JPH07107932B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07107932B2
JPH07107932B2 JP61197074A JP19707486A JPH07107932B2 JP H07107932 B2 JPH07107932 B2 JP H07107932B2 JP 61197074 A JP61197074 A JP 61197074A JP 19707486 A JP19707486 A JP 19707486A JP H07107932 B2 JPH07107932 B2 JP H07107932B2
Authority
JP
Japan
Prior art keywords
impurity concentration
region
low impurity
drain
concentration region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61197074A
Other languages
Japanese (ja)
Other versions
JPS6353976A (en
Inventor
和男 矢野
利明 増原
正明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61197074A priority Critical patent/JPH07107932B2/en
Publication of JPS6353976A publication Critical patent/JPS6353976A/en
Publication of JPH07107932B2 publication Critical patent/JPH07107932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁ゲート型電解効果トランジスタを少なく
とも有する半導体装置に係り、特に、低温下においても
ドレイン電流の減少を最小限に抑えながらソース、ドレ
イン間の耐圧を向上し得る半導体装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having at least an insulated gate field effect transistor, and more particularly, to a source which minimizes a decrease in drain current even at a low temperature. The present invention relates to a semiconductor device capable of improving the breakdown voltage between drains.

〔従来の技術〕[Conventional technology]

絶縁ゲート型電界効果トランジスタとしては、半導体基
板表面を熱酸化して形成した酸化膜をゲート絶縁膜とし
たMOS型電界効果トランジスタ(以下MOSFETと略記す
る)が代表的であり、以下このMOSFETを例として説明す
る。
A typical example of the insulated gate field effect transistor is a MOS field effect transistor (hereinafter abbreviated as MOSFET) having an oxide film formed by thermally oxidizing the surface of a semiconductor substrate as a gate insulating film. As described below.

第2図は、特開昭51−68776号に開示された従来のnチ
ャネルMOSFETの一例の断面図である。図において、1は
p型Si(シリコン)基板、2はゲート電極、3はSi基板
1の表面を熱酸化して形成され薄いゲート酸化膜、4は
n型低不純物濃度領域、5、6はn型高不純物濃度ソー
ス、ドレイン領域である。
FIG. 2 is a sectional view of an example of a conventional n-channel MOSFET disclosed in Japanese Patent Laid-Open No. 51-68776. In the figure, 1 is a p-type Si (silicon) substrate, 2 is a gate electrode, 3 is a thin gate oxide film formed by thermally oxidizing the surface of the Si substrate 1, 4 is an n-type low impurity concentration region, 5 and 6 are N-type high impurity concentration source and drain regions.

MOSFETにおいてチャネル長が短くなると、ソース、ドレ
イン間の耐圧が劣化するため、第2図に示したように、
ソース、ドレイン領域5、6のゲート電極2下の伝導チ
ャネル領域に隣接する端部領域に低不純物濃度領域4を
形成してドレイン端部近傍の電界を緩和し、耐圧を向上
させる方法が従来採用されている。
When the channel length is shortened in the MOSFET, the breakdown voltage between the source and drain deteriorates, so as shown in FIG.
Conventionally adopted is a method of forming a low impurity concentration region 4 in an end region of the source / drain regions 5 and 6 adjacent to the conduction channel region under the gate electrode 2 to relax an electric field in the vicinity of the drain end and improve withstand voltage. Has been done.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術によって作製したMOSFETを、室温より低い
温度で動作させると、低不純物濃度領域4におけるキャ
リアの凍結現象によってキャリア数が減少し、これがソ
ース、ドレイン抵抗となって働き、MOSFETのドレイン電
流を低減させるため、MOSFETの高速動作の妨げとなると
いう問題があった。
When the MOSFET manufactured by the above-described conventional technique is operated at a temperature lower than room temperature, the number of carriers decreases due to the carrier freezing phenomenon in the low impurity concentration region 4, which serves as a source / drain resistance, thereby increasing the drain current of the MOSFET. In order to reduce the amount, there is a problem that it hinders the high speed operation of the MOSFET.

本発明の目的は、室温からOK近傍の極低温までの広い温
度範囲にわたって高速に動作し、かつ、ソース、ドレイ
ン間における耐圧の低下を防止し得る絶縁ゲート型電界
効果トランジスタを提供することにある。
An object of the present invention is to provide an insulated gate field effect transistor that can operate at high speed over a wide temperature range from room temperature to extremely low temperature near OK and that can prevent reduction in breakdown voltage between the source and drain. .

〔問題点を解決するための手段〕[Means for solving problems]

不純物を含む半導体の極低温下における電気伝導度につ
いては、レビューズ・オブ・モダン・フィジックス(Re
v.Mod.Phys.)40(1968年)第815〜829頁およびフィジ
カル・レビュー・レターズ(Phys.Rev.Lett.)45(1980
年)、第1723〜1726頁において述べられている。第3図
は、Siにリン(P)をドープした試料の電気伝導度の不
純物濃度依存性を示す図で、横軸に不純物濃度(×1018
/cm3)を取り、縦軸に電気伝導度((Ω・cm)-1)をと
ってある。温度は1mKの場合である。
Regarding the electrical conductivity of semiconductors containing impurities at cryogenic temperatures, reviews of Modern Physics (Re
v. Mod. Phys.) 40 (1968) pp. 815-829 and Physical Review Letters (Phys. Rev. Lett.) 45 (1980).
, Pp. 1723 to 1726. FIG. 3 is a diagram showing the impurity concentration dependence of the electric conductivity of a sample in which Si is doped with phosphorus (P). The horizontal axis represents the impurity concentration (× 10 18
/ cm 3 ), and the vertical axis represents electrical conductivity ((Ω · cm) -1 ). The temperature is 1 mK.

