JPH07107470B2 - Heat pump air conditioner - Google Patents

Heat pump air conditioner

Info

Publication number
JPH07107470B2
JPH07107470B2 JP6399588A JP6399588A JPH07107470B2 JP H07107470 B2 JPH07107470 B2 JP H07107470B2 JP 6399588 A JP6399588 A JP 6399588A JP 6399588 A JP6399588 A JP 6399588A JP H07107470 B2 JPH07107470 B2 JP H07107470B2
Authority
JP
Japan
Prior art keywords
pipe
bypass circuit
heat exchanger
heat storage
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6399588A
Other languages
Japanese (ja)
Other versions
JPH01239352A (en
Inventor
宏治 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6399588A priority Critical patent/JPH07107470B2/en
Publication of JPH01239352A publication Critical patent/JPH01239352A/en
Publication of JPH07107470B2 publication Critical patent/JPH07107470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蓄熱を利用したヒートポンプ式空気調和機に
関するものである。
TECHNICAL FIELD The present invention relates to a heat pump type air conditioner utilizing heat storage.

従来の技術 従来、冷凍サイクルに蓄熱を利用した例としては冷凍機
において冷凍運転時に圧縮機吐出ガスの熱を蓄熱熱交換
器に蓄熱しておき、除霜運転時に除霜時間の短縮を図る
ものがある(例えば実開昭58−10937号公報)。
2. Description of the Related Art Conventionally, as an example of using heat storage in a refrigeration cycle, heat of a compressor discharge gas is stored in a heat storage heat exchanger during a refrigerating operation in a refrigerator, and the defrosting time is shortened during a defrosting operation. (For example, Japanese Utility Model Laid-Open No. 58-10937).

発明が解決しようとする課題 しかしながら、上記従来のヒートポンプ式空気調和機で
は、除霜時間を短縮することは可能であるが、除霜運転
時に室内側熱交換器には冷媒が流れないので暖房を行な
うことができず、快適性の低下を招いていた。
However, in the above conventional heat pump type air conditioner, although it is possible to shorten the defrosting time, since the refrigerant does not flow to the indoor heat exchanger during the defrosting operation, heating is performed. I couldn't do it, and it was not comfortable.

また、蓄熱器に蓄えられた熱は、暖房運転の立上り時等
の暖房能力不足時に利用することはできなかった。
Further, the heat stored in the heat accumulator cannot be used when the heating capacity is insufficient such as when the heating operation starts.

本発明は上記課題に鑑み、暖房運転時に暖房能力を低下
させることなく蓄熱材を充填した蓄熱槽に蓄熱し、除霜
運転時にこの熱を利用することで、高い暖房能力を保ち
ながら除霜を行ない、また暖房運転の立上り時にも利用
することで、外気温に左右されず高い暖房能力を発揮す
るとともに快適性の向上を図ることを目的とする。
In view of the above problems, the present invention stores heat in a heat storage tank filled with a heat storage material without lowering heating capacity during heating operation, and uses this heat during defrosting operation to remove defrost while maintaining high heating capacity. The purpose is to improve the comfort while exhibiting a high heating capacity without being influenced by the outside air temperature by using it at the start of heating operation.

課題を解決するための手段 上記課題を解決するために本発明のヒートポンプ式空気
調和機は、まず圧縮機,室外側熱交換器,減圧器,室内
側熱交換器を順に配管にて環状に連結して主冷媒回路を
構成し、運転時に高圧側となる前記圧縮機の吐出側から
前記減圧器までの配管の一部をバイパスし蓄熱熱交換器
を有する第1バイパス回路と、前記減圧器をバイパスし
補助減圧器及び前記蓄熱熱交換器を有する第2バイパス
回路と、前記室外側熱交換器をバイパスする第3バイパ
ス回路と、蓄熱暖房時に前記第1バイパス回路を開とす
るとともに前記第2バイパス回路および前記第3バイパ
ス回路を閉とし、除霜時に前記第1バイパス回路を閉と
するとともに前記第2バイパス回路及び前記第3バイパ
ス回路を開として前記室外側熱交換器を流れる冷媒の一
部を前記第3バイパス回路に流す流路制御手段を設けた
ものである。
Means for Solving the Problems In order to solve the above problems, in a heat pump type air conditioner of the present invention, first, a compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are connected in an annular shape by pipes in order. A main bypass circuit, and a first bypass circuit having a heat storage heat exchanger that bypasses a part of the pipe from the discharge side of the compressor, which is the high pressure side during operation, to the pressure reducer, and the pressure reducer. A second bypass circuit that bypasses and has an auxiliary pressure reducer and the heat storage heat exchanger, a third bypass circuit that bypasses the outdoor heat exchanger, the first bypass circuit is opened during heat storage heating, and the second The bypass circuit and the third bypass circuit are closed, the first bypass circuit is closed during defrosting, and the second bypass circuit and the third bypass circuit are opened to flow through the outdoor heat exchanger. A flow path control means for flowing a part of the refrigerant to the third bypass circuit is provided.

また本発明の他のヒートポンプ式空気調和機は、圧縮
機,室外側熱交換器,減圧器,室内側熱交換器を順に配
管にて環状に連結して主冷媒回路を構成し、運転時に高
圧側となる前記圧縮機の吐出側から前記減圧器までの配
管の一部をバイパスし蓄熱熱交換器を有する第1バイパ
ス回路と、前記減圧器をバイパスし補助減圧器及び前記
蓄熱熱交換器を有する第2バイパス回路と、前記室外側
熱交換器をバイパスする第3バイパス回路と、蓄熱暖房
時に第1バイパス回路を開とするとともに前記第2バイ
パス回路および前記第3バイパス回路を閉とし、除霜時
に前記第1バイパス回路を閉とするとともに第2バイパ
ス回路及び第3バイパス回路を開として室外側熱交換器
を流れる冷媒の一部を前記第3バイパス回路に流し、蓄
熱利用の運転開始時に前記第2バイパス回路及び前記第
3バイパス回路を開として前記室外側熱交換器を流れる
冷媒の全部を前記第3バイパス回路に流す流路制御手段
を設けたものである。
Further, in another heat pump type air conditioner of the present invention, a compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected in order by a pipe to form a main refrigerant circuit, and a high pressure medium is used during operation. A first bypass circuit having a heat storage heat exchanger that bypasses a part of the pipe from the discharge side of the compressor to the pressure reducer, and an auxiliary pressure reducer and the heat storage heat exchanger that bypass the pressure reducer. A second bypass circuit that has, a third bypass circuit that bypasses the outdoor heat exchanger, a first bypass circuit that is opened during heat storage heating, and a second bypass circuit and a third bypass circuit that are closed to remove When the first bypass circuit is closed at the time of frost and the second bypass circuit and the third bypass circuit are opened, a part of the refrigerant flowing through the outdoor heat exchanger is caused to flow to the third bypass circuit, and the operation of utilizing heat storage is started. The one in which all of the refrigerant flowing through the outdoor side heat exchanger provided with a flow path control means for flowing the third bypass circuit and the second bypass circuit and the third bypass circuit is opened.

また本発明のヒートポンプ式空気調和機の制御方法は、
圧縮機を能力可変圧縮機とし、蓄熱暖房時に前記圧縮機
を高能力運転するものである。
Further, the control method of the heat pump type air conditioner of the present invention,
The compressor is a variable capacity compressor, and the compressor is operated at high capacity during heat storage heating.

また本発明の他のヒートポンプ式空気調和機は、蓄熱熱
交換器で生じる熱を蓄熱する蓄熱槽と、前記蓄熱槽の蓄
熱量を検出する蓄熱量検知手段とを設け、流路制御手段
は前記蓄熱量検知手段の信号に基づいて冷媒流路を切換
える構成をそらに設けたものである。
Further, another heat pump type air conditioner of the present invention is provided with a heat storage tank for storing the heat generated in the heat storage heat exchanger, and a heat storage amount detecting means for detecting the heat storage amount of the heat storage tank, and the flow path control means is A structure for switching the refrigerant flow paths based on the signal from the heat storage amount detecting means is provided there.

また本発明の他のヒートポンプ式空気調和機は、さらに
蓄熱量検知手段を、蓄熱熱交換器の入口側および出口側
に接続されたそれぞれの配管に配設した2個の温度検知
素子で構成したものである。
Further, in another heat pump type air conditioner of the present invention, the heat storage amount detecting means is further composed of two temperature detecting elements arranged in respective pipes connected to the inlet side and the outlet side of the heat storage heat exchanger. It is a thing.

また本発明の他のヒートポンプ式空気調和機は、圧縮
機,室外側熱交換器,減圧器,室内側熱交換器を順に配
管にて環状に連結して主冷媒回路を構成し、運転時に高
圧側となる前記圧縮機の吐出側から前記減圧器までの配
管の一部をバイパスし蓄熱熱交換器を有する第1バイパ
ス回路と、前記減圧器をバイパスし補助減圧器及び前記
蓄熱熱交換器を有する第2バイパス回路と、前記室外側
熱交換器をバイパスする第3バイパス回路と、前記それ
ぞれのバイパス回路を開閉制御する流路制御手段とを備
え、前記第1バイパス回路は、前記圧縮機の吐出側から
前記減圧器までの配管に一端を接続した第1配管と、前
記第1配管の他端に一端を接続し、他端を前記蓄熱熱交
換器の冷媒流入端に接続した第2配管と、前記蓄熱熱交
換器の冷媒流出端に一端を接続した第3配管と、前記第
3配管の他端に一端を接続した第4配管と、前記第4配
管の他端に一端を接続し、他端を前記第1配管の一端よ
り下流側で前記減圧器までの配管に接続した第5配管と
より構成し、前記第2バイパス回路は、前記室内側熱交
換器から前記減圧器までの配管に一端を接続し、他端を
前記第1配管の他端に接続するとともに前記補助減圧器
を有する第6配管と、前記第2配管と、前記第3配管
と、前記第3配管の他端に一端を接続し、他端を前記減
圧器から前記室外側熱交換器までの配管に接続した第7
配管とより構成したものである。
Further, in another heat pump type air conditioner of the present invention, a compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected in order by a pipe to form a main refrigerant circuit, and a high pressure medium is used during operation. A first bypass circuit having a heat storage heat exchanger that bypasses a part of the pipe from the discharge side of the compressor to the pressure reducer, and an auxiliary pressure reducer and the heat storage heat exchanger that bypass the pressure reducer. A second bypass circuit, a third bypass circuit that bypasses the outdoor heat exchanger, and a flow path control unit that controls the opening and closing of each of the bypass circuits. A first pipe having one end connected to a pipe from the discharge side to the pressure reducer, and a second pipe having one end connected to the other end of the first pipe and the other end connected to a refrigerant inflow end of the heat storage heat exchanger And at the refrigerant outflow end of the heat storage heat exchanger A third pipe having an end connected thereto, a fourth pipe having one end connected to the other end of the third pipe, one end connected to the other end of the fourth pipe, and the other end downstream of one end of the first pipe The second bypass circuit has one end connected to the pipe from the indoor heat exchanger to the pressure reducer, and the other end connected to the fifth pipe connected to the pressure reducer on the side. A sixth pipe that is connected to the other end of one pipe and that has the auxiliary decompressor, the second pipe, the third pipe, and one end of the third pipe, and the other end thereof is decompressed. No. 7 connected to the pipe from the heat exchanger to the outdoor heat exchanger
It is composed of piping.

また本発明の他のヒートポンプ式空気調和機は、さらに
第3バイパス回路を、第6配管と、第2配管と、第3配
管と、第7配管と、第4配管と、前記第4配管の他端に
一端を接続し、他端を前記室外側熱交換器から前記圧縮
機の吸入側配管に接続した第8配管とより構成したもの
である。
Further, another heat pump type air conditioner of the present invention further comprises a third bypass circuit including a sixth pipe, a second pipe, a third pipe, a seventh pipe, a fourth pipe and the fourth pipe. One end is connected to the other end, and the other end is connected to the suction side pipe of the compressor from the outdoor heat exchanger and an eighth pipe is configured.

また本発明の他のヒートポンプ式空気調和機は、さらに
圧縮機の吐出側配管および吸入側配管を接続し、室内側
熱交換器,減圧器および室外側熱交換器を流れる冷媒方
向を切換える四方弁を設け、第1バイパス回路の両端を
前記圧縮機の吐出側から前記四方弁までの管に接続した
ものである。
Further, another heat pump type air conditioner of the present invention is a four-way valve for connecting the discharge side pipe and the suction side pipe of the compressor to switch the direction of the refrigerant flowing through the indoor heat exchanger, the pressure reducer and the outdoor heat exchanger. Is provided and both ends of the first bypass circuit are connected to a pipe from the discharge side of the compressor to the four-way valve.

作用 本発明は上記手段とすることにより、暖房運転時に蓄熱
した熱を除霜運転時に利用することができ、暖房運転を
継続したまま室外側熱交換器の除霜を行なえる。
Effect With the above-described means, the present invention makes it possible to utilize the heat accumulated during the heating operation during the defrosting operation, and defrost the outdoor heat exchanger while continuing the heating operation.

また、除霜運転時一部の冷媒を室外側熱交換器からバイ
パスさせることにより、室外側熱交換器の冷媒の圧力損
失を小さくでき、除霜性能を向上させることができる。
Further, by bypassing a part of the refrigerant from the outdoor heat exchanger during the defrosting operation, the pressure loss of the refrigerant in the outdoor heat exchanger can be reduced and the defrosting performance can be improved.

また、蓄熱利用立上り運転時に第2バイパス回路および
第3バイパス回路を開いて、室外側熱交換器を流れる冷
媒の全部を第3バイパス回路に流すことにより、暖房運
転開始時に蓄熱された熱を利用でき、暖房運転の立上り
を早めることができる。
Further, by using the heat storage utilization start-up operation, the second bypass circuit and the third bypass circuit are opened so that all the refrigerant flowing through the outdoor heat exchanger is allowed to flow to the third bypass circuit, so that the heat stored at the start of the heating operation is used. It is possible to accelerate the start of heating operation.

また、蓄熱暖房時に圧縮機を高能力運転することにより
暖房能力を低下させることなく蓄熱を行なうことができ
る。
Further, by operating the compressor with high capacity during heat storage heating, heat can be stored without lowering the heating capacity.

また、蓄熱量検知手段を設け、この信号に基づいて冷媒
流路を切換えることにより、最適な運転を行なうことが
できる。
Further, by providing a heat storage amount detecting means and switching the refrigerant flow path based on this signal, optimum operation can be performed.

また、この蓄熱量検知手段を蓄熱熱交換器の入口側およ
び出口側の2ケ所に設けることにより、冷媒状態を確実
に検出でき、より最適な運転を行なうことができる。
Further, by providing the heat storage amount detecting means at two places, the inlet side and the outlet side of the heat storage heat exchanger, the state of the refrigerant can be surely detected, and more optimal operation can be performed.

また、第1バイパス回路と第2バイパス回路の一部の配
管を共用することにより、冷媒流通抵抗を小さくできる
とともに冷媒溜り量を少なくすることができる。
Further, by sharing a part of the pipes of the first bypass circuit and the second bypass circuit, it is possible to reduce the refrigerant flow resistance and reduce the amount of accumulated refrigerant.

また、第3バイパス回路の配管の一部を第2バイパス回
路および第3バイパス回路の配管と共用することによ
り、上記作用が増大する。
Further, by sharing a part of the pipe of the third bypass circuit with the pipes of the second bypass circuit and the third bypass circuit, the above-described action is increased.

また、冷凍サイクル中に四方弁を設け、第1バイパス回
路の接続端を圧縮機から四方弁までの間に設けることに
より、流路制御手段の構成を簡単にできる。
Further, by providing the four-way valve in the refrigeration cycle and providing the connection end of the first bypass circuit between the compressor and the four-way valve, the structure of the flow path control means can be simplified.

実 施 例 以下、本発明をその一実施例を示す添付図面の第1図〜
第4図を参考に説明する。
Embodiment Hereinafter, the present invention will be described with reference to FIG.
Description will be given with reference to FIG.

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の冷凍サイクル図、第2図は同ヒートポンプ式空
気調和機の各運転時の冷媒の流れを制御する弁類の動作
状態を示す図である。
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner in one embodiment of the present invention, and FIG. 2 is a diagram showing operating states of valves for controlling the flow of refrigerant during each operation of the heat pump type air conditioner. Is.

第1図に示すように、主冷媒回路は、能力制御可能な周
波数可変形の圧縮機1,室内側熱交換器3,電動膨脹弁4,室
外側熱交換器5を配管にて環状に連結して構成してい
る。2は圧縮機1の吐出側配管および吸入側配管を接続
し、室内側熱交換器3,電動膨脹弁4,室外側熱交換器5を
流れる冷媒方向を切換える四方弁である。
As shown in FIG. 1, the main refrigerant circuit has a variable frequency compressor 1 capable of controlling the capacity, an indoor heat exchanger 3, an electric expansion valve 4, and an outdoor heat exchanger 5, which are connected by a pipe in an annular shape. Then configured. Reference numeral 2 is a four-way valve that connects the discharge side pipe and the suction side pipe of the compressor 1 and switches the direction of the refrigerant flowing through the indoor heat exchanger 3, the electric expansion valve 4, and the outdoor heat exchanger 5.

同図において、a〜jは管路の分岐部に付した記号であ
り、冷媒の流れを説明するのに用いる。また、10〜15は
冷媒の流れを制御する二方弁である。
In the figure, a to j are symbols attached to the branch portions of the pipelines and are used to explain the flow of the refrigerant. Further, 10 to 15 are two-way valves that control the flow of the refrigerant.

ここで第1配管▲▼,第2配管▲▼,第3配管
▲▼,第4配管▲▼,第5配管▲▼からな
る管路は、圧縮機1から吐出された冷媒をバイパスする
第1バイパス回路▲▼であり、第6配管▲▼,
第2配管▲▼,第3配管▲▼,第7配管▲
▼からなる管路は電動膨脹弁4をバイパスする第2バイ
パス回路▲▼である。また、第1バイパス回路▲
▼と第2バイパス回路▲▼との共通の配管である
第2配管▲▼と第3配管▲▼との途中に蓄熱槽
16内に充填された蓄熱材17と熱交換を行なう蓄熱熱交換
器18が設けられている。第2バイパス回路▲▼を構
成する第6配管▲▼の途中には補助絞り装置19が設
けられている。また、第6配管▲▼,第2配管▲
▼,第3配管▲▼,第4配管▲▼,第8配管
▲▼である。さらに、20および21は蓄熱槽16の前後
の管路に配設されたサーミスタ等の温度検知素子であ
り、22は温度検知素子20,21が検知する2つの温度の温
度差が所定値となると冷媒流路切換えの信号を発する流
路制御回路、23はこの流路制御回路22の発する信号によ
り、二方弁10〜15の開閉,四方弁2の切換え等を行なっ
て冷媒流路を切換える流路切換リレーである。
Here, the pipeline composed of the first pipe ▲ ▼, the second pipe ▲ ▼, the third pipe ▲ ▼, the fourth pipe ▲ ▼, and the fifth pipe ▲ ▼ is a first pipe that bypasses the refrigerant discharged from the compressor 1. Bypass circuit ▲ ▼, 6th piping ▲ ▼,
2nd piping ▲ ▼, 3rd piping ▲ ▼, 7th piping ▲
The pipeline consisting of ▼ is a second bypass circuit ▲ ▼ that bypasses the electric expansion valve 4. Also, the first bypass circuit ▲
A heat storage tank is provided in the middle of the second pipe ▲ ▼ and the third pipe ▲ ▼, which are common pipes between the ▼ and the second bypass circuit ▲ ▼.
A heat storage heat exchanger 18 that exchanges heat with the heat storage material 17 filled in the inside 16 is provided. An auxiliary expansion device 19 is provided in the middle of the sixth pipe {circle around (2)} which constitutes the second bypass circuit {circle over ()}. Also, the sixth pipe ▲ ▼, the second pipe ▲
▼, third piping ▲ ▼, fourth piping ▲ ▼, and eighth piping ▲ ▼. Further, 20 and 21 are temperature detecting elements such as thermistors arranged in the pipe lines before and after the heat storage tank 16, and 22 is a temperature difference between the two temperatures detected by the temperature detecting elements 20 and 21 being a predetermined value. A flow path control circuit for issuing a refrigerant flow path switching signal, 23 is a flow for switching the refrigerant flow path by opening / closing the two-way valves 10 to 15, switching the four-way valve 2 or the like according to the signal issued by the flow path control circuit 22. It is a road switching relay.

第2図において、○印は弁が開の状態、×印は閉の状態
を示す。また電動膨脹弁4aの所定は、圧縮機1に吸入さ
れる冷媒の過熱度等を検知することにより電動膨脹弁4a
の弁開度制御を行なうことを示す。
In FIG. 2, the open circles indicate the valve open, and the crosses indicate the closed state. Further, the electric expansion valve 4a is specified by detecting the degree of superheat of the refrigerant sucked into the compressor 1 and the like.
It shows that the valve opening control is performed.

このヒートポンプ式空気調和機において、第2図に示す
各運転モードの説明を行なうと、まず冷房モード時には
二方弁10のみ開であり、圧縮機1より吐出された冷媒
は、四方弁2,室外側熱交換器5,電動膨脹弁4,室内側熱交
換器3,四方弁2の順で流れ、圧縮機1に吸入される。
In this heat pump type air conditioner, each operation mode shown in FIG. 2 will be described. First, in the cooling mode, only the two-way valve 10 is open, and the refrigerant discharged from the compressor 1 is the four-way valve 2, the chamber. The outer heat exchanger 5, the electric expansion valve 4, the indoor heat exchanger 3, and the four-way valve 2 flow in this order and are sucked into the compressor 1.

暖房モードにおいて、蓄熱を行なわない場合は、二方弁
10〜15の状態は冷房モードの時と同じで四方弁2のみ暖
房サイクル側へ切換える。したがって、圧縮機1より吐
出された冷媒は、四方弁2,室内側熱交換器3,電動膨脹弁
4,室外側熱交換器5,四方弁2の順で流れて圧縮機1に吸
入される。この時、蓄熱槽16に蓄熱は行なわれない。
In heating mode, when not storing heat, two-way valve
The state of 10 to 15 is the same as in the cooling mode, and only the four-way valve 2 is switched to the heating cycle side. Therefore, the refrigerant discharged from the compressor 1 is the four-way valve 2, the indoor heat exchanger 3, the electric expansion valve.
4, the outdoor heat exchanger 5, and the four-way valve 2 flow in this order and are sucked into the compressor 1. At this time, heat is not stored in the heat storage tank 16.

暖房モードにおいて、蓄熱を行なう場合は二方弁10を閉
とし、二方弁11,12を開として、圧縮機1の周波数を上
昇させて高能力運転を行う。
In the heating mode, when heat is stored, the two-way valve 10 is closed, the two-way valves 11 and 12 are opened, the frequency of the compressor 1 is increased, and high-performance operation is performed.

したがって、圧縮機1より吐出された冷媒は第1バイパ
ス回路▲▼,四方弁2,室内側熱交換器3,電動膨脹弁
4,室外側熱交換器5,四方弁2の順で流れ、圧縮機1に吸
入される。この時、圧縮機1より吐出された高温,高圧
の冷媒の持つ熱の一部は蓄熱熱交換器18より蓄熱槽16に
蓄熱され、残りの熱が室内側熱交換器3で暖房に用いら
れる。このとき圧縮機1を高能力運転することで暖房能
力の低下を防ぐことができる。
Therefore, the refrigerant discharged from the compressor 1 is the first bypass circuit ▲ ▼, the four-way valve 2, the indoor heat exchanger 3, the electric expansion valve.
4, the outdoor heat exchanger 5, and the four-way valve 2 flow in this order and are sucked into the compressor 1. At this time, part of the heat of the high-temperature, high-pressure refrigerant discharged from the compressor 1 is stored in the heat storage tank 16 by the heat storage heat exchanger 18, and the remaining heat is used for heating in the indoor heat exchanger 3. . At this time, it is possible to prevent the heating capacity from decreasing by operating the compressor 1 with high capacity.

次に、蓄熱槽16に十分蓄熱された状態で運転を停止する
と、次回の暖房立上り時にこの熱を利用することが可能
である。蓄熱を利用した立上りモードにおいては、二方
弁10,13,15が開で他は閉の状態である。また、電動膨脹
弁4は全閉の状態である。この時、圧縮機1より吐出さ
れた冷媒は四方弁2,室内側熱交換器3,第2バイパス回路
▲▼,第3バイパス回路▲▼の順で流れ、圧縮
機1に吸入される。したがって、圧縮機1より吐出され
た高温,高圧の冷媒は、室内側熱交換器3で暖房に利用
され、補助絞り装置19で減圧されて低温,低圧となり、
蓄熱熱交換器18より蓄熱槽16に蓄えられた熱を吸熱す
る。そして温度検知素子21,20により蓄熱熱交換器18を
流れる前後の冷媒の温度を検出し、この温度差が所定値
以下となると流路制御回路22が信号を発し、これにより
流路切換リレー23が働いて暖房モードとなるよう二方弁
10〜15を制御する。蓄熱熱交換器18の入口では冷媒は2
相状態であり、蓄熱量が十分である場合には出口は過熱
状態であるので入口と出口の冷媒の温度差は大きいが、
蓄熱量が減少するにつれこの温度差は次第に小さくなる
と共に暖房能力も低下していく。したがって、上述の制
御を行なうことで、蓄熱された熱を使いきってしまって
大幅に暖房能力が低下する前に暖房モードに切換えるこ
とが可能である。
Next, if the operation is stopped while the heat storage tank 16 is sufficiently storing heat, this heat can be used at the next heating start-up. In the rising mode utilizing heat storage, the two-way valves 10, 13, 15 are open and the others are closed. The electric expansion valve 4 is fully closed. At this time, the refrigerant discharged from the compressor 1 flows through the four-way valve 2, the indoor heat exchanger 3, the second bypass circuit {circle around (3)}, and the third bypass circuit {circle around (3)}, and is sucked into the compressor 1. Therefore, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is used for heating in the indoor heat exchanger 3, and is decompressed by the auxiliary expansion device 19 to become low-temperature and low-pressure.
The heat stored in the heat storage tank 16 is absorbed by the heat storage heat exchanger 18. Then, the temperature detection elements 21, 20 detect the temperature of the refrigerant before and after flowing through the heat storage heat exchanger 18, and when the temperature difference becomes a predetermined value or less, the flow path control circuit 22 issues a signal, whereby the flow path switching relay 23. Two-way valve to activate the heating mode
Control 10-15. At the inlet of the heat storage heat exchanger 18, the refrigerant is 2
In the phase state, when the heat storage amount is sufficient, the outlet is overheated, so the temperature difference between the refrigerant at the inlet and the outlet is large,
As the heat storage amount decreases, this temperature difference gradually decreases and the heating capacity also decreases. Therefore, by performing the above control, it is possible to switch to the heating mode before the stored heat is used up and the heating capacity is significantly reduced.

また、暖房モード時に蓄熱槽16に十分蓄熱された状態で
あると、除霜時に蓄熱を利用することが可能である。除
霜モードにおいては、二方弁10,13,14,15が開で他は閉
の状態である。また電動膨脹弁4は全閉の状態である。
この時、圧縮機1より吐出された冷媒は、四方弁2,室内
側熱交換器3,第2バイパス回路▲▼と流れ、一部の
冷媒は第7配管▲▼を通って室外側熱交換器5,四方
弁2,圧縮機1へと流れ、残りの冷媒は第3バイパス回路
▲▼と流れて圧縮機1に吸入される。そして、温度
検知素子21,20により蓄熱熱交換器18を流れる前後の冷
媒の温度を検知し、この温度差が所定値以下になると流
路制御回路22が信号を発し、これにより流路切換リレー
23が働いて冷房モードとなるよう二方弁10〜15および四
方弁2を制御する。この制御を行なうことで、蓄熱槽16
への蓄熱が不十分の時、あるいは室外側熱交換器5への
着霜量が多く、除霜完了以前に蓄熱された熱を使いきっ
てしまっても、いわゆる逆サイクル除霜を行なって除霜
を完了することができる。
Further, when the heat storage tank 16 is sufficiently stored with heat in the heating mode, the heat can be stored during defrosting. In the defrosting mode, the two-way valves 10, 13, 14, 15 are open and the others are closed. The electric expansion valve 4 is fully closed.
At this time, the refrigerant discharged from the compressor 1 flows through the four-way valve 2, the indoor heat exchanger 3, the second bypass circuit ▲ ▼, and a part of the refrigerant passes through the seventh pipe ▲ ▼ for outdoor heat exchange. The refrigerant flows to the container 5, the four-way valve 2 and the compressor 1, and the remaining refrigerant flows to the third bypass circuit {circle around ()} and is sucked into the compressor 1. Then, the temperature detection elements 21 and 20 detect the temperature of the refrigerant before and after flowing through the heat storage heat exchanger 18, and when the temperature difference becomes a predetermined value or less, the flow path control circuit 22 issues a signal, whereby the flow path switching relay is generated.
The two-way valves 10 to 15 and the four-way valve 2 are controlled so that 23 operates to enter the cooling mode. By performing this control, the heat storage tank 16
When the heat stored in the outdoor heat exchanger 5 is not sufficient or the amount of frost on the outdoor heat exchanger 5 is large and the heat stored before the completion of defrosting is used up, so-called reverse cycle defrosting is performed to remove the heat. The frost can be completed.

この冷凍サイクルにおいて、蓄熱利用の立上りモード時
は室外側熱交換器5にて外気より吸熱するのではなく、
蓄熱槽16に蓄えられた熱を蓄熱熱交換器18にて吸熱する
ため外気温に影響されることなく安定した吸熱が可能で
ある。また、蓄熱材17として融点の高い潜熱蓄熱材(例
えば、酢酸ナトリウム3水塩;融点58℃)を用いて低温
の冷媒と熱交換させることで、通常の暖房運転時より大
きな熱交換量を得ることができる。したがって、蓄熱を
利用することで低外気温時の立上り時でも大きな暖房能
力を得ることができる。
In this refrigeration cycle, in the rising mode of heat storage utilization, the outdoor heat exchanger 5 does not absorb heat from the outside air,
Since the heat stored in the heat storage tank 16 is absorbed by the heat storage heat exchanger 18, stable heat absorption is possible without being affected by the outside air temperature. Further, by using a latent heat storage material having a high melting point (for example, sodium acetate trihydrate; melting point 58 ° C.) as the heat storage material 17 and exchanging heat with the low temperature refrigerant, a larger heat exchange amount than during normal heating operation is obtained. be able to. Therefore, by utilizing the heat storage, a large heating capacity can be obtained even at the start-up at low outside air temperature.

第3図は、蓄熱利用の除霜モード時の冷凍サイクルをモ
リエル線図上に示した図である。同図に示すように、暖
房に利用された冷媒は、蓄熱熱交換器18にて蓄熱槽16よ
り吸熱し、一部の冷媒は第7配管▲▼を経由して室
外側熱交換器5へ流れて除霜に利用され、残りの冷媒は
室外側熱交換器5をバイパスして第3バイパス回路▲
▼を流れ、その後合流して圧縮機1に吸入される。し
たがって、暖房を継続しながら除霜可能であり、かつ第
3バイパス回路▲▼に一部の冷媒を流すことで、圧
縮機1に吸入される直前の冷媒のエンタルピを高めるこ
とができ、圧縮機1の信頼性を確保できる。
FIG. 3 is a diagram showing the refrigeration cycle in the defrosting mode using heat storage on the Mollier diagram. As shown in the figure, the refrigerant used for heating absorbs heat from the heat storage tank 16 in the heat storage heat exchanger 18, and a part of the refrigerant flows to the outdoor heat exchanger 5 via the seventh pipe ▲ ▼. It flows and is used for defrosting, and the remaining refrigerant bypasses the outdoor heat exchanger 5 and the third bypass circuit ▲
Flows through ▼, then merges and is sucked into the compressor 1. Therefore, it is possible to defrost while continuing heating, and by flowing a part of the refrigerant through the third bypass circuit (1), the enthalpy of the refrigerant immediately before being sucked into the compressor 1 can be increased, and the compressor can be increased. The reliability of 1 can be secured.

このように、一部の冷媒を第3バイパス回路▲▼に
流すことで室外側熱交換器5内での冷媒の圧力損失を小
さくすることができ、したがって除霜性能を向上させる
ことができる。
As described above, by flowing a part of the refrigerant to the third bypass circuit {circle around (5)}, it is possible to reduce the pressure loss of the refrigerant in the outdoor heat exchanger 5, and thus to improve the defrosting performance.

この理由を式を用いて説明すると、まず室外側熱交換器
5にて、冷媒より霜に与えられる熱量QはQ=K・Ao
ΔTであらわされる(K…熱通過率、Ao…管外側(冷媒
側)伝熱面積、ΔT…冷媒と霜との平均温度差)。ここ
で、 である(α…管外側熱伝達率、α…管内側熱伝達
率、rm…熱抵抗、Ai…管内側伝熱面積)。室外側熱交換
器5に流入する冷媒は、実際は過熱ガスであるが、ここ
では室外側熱交換器5を流れる冷媒は全て2相状態であ
ると考える。したがって、室外側熱交換器5の入口での
冷媒圧力をP1、出口での冷媒圧力をP2とすると、それぞ
れの飽和温度T1,T2が冷媒温度となる。したがって また、P2=P1−ΔPである(ΔