないのでプレ
ーナ構造が実現される。プロセスも簡略化されたものと
なつており、生産性も高い。
In the present invention, a planar structure is realized because no mesa etching or the like is performed. The process is also simplified and the productivity is high.
本発明はGaAs/GaAlAs系を用いた実施例により説明した
が、本発明はこの系に限るわけではなく他のIV−V族化
合物にも適用できることはもちろんである。
Although the present invention has been described with reference to the embodiment using the GaAs / GaAlAs system, the present invention is not limited to this system and can be applied to other IV-V group compounds.
またZn拡散領域関してはとくに言及しなかつたが、この
拡散領域の不活性化を部分的に行うことは電流低域の点
から有効である。このための手段としてはプロトン打込
みやメサエツチング等がある。
Although no particular reference was made to the Zn diffusion region, partial inactivation of this diffusion region is effective from the viewpoint of the low current region. Means for this purpose include proton implantation and mesa etching.
〔発明の効果〕〔The invention's effect〕
本発明によれば低電流(〜10mA)で発振し、横モード制
御が可能で、アレイ化も容易なレーザを簡単なプロセス
で作製しうるので、歩留り向上を低コスト化に非常に大
きな効果がある。
According to the present invention, a laser that oscillates at a low current (up to 10 mA), can be controlled in a transverse mode, and can be easily arrayed can be manufactured by a simple process. Therefore, it is very effective in improving the yield and reducing the cost. is there.
実施例は主として半導体レーザに関して記述を行つた
が、本発明は発光装置一般に関して成り立つことはもち
ろんである。
Although the embodiments have been mainly described with respect to the semiconductor laser, it goes without saying that the present invention is applicable to light emitting devices in general.
【図面の簡単な説明】[Brief description of drawings]
第1図は従来のBMQWレーザの断面図、第2図は本発明の
一実施例を示す断面図、第3図,第4図は本発明の他の
実施例を示す断面図である。 1……p型GaAs基板、2,3,15……p形GaAlAs、4……MQ
W層、5,13,14……n型GaAlAs、6,18……n型GaAs、7…
…絶縁膜、8……Au−Ge−Ni、9……拡散領域、10……
Disordered region、11……Cr−Ar、12……n型GaAs基
板、16……p型GaAs、20……n形GaAs、21……n形GaAl
As、22……p形GaAlAs、23……n形GaAs。
FIG. 1 is a sectional view of a conventional BMQW laser, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIGS. 3 and 4 are sectional views showing other embodiments of the present invention. 1 ... p-type GaAs substrate, 2,3,15 ... p-type GaAlAs, 4 ... MQ
W layer, 5,13,14 ... n-type GaAlAs, 6,18 ... n-type GaAs, 7 ...
… Insulating film, 8 …… Au-Ge-Ni, 9 …… Diffusion region, 10 ……
Disordered region, 11 ... Cr-Ar, 12 ... n-type GaAs substrate, 16 ... p-type GaAs, 20 ... n-type GaAs, 21 ... n-type GaAl
As, 22 ... p-type GaAlAs, 23 ... n-type GaAs.

Claims (2)

    【特許請求の範囲】[Claims]
  1. 【請求項1】MQW層を含む活性領域と、共振器長手方向
    の垂直断面を見たときの上記MQW層を含む活性領域の両
    側を拡散により無秩序化した領域とを含む半導体発光装
    置において、電極からの電流を上記無秩序化領域を通し
    て上記活性領域に流すことを特徴とする半導体発光装
    置。
    1. A semiconductor light emitting device comprising: an active region including an MQW layer; and a region in which both sides of the active region including the MQW layer when viewed in a vertical cross section in the longitudinal direction of the resonator are disordered by diffusion. A semiconductor light-emitting device, characterized in that the current from the device is passed through the disordered region to the active region.
  2. 【請求項2】上記活性領域を含む縦方向の層構造がnpn
    構造又はnpnp構造を含むことを特徴とする第1項記載の
    半導体発光装置。
    2. A vertical layer structure including the active region is npn.
    2. The semiconductor light emitting device according to claim 1, which includes a structure or an npnp structure.
JP1083985A 1985-01-25 1985-01-25 Semiconductor light emitting device Expired - Lifetime JPH07107945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083985A JPH07107945B2 (en) 1985-01-25 1985-01-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083985A JPH07107945B2 (en) 1985-01-25 1985-01-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS61171184A JPS61171184A (en) 1986-08-01
JPH07107945B2 true JPH07107945B2 (en) 1995-11-15

Family

ID=11761515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083985A Expired - Lifetime JPH07107945B2 (en) 1985-01-25 1985-01-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH07107945B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376390A (en) * 1986-09-18 1988-04-06 Nec Corp Light emitting semiconductor element
JPH0760892B2 (en) * 1987-02-09 1995-06-28 日本電気株式会社 pnpn optical thyristor
US5031185A (en) * 1988-11-17 1991-07-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a disordered superlattice
JPH02196486A (en) * 1989-01-24 1990-08-03 Mitsubishi Electric Corp Manufacture of semiconductor laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462195B2 (en) * 1983-10-06 1992-10-05 Kogyo Gijutsuin
JPS60101989A (en) * 1983-11-08 1985-06-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and manufacture thereof

Also Published As

Publication number Publication date
JPS61171184A (en) 1986-08-01

Similar Documents

Publication Publication Date Title
US4870652A (en) Monolithic high density arrays of independently addressable semiconductor laser sources
EP0493055B1 (en) High density, independently addressable, surface emitting semiconductor laser/light emitting diode arrays
US5010556A (en) A stripe-shaped heterojunction laser with unique current confinement
US20050098793A1 (en) Nitride based semiconductor photo-luminescent device
US4987468A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
US5151913A (en) Semiconductor laser
JPH07107949B2 (en) Phased array semiconductor laser
JPH1131866A (en) Semiconductor device of gallium nitride compound
JPH09129974A (en) Semiconductor laser device
US4905060A (en) Light emitting device with disordered region
JPH07107945B2 (en) Semiconductor light emitting device
JPH05267797A (en) Light-emitting semiconductor diode
JP3373975B2 (en) Semiconductor light emitting device
JP2641484B2 (en) Semiconductor element
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JP2893990B2 (en) Semiconductor laser and manufacturing method thereof
JPH06260715A (en) Semiconductor laser and manufacture thereof
JPH0632343B2 (en) Semiconductor laser
KR100261248B1 (en) Laser diode and its manufacturing method
JP3206573B2 (en) Semiconductor laser and manufacturing method thereof
JP3189900B2 (en) Semiconductor laser device
JP3144821B2 (en) Semiconductor laser device
JPH0697589A (en) Semiconductor laser array element and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term