すなわち、第3図に示すように、極低温下の不純物添加
半導体における電気伝導度は、ある臨界不純物濃度nc
境に急激に変化する。これをMott転移と称し、Mott転移
濃度nc以上の不純物濃度では、極低温下でも低い抵抗値
が実現できる。
That is, as shown in FIG. 3, the electrical conductivity of an impurity-doped semiconductor at a very low temperature changes abruptly at a certain critical impurity concentration n c . This is called Mott transition, and a low resistance value can be realized even at an extremely low temperature when the impurity concentration is equal to or higher than the Mott transition concentration n c .

本発明では従来技術の問題点を解決するために、絶縁ゲ
ート型電界効果トランジスタの伝導チャネル領域に隣接
する上記低不純物濃度領域の不純物濃度をMott転移濃度
ncの近傍あるいはそれ以上に設定することを要旨とす
る。
In the present invention, in order to solve the problems of the prior art, the impurity concentration of the low impurity concentration region adjacent to the conduction channel region of the insulated gate field effect transistor is set to the Mott transition concentration.
The gist is to set it near or above n c .

さらに詳しく言えば、本発明は、第1導電型の半導体基
板上に薄いゲート酸化膜を介して形成されたゲート電極
と、該ゲート電極の両側の上記半導体基板の表面領域に
形成された上記第1導電型とは反対の導電型の第2導電
型のソース、ドレイン領域とを具備する絶縁ゲート型電
界効果トランジスタを少なくとも有する半導体装置にお
いて、上記第2導電型のソース、ドレイン領域の少なく
ともドレイン領域のうち、上記ゲート電極下の伝導チャ
ネル領域に隣接する端部領域に低不純物濃度領域を有
し、該低不純物濃度領域の少なくとも一部の不純物濃度
が、当該ドレインもしくはソース領域の他の部分の不純
物濃度よりも低く、かつ半導体材料および不純物種によ
り決定されるMott転移濃度の近傍あるいはこれよりも高
いことを特徴とするものである。
More specifically, the present invention relates to a gate electrode formed on a semiconductor substrate of the first conductivity type via a thin gate oxide film, and the first electrode formed on the surface region of the semiconductor substrate on both sides of the gate electrode. In a semiconductor device having at least an insulated gate field effect transistor having a second conductivity type source and drain region having a conductivity type opposite to the first conductivity type, at least a drain region of the second conductivity type source and drain region. Of these, a low impurity concentration region is provided in an end region adjacent to the conduction channel region under the gate electrode, and the impurity concentration of at least a part of the low impurity concentration region is higher than that of the drain or source region. It is characterized in that it is lower than the impurity concentration and near or higher than the Mott transition concentration determined by the semiconductor material and the impurity species. Of.

なお、Mott転移濃度ncの値は、半導体材料および不純物
種によって決まり、フィジカル・レビュー・ビー(Phy
s.Rev.B)17(1978年)第2575〜2581頁に記載されてい
るように、例えばSi基板を用いて、As(ヒ素)を不純物
とした場合は6×1018/cm3、P、Sb(アンチモン)、あ
るいはB(ボロン)を不純物とた場合は3×1018/cm3
いう値である。このMott転移濃度ncは nc=(x/aH (但し、xは0.2〜0.3の定数、aHは不純物原子の半径)
で計算することができる。aHはe2/dεE0(但し、eは電
子の電荷量、εは半導体基板の誘電率、E0はイオン化エ
ネルギー)によって計算できる。
The value of the Mott transition concentration n c is determined by the semiconductor material and the impurity species, and the physical review bee (Phy
s.Rev.B) 17 (1978) pp. 2575-2581, when Si (As) is used as an impurity, for example, 6 × 10 18 / cm 3 , P When Sb (antimony) or B (boron) is used as an impurity, the value is 3 × 10 18 / cm 3 . This Mott transition concentration n c is n c = (x / a H ) 3 (where x is a constant of 0.2 to 0.3 and a H is the radius of the impurity atom)
Can be calculated by a H can be calculated by e 2 / dεE 0 (where e is the amount of electron charge, ε is the dielectric constant of the semiconductor substrate, and E 0 is the ionization energy).

従って、上記低不純物濃度領域の不純物濃度をこの値の
近傍以上に設定する。その不純物濃度上限は、言うまで
もなく高不純物濃度ソース、ドレイン領域の不純物濃度
より低く、具体的には1×1020/cm3以下が望ましい。
Therefore, the impurity concentration of the low impurity concentration region is set to be higher than or equal to this value. Needless to say, the upper limit of the impurity concentration is lower than the impurity concentration of the high impurity concentration source and drain regions, specifically, 1 × 10 20 / cm 3 or less is desirable.

〔作用〕[Action]

上記低不純物濃度領域の不純物濃度をMott転移濃度nc
近傍以上に設定すると、不純物に捕えられた電子(n型
不純物の場合;p型不純物の場合は正孔)の波動関数の重
なりが大きくなり、これによって不純物イオンのクーロ
ン場(静電気力)が遮蔽される。この遮蔽距離が不純物
イオンの原子半径(ボーア半径)より小さくなれば電子
(あるいは正孔)は一つの不純物に束縛されなくなり、
電子(あるいは正孔)は、半導体の伝導帯に熱的に励起
されなくても伝導可能な状態となる。
When the impurity concentration in the low impurity concentration region is set to be in the vicinity of the Mott transition concentration n c or more, the overlap of the wave functions of electrons (in the case of n-type impurity; holes in the case of p-type impurity) trapped by the impurities is large. Which shields the Coulomb field (electrostatic force) of the impurity ions. If this shielding distance becomes smaller than the atomic radius (Bohr radius) of the impurity ion, the electron (or hole) will not be bound by one impurity,
Electrons (or holes) can be conducted without being thermally excited in the conduction band of the semiconductor.

第4図は、従来および本発明のMOSFETの低不純物濃度領
域の電気伝導度の温度依存性を比較して示す図である。
図の横軸は温度(K)を、縦軸は低不純物濃度領域の電
気伝導度(1/Ω・cm)を示す。半導体基板してSiにPを
ドープしたものを用い、この場合のMott転移濃度ncは3
×1018/cm3である。本発明のMOSFETの低不純物濃度領域
の不純物濃度は4×1018/cm3、従来のMOSFETの低不純物
濃度領域の不純物濃度は1×1018/cm3である。
FIG. 4 is a diagram comparing and comparing the temperature dependence of the electrical conductivity in the low impurity concentration region of the conventional MOSFET and the MOSFET of the present invention.
The horizontal axis of the figure shows the temperature (K) and the vertical axis shows the electric conductivity (1 / Ω · cm) in the low impurity concentration region. A semiconductor substrate made of Si doped with P is used, and the Mott transition concentration n c in this case is 3
× 10 18 / cm 3 . The impurity concentration of the low impurity concentration region of the MOSFET of the present invention is 4 × 10 18 / cm 3 , and the impurity concentration of the low impurity concentration region of the conventional MOSFET is 1 × 10 18 / cm 3 .

この図から明らかなように、Mott転移濃度ncより低い不
純物濃度のMOSFETの低不純物濃度領域では、温度を下げ
るに従いキャリアが凍結してキャリア数が減少し、特に
200K以下の温度において急激に電気伝導度が低下する。
これに対して、本発明の半導体装置の低不純物濃度領域
は、低温下においても、極端に高抵抗化することがな
い。
As is clear from this figure, in the low impurity concentration region of the MOSFET having an impurity concentration lower than the Mott transition concentration n c , the carriers are frozen and the number of carriers is reduced as the temperature is lowered.
The electrical conductivity drops sharply at temperatures below 200K.
On the other hand, the low impurity concentration region of the semiconductor device of the present invention does not exhibit extremely high resistance even at low temperatures.

従って、本発明による絶縁ゲート型電界効果トランジス
タは、低温下でも従来構造より大きなドレイン電流値を
示す。すなわち、室温から極低温までの広い温度範囲に
わたり高速に動作する絶縁ゲート型電界効果トランジス
タが実現できる。また、この低不純物濃度領域はドレイ
ン端部近傍の電界を緩和するので、室温から極低温にわ
たる広い温度範囲にわたりソース・ドレイン間の耐圧を
向上することが可能となる。
Therefore, the insulated gate field effect transistor according to the present invention exhibits a larger drain current value than the conventional structure even at a low temperature. That is, an insulated gate field effect transistor that operates at a high speed over a wide temperature range from room temperature to extremely low temperature can be realized. Further, since this low impurity concentration region relaxes the electric field near the drain end, it is possible to improve the breakdown voltage between the source and drain over a wide temperature range from room temperature to extremely low temperature.

〔実施例〕〔Example〕

実施例 1 第1図は、本発明の第1の実施例のnチャネルMOSFETの
断面図である。
First Embodiment FIG. 1 is a sectional view of an n-channel MOSFET according to the first embodiment of the present invention.

図において、1はp型Si基板、2はゲート電極、3はゲ
ート酸化膜、5、6はそれぞれn型高不純物濃度ソース
領域、ドレイン領域、4はn型低不純物濃度領域、7は
素子間分離用の厚いSiO2膜を示す。ここで、ソース、ド
レイン領域5、6は、ひ素(As)、リン(P)、アンチ
モン(Sb)などの公知のn型不純物を1×1019/cm3以上
の濃度で導入して形成した低抵抗領域である。低不純物
濃度領域4は、As、P、Sbなどのn型不純物を上記Mott
転移濃度ncの近傍以上の濃度だけ、イオン打ち込み、熱
拡散などの公知の不純物領域形成法を用いて形成する。
ここで、Mott転移濃度ncの値は、前述のように、上記文
献のフィジカル・レビュー・ビーに記載されているよう
に、Si基板を用いて、Asを不純物とした場合は6×1018
/cm3、PあるいはSbを不純物とした場合は3×1018/cm3
という値である。
In the drawing, 1 is a p-type Si substrate, 2 is a gate electrode, 3 is a gate oxide film, 5 and 6 are n-type high impurity concentration source regions and drain regions, 4 is an n-type low impurity concentration region, and 7 is an inter-element A thick SiO 2 film for separation is shown. Here, the source / drain regions 5 and 6 are formed by introducing known n-type impurities such as arsenic (As), phosphorus (P) and antimony (Sb) at a concentration of 1 × 10 19 / cm 3 or more. It is a low resistance region. The low-impurity-concentration region 4 contains n-type impurities such as As, P, and Sb as described above.
A known impurity region forming method such as ion implantation or thermal diffusion is used to form only a concentration equal to or higher than the transition concentration n c .
Here, as described above, the value of the Mott transition concentration n c is 6 × 10 18 when the Si substrate is used and As is used as an impurity as described in Physical Review B of the above-mentioned document.
/ cm 3 , when P or Sb is used as an impurity, 3 × 10 18 / cm 3
Is the value.

本実施例では、特に、高不純物濃度ソース、ドレイン領
域5、6形成用の不純物としてはAsを用い、不純物濃度
を1×1020/cm3、低不純物濃度領域4の形成用不純物と
してはPを用い、不純物濃度を5×1018/cm3に形成し
た。
In this embodiment, as the impurity for forming the high impurity concentration source / drain regions 5 and 6, As is used, the impurity concentration is 1 × 10 20 / cm 3 , and the impurity for forming the low impurity concentration region 4 is P. Was used to form an impurity concentration of 5 × 10 18 / cm 3 .

このような構造を有するnチャネルMOSFETを動作させた
場合、低不純物濃度領域4があるためにドレイン近傍の
電界が緩和され、ソース、ドレイン間の耐圧を向上させ
ることができる。また、該低不純物濃度領域4の濃度が
Mott転移濃度ncの近傍以上の濃度に設定されているた
め、低温下の動作においても、キャリアの凍結を回避で
き、低不純物濃度領域は極端に高抵抗化することがな
く、デバイスは正常に動作する。これによって室温から
OK近傍の極低温までの広い温度範囲にわたって、大きな
ドレイン電流値を示し、従って高速動作が可能となる。
このことは、第5図に示した測定値から明らかである。
When the n-channel MOSFET having such a structure is operated, the electric field near the drain is relaxed because of the low impurity concentration region 4, and the breakdown voltage between the source and the drain can be improved. Further, the concentration of the low impurity concentration region 4 is
Since the concentration is set near the Mott transition concentration n c or higher, freezing of carriers can be avoided even in the operation at low temperature, the resistance of the low impurity concentration region does not become extremely high resistance, and the device operates normally. Operate. From room temperature
It shows a large drain current value over a wide temperature range up to the cryogenic temperature near OK, thus enabling high-speed operation.
This is clear from the measured values shown in FIG.

すなわち、第5図は、従来および本発明のnチャネルMO
SFETのドレイン電流値のチャネル長依存性を示す図であ
る。横軸はチャネル長(μm)を、縦軸はドレイン電流
値(mA/mm)を示し、ゲーと電圧(VG)−しきい電圧(V
T)=4V、ドレイン電圧(VD)=0.1Vであり、●は本発
明、○は従来のMOSFETを示し、それぞれ77K、300Kの温
度で動作させた場合を示す。
That is, FIG. 5 shows the n-channel MO of the related art and the present invention.
It is a figure which shows the channel length dependence of the drain current value of SFET. The horizontal axis shows the channel length (μm), the vertical axis shows the drain current value (mA / mm), and the gate and voltage (V G ) −threshold voltage (V
T ) = 4V, drain voltage (V D ) = 0.1V, ● indicates the present invention, ◯ indicates the conventional MOSFET, and shows the case of operating at temperatures of 77K and 300K, respectively.

この図から明らかなように、短いチャネル長のMOSFETに
おいては本発明と従来構造ではドレイン電流に顕著な差
がみられ、本発明のMOSFETの方が大きなドレイン電流を
得ることができる。
As is clear from this figure, in the MOSFET having a short channel length, the drain current of the present invention and that of the conventional structure are significantly different, and the MOSFET of the present invention can obtain a larger drain current.

このように、本実施例のMOSFETにおいては、ソース、ド
レイン間の耐圧の低下を防止できるとともに、高速動作
が可能なMOSFETが実現できる。
As described above, in the MOSFET of this embodiment, it is possible to realize a MOSFET capable of preventing a decrease in withstand voltage between the source and the drain and operating at high speed.

実施例 2 第6図は、本発明の第2の実施例のnチャネルMOSFETの
断面図である。図において、第1図と同符号のものは同
一のものを示す。4′、4″は低不純物濃度領域である
が、それぞれ不純物種を変えて形成した。例えば、低不
純物濃度領域4′の形成用不純物はAs、低不純物濃度領
域4″の形成用不純物はPである。この場合、4′、
4″のうちいずれか少なくとも一方が、Mott転移濃度nc
の近傍以上であればよい。なぜなら、一方をnc近傍以上
の濃度とすることにより、その部分のキャリアの凍結を
回避でき、低温下でも低抵抗とすることができるからで
ある。従って、低不純物濃度領域4′のAs濃度を6×10
18/cm3以上に設定するか、あるいは低不純物濃度領域
4″のP濃度を3×1018/cm3以上の濃度に設定すること
により、ソース、ドレイン間の耐圧の低下を防止し、か
つ高速に動作するMOSFETが実現できる。本実施例は、二
種類の不純物を用いて低不純物濃度領域の濃度分布を制
御できるため、ドレイン近傍の電流経路が制御可能であ
り、このため高耐圧で拘束の素子を最適に実現できると
いう特長がある。
Second Embodiment FIG. 6 is a sectional view of an n-channel MOSFET according to a second embodiment of the present invention. In the figure, the same symbols as in FIG. 1 indicate the same items. Although 4'and 4 "are low impurity concentration regions, they are formed by changing the impurity species respectively. For example, the formation impurity of the low impurity concentration region 4'is As and the formation impurity of the low impurity concentration region 4" is P. Is. In this case, 4 ',
At least one of 4 ″ is Mott transition concentration n c
It suffices if it is at least near This is because by setting the concentration of one of them to be near n c or more, freezing of the carrier in that portion can be avoided and the resistance can be made low even at low temperature. Therefore, the As concentration in the low impurity concentration region 4'is 6 × 10
By setting it to 18 / cm 3 or more or the P concentration of the low impurity concentration region 4 ″ to be 3 × 10 18 / cm 3 or more, it is possible to prevent the breakdown voltage between the source and drain from being lowered, and In this embodiment, since the concentration distribution in the low impurity concentration region can be controlled by using two kinds of impurities, it is possible to control the current path near the drain, and therefore, the high breakdown voltage restrains. The feature is that the element of can be optimally realized.

実施例 3 第7図は、本発明の第3の実施例のnチャネルMOSFETの
断面図である。同図において4、11は低不純物濃度領域
であるが、ソース、ドレイン領域5、6の端部からゲー
ト電極下の伝導チャネルが形成される領域をも含む形で
形成されている。本実施例では、低不純物濃度領域4お
よび11は、As、P、Sbなどの公知のn型不純物を用いて
形成し、低不純物濃度領域4の不純物濃度はMott移転濃
度nc近傍以上の濃度に設定し、低不純物濃度領域11の濃
度はnc以下の濃度に設定する。本実施例においても、ド
レイン領域6の端部の低不純物濃度領域4の濃度をnc
近傍以上に設定することにより、ソース、ドレイン間の
耐圧の低下を防止し、かつ高速に動作するMOSFETが実現
できる。また、本実施例では、低不純物濃度領域11があ
ることにより、伝導チャネルが基板表面から離れた、い
わゆる埋め込みチャネルとなるためキャリア移動度が向
上し、第1の実施例と比べて高速動作が可能である。
Third Embodiment FIG. 7 is a sectional view of an n-channel MOSFET according to a third embodiment of the present invention. In the figure, 4 and 11 are low impurity concentration regions, but are formed so as to also include regions where the conduction channel under the gate electrode is formed from the ends of the source and drain regions 5 and 6. In the present embodiment, the low impurity concentration regions 4 and 11 are formed by using known n-type impurities such as As, P and Sb, and the impurity concentration of the low impurity concentration region 4 is a concentration not lower than the Mott transfer concentration n c. And the concentration of the low impurity concentration region 11 is set to a concentration of n c or less. Also in the present embodiment, by setting the concentration of the low impurity concentration region 4 at the end of the drain region 6 to be in the vicinity of n c or higher, it is possible to prevent the breakdown voltage between the source and the drain from decreasing and to operate at high speed. Can be realized. Further, in this embodiment, since the low impurity concentration region 11 is provided, the conduction channel becomes a so-called buried channel which is separated from the substrate surface, so that the carrier mobility is improved, and the high speed operation is achieved as compared with the first embodiment. It is possible.

実施例 4 第8図は、本発明の第4の実施例のnチャネルMOSFETの
断面図である。本実施例では、As、P、Sbなどの公知の
n型不純物をMott転移濃度ncの近傍以上の濃度導入する
ことにより形成された低不純物濃度領域4が、ドレイン
領域6の端部にのみ形成されている。この構造によって
もドレイン領域6の近傍における電界を低不純物濃度領
域4が緩和し、ソース、ドレイン間の耐圧低下を防止
し、かつ高速に動作するMOSFETが実現できる。本実施例
では、ソース領域5の端部に低不純物濃度領域がないた
め、第1の実施例に比べて、寄生的な抵抗成分が小さく
なり、より高速な動作が可能となる。
Fourth Embodiment FIG. 8 is a sectional view of an n-channel MOSFET according to a fourth embodiment of the present invention. In this embodiment, the low impurity concentration region 4 formed by introducing a well-known n-type impurity such as As, P, and Sb at a concentration higher than the vicinity of the Mott transition concentration n c is formed only at the end of the drain region 6. Has been formed. With this structure as well, an electric field in the vicinity of the drain region 6 is mitigated by the low impurity concentration region 4, a reduction in breakdown voltage between the source and drain is prevented, and a MOSFET that operates at high speed can be realized. In this embodiment, since there is no low impurity concentration region at the end of the source region 5, the parasitic resistance component is smaller than that in the first embodiment, and higher speed operation is possible.

なお、上記実施例では、本発明をnチャネルMOSFETに適
用した例を示したが、pチャネルMOSFETおよび他の絶縁
ゲート型電界効果トランジスタにも同様に本発明を適用
することができる。例えば、pチャネルMOSFETに本発明
を適用する場合には、低不純物濃度領域4はホウ素
(B)を用いて形成し、その不純物濃度はその場合のMo
tt転移濃度ncである3×1018/cm3の近傍以上に設定す
る。また、ここでとり上げなかった他の不純物種の場合
にもMott転移濃度ncは上記の式 nc=(x/aH によって計算することができるので、この計算値ncの近
傍以上の濃度値に低不純物濃度領域の濃度を設定するこ
とにより、上記実施例では使用しなかった不純物を用い
ても本発明を適用することができる。
In the above embodiments, the present invention is applied to the n-channel MOSFET, but the present invention can be applied to the p-channel MOSFET and other insulated gate field effect transistors. For example, when the present invention is applied to a p-channel MOSFET, the low impurity concentration region 4 is formed by using boron (B), and the impurity concentration is Mo in that case.
tt The transition concentration is set to a value around 3 × 10 18 / cm 3 which is n c or more. Further, since here in the case of other impurity species that was not taken up Mott transition density n c can be calculated by the equation n c = (x / a H ) 3 described above, or near the calculated value n c By setting the concentration of the low impurity concentration region to the concentration value of, the present invention can be applied even if an impurity not used in the above embodiment is used.

次に、本発明による絶縁ゲート型電界効果トランジスタ
の製造プロセスをnチャネルMOSFETに例を挙げて説明す
る。
Next, the manufacturing process of the insulated gate field effect transistor according to the present invention will be described by taking an n-channel MOSFET as an example.

第9図(A)〜(E)は、本発明のnMOSFETの製造プロ
セスの一例を示す工程断面図である。まず、同図(A)
に示すように、p型Si基板1の表面に素子間分離用の厚
さ約0.5〜1.0μmのSiO2膜7を形成し、次に、厚さ約2
〜50nmの薄いゲート酸化膜3およびゲート電極2を公知
の方法により形成する。
9A to 9E are process cross-sectional views showing an example of the manufacturing process of the nMOSFET of the present invention. First, the same figure (A)
, A SiO 2 film 7 having a thickness of about 0.5 to 1.0 μm for element isolation is formed on the surface of the p-type Si substrate 1, and then a thickness of about 2 is formed.
A thin gate oxide film 3 and a gate electrode 2 having a thickness of about 50 nm are formed by a known method.

次に、n型不純物、例えばPを200KeV以下の打ち込みエ
ネルギー、ドーズ量2×1013〜2×1014/cm2程度の条件
でイオン打ち込みし、同図(B)に示すように、n型低
不純物濃度領域4を形成する。このときの不純物濃度は
2×1018〜2×1019/cm3程度である。
Next, an n-type impurity such as P is ion-implanted under the conditions of an implantation energy of 200 KeV or less and a dose amount of 2 × 10 13 to 2 × 10 14 / cm 2 , and as shown in FIG. A low impurity concentration region 4 is formed. The impurity concentration at this time is about 2 × 10 18 to 2 × 10 19 / cm 3 .

次に、化学気相堆積法(CVD法)によりSiO2膜あるいはP
SG膜を厚さ約0.05〜0.3μm堆積し、その後、異方性の
ドライエッチングによりゲート電極2の側壁部に、同図
(C)に示すように、ザイドウォールスペーサ8を形成
する。
Next, the SiO 2 film or P
An SG film is deposited to a thickness of about 0.05 to 0.3 μm, and thereafter, a dry wall spacer 8 is formed on the side wall of the gate electrode 2 by anisotropic dry etching, as shown in FIG.

その後、n型不純物、例えばAsをドーズ量1015〜1016/c
m2の条件でイオン打ち込みして、同図(D)に示すよう
に、n型高不純物濃度ソース、ドレイン領域5、6を形
成する。
After that, an n-type impurity such as As is added at a dose of 10 15 to 10 16 / c.
Ions are implanted under the condition of m 2 to form n-type high impurity concentration source / drain regions 5 and 6 as shown in FIG.

最後に、同図(E)に示すように、PSG膜による表面保
護膜9と電極孔、電極10を形成して、目的とする高性能
MOSFETの構造を実現する。
Finally, as shown in FIG. 6 (E), a surface protection film 9 made of a PSG film, an electrode hole, and an electrode 10 are formed to achieve the desired high performance.
Realize the MOSFET structure.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、絶縁ゲート型電
界効果トランジスタの少なくともドレイン端部の低不純
物濃度領域の不純物濃度を、その半導体基板材料および
不純物種により決まるMott転移濃度の近傍以上に設定す
ることにより、室温からOK近傍の極低温にわたる広い温
度範囲において、正常に動作し、ドレイン電流の減少が
少ないので高速に移動し、かつソース、ドレイン間の耐
圧低下を防止でき、従って、このトランジスタを組み入
れた半導体装置の信頼性を向上できる等の顕著な効果を
得ることができる。
As described above, according to the present invention, the impurity concentration of the low impurity concentration region of at least the drain end of the insulated gate field effect transistor is set to be higher than the vicinity of the Mott transition concentration determined by the semiconductor substrate material and the impurity species. By doing so, in a wide temperature range from room temperature to extremely low temperature near OK, it operates normally, the decrease in drain current is small, so it can move at high speed, and the breakdown voltage between the source and drain can be prevented. It is possible to obtain remarkable effects such as improving the reliability of a semiconductor device incorporating the.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例のnチャネルMOSFETの断
面図、第2図は従来のnチャネルMOSFETの一例の断面
図、第3図はn型不純物Pを含有するSiの電気伝導度の
不純物濃度依存性を示す図、第4図は従来および本発明
のnチャネルMOSFETの低不純物濃度領域の電気伝導度の
温度依存性を比較して示す図、第5図は従来および本発
明のnチャネルMOSFETのドレイン電流値のチャネル長依
存性を比較して示す図、第6図〜第8図はそれぞれ本発
明の別の実施例のnチャネルMOSFETの断面図、第9図
(A)〜(E)は本発明のnチャネルMOSFETの製造プロ
セスの一例を示す工程断面図である。 1……p型Si基板 2……ゲート電極 3……ゲート酸化膜 4、4′、4″……低不純物濃度領域 5……高不純物濃度ソース領域 6……高不純物濃度ドレイン領域 7……素子間分離用SiO2膜 8……サイドウォールスペーサ 9……PSG表面保護膜 10……電極 11……伝導チャネル領域における低不純物濃度領域
FIG. 1 is a sectional view of an n-channel MOSFET according to the first embodiment of the present invention, FIG. 2 is a sectional view of an example of a conventional n-channel MOSFET, and FIG. 3 is electric conduction of Si containing an n-type impurity P. FIG. 4 is a graph showing the temperature dependence of the electrical conductivity of the low impurity concentration region of the n-channel MOSFET of the conventional and the present invention, and FIG. 5 is the conventional and the present invention. Showing comparison of channel length dependence of drain current value of n-channel MOSFET of FIGS. 6 to 8 are sectional views of n-channel MOSFET of another embodiment of the present invention, and FIG. 9 (A), respectively. 7A to 7E are process cross-sectional views showing an example of the manufacturing process of the n-channel MOSFET of the present invention. 1 ... p-type Si substrate 2 ... gate electrode 3 ... gate oxide film 4, 4 ', 4 "... low impurity concentration region 5 ... high impurity concentration source region 6 ... high impurity concentration drain region 7 ... SiO 2 film for element isolation 8 …… Sidewall spacer 9 …… PSG surface protection film 10 …… Electrode 11 …… Low impurity concentration region in conduction channel region

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1導電型を有する半導体基板の表面領域
に所定の間隔を介して互いに離間して形成された上記第
1導電型とは逆の第2導電型を有するソースおよびドレ
インと、当該ソースとドレインの間の上記半導体基板の
主表面上にゲート絶縁膜を介して形成されたゲート電極
と、上記ソースおよびドレインの少なくともドレイン
の、上記ゲート電極の下方に対向する側の端部に接して
上記半導体基板の表面領域に形成された上記第2導電型
を有する低不純物濃度領域を具備し当該低不純物濃度領
域の不純物濃度は、上記ドレインの不純物濃度より低
く、かつ上記半導体基板を構成する半導体と上記低不純
物濃度領域にドープされた不純物の種類によって定まる
Mott転移濃度以上であることを特徴とする半導体装置。
1. A source and a drain having a second conductivity type opposite to the first conductivity type, which are formed in a surface region of a semiconductor substrate having a first conductivity type and spaced apart from each other by a predetermined distance. A gate electrode formed on the main surface of the semiconductor substrate between the source and the drain via a gate insulating film, and at least an end of the source and the drain on a side facing the lower side of the gate electrode. A low impurity concentration region having the second conductivity type is formed in contact with the surface region of the semiconductor substrate, the impurity concentration of the low impurity concentration region is lower than the impurity concentration of the drain, and the semiconductor substrate is configured. Depends on the semiconductor to be used and the type of impurities doped in the low impurity concentration region
A semiconductor device having a Mott transition concentration or higher.
【請求項2】上記半導体および上記低不純物濃度領域に
ドープされた不純物は、それぞれシリコンおよび砒素で
あり、上記低不純物濃度領域の不純物濃度はほぼ6×10
18/cm3以上であることを特徴とする特許請求の範囲第1
項記載の半導体装置。
2. The impurities doped into the semiconductor and the low impurity concentration region are silicon and arsenic, respectively, and the impurity concentration of the low impurity concentration region is approximately 6 × 10 6.
Claim 1 characterized in that it is 18 / cm 3 or more
The semiconductor device according to the item.
【請求項3】上記半導体はシリコンであり、上記低不純
物濃度領域にドープされた不純物はリン若しくはアンチ
モンであり、上記低不純物濃度領域の不純物濃度はほぼ
3×1018/cm3以上であることを特徴とする特許請求の範
囲第1項記載の半導体装置。
3. The semiconductor is silicon, the impurity doped in the low impurity concentration region is phosphorus or antimony, and the impurity concentration in the low impurity concentration region is approximately 3 × 10 18 / cm 3 or more. The semiconductor device according to claim 1, wherein:
【請求項4】上記半導体および上記低不純物濃度領域に
ドープされた不純物は、それぞれシリコンおよびホウ素
であり、上記低不純物濃度領域の不純物濃度はほぼ3×
1018/cm3以上であることを特徴とする特許請求の範囲第
1項記載の半導体装置。
4. The impurities doped into the semiconductor and the low impurity concentration region are silicon and boron, respectively, and the impurity concentration of the low impurity concentration region is approximately 3 ×.
The semiconductor device according to claim 1, wherein the semiconductor device has a density of 10 18 / cm 3 or more.
【請求項5】上記低不純物濃度領域の不純物濃度は1×
1020/cm3以下であることを特徴とする特許請求の範囲第
1項から第4項のいずれかに記載の半導体装置。
5. The impurity concentration of the low impurity concentration region is 1 ×
The semiconductor device according to any one of claims 1 to 4, which is 10 20 / cm 3 or less.
【請求項6】上記低不純物濃度領域は互いに異なる不純
物がドープされた二つの領域が積層されて形成され、当
該二つの領域の少なくとも一方の領域の不純物濃度が、
Mott転移濃度以上の不純物濃度を有していることを特徴
とする特許請求の範囲第1項から第6項のいずれかに記
載の半導体装置。
6. The low impurity concentration region is formed by laminating two regions doped with different impurities, and the impurity concentration of at least one of the two regions is
The semiconductor device according to any one of claims 1 to 6, wherein the semiconductor device has an impurity concentration equal to or higher than a Mott transition concentration.
JP61197074A 1986-08-25 1986-08-25 Semiconductor device Expired - Fee Related JPH07107932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197074A JPH07107932B2 (en) 1986-08-25 1986-08-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197074A JPH07107932B2 (en) 1986-08-25 1986-08-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6353976A JPS6353976A (en) 1988-03-08
JPH07107932B2 true JPH07107932B2 (en) 1995-11-15

Family

ID=16368283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197074A Expired - Fee Related JPH07107932B2 (en) 1986-08-25 1986-08-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH07107932B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182171A (en) * 1984-02-29 1985-09-17 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS61234077A (en) * 1985-04-10 1986-10-18 Oki Electric Ind Co Ltd Mis type field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182171A (en) * 1984-02-29 1985-09-17 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS61234077A (en) * 1985-04-10 1986-10-18 Oki Electric Ind Co Ltd Mis type field effect transistor

Also Published As

Publication number Publication date
JPS6353976A (en) 1988-03-08

Similar Documents

Publication Publication Date Title
JP4004040B2 (en) Semiconductor device
US11424244B2 (en) Integrated circuit having a vertical power MOS transistor
KR940004446B1 (en) Method of making semiconductor device
JP3247801B2 (en) Semiconductor device having SOI structure and method of manufacturing the same
JP5433352B2 (en) Manufacturing method of semiconductor device
US9281390B2 (en) Structure and method for forming programmable high-K/metal gate memory device
US8362570B2 (en) Method for making complementary P and N MOSFET transistors, electronic device including such transistors, and processor including at least one such device
US5734181A (en) Semiconductor device and manufacturing method therefor
JP2917922B2 (en) Semiconductor device and manufacturing method thereof
EP0187016A2 (en) MISFET with lightly doped drain and method of manufacturing the same
US20080173944A1 (en) MOSFET on SOI device
US20030209782A1 (en) Method and apparatus on (110) surfaces of silicon structures with conduction in the <110> direction
US6639273B1 (en) Silicon carbide n channel MOS semiconductor device and method for manufacturing the same
US20050051856A1 (en) Semiconductor device
JP3103159B2 (en) Semiconductor device
US5686735A (en) Silicon-on-insulator (SOI) transistor
US20040227186A1 (en) Semiconductor device
US10964815B2 (en) CMOS finFET with doped spacers and method for forming the same
JP3658564B2 (en) Semiconductor device
JPH05102179A (en) Semiconductor device and its manufacture
JP2781918B2 (en) Method for manufacturing MOS type semiconductor device
JPH07107932B2 (en) Semiconductor device
JPH04212467A (en) Semiconductor device and manufacture thereof
JPH05183153A (en) Semiconductor device
JP4365568B2 (en) Doping method and semiconductor device using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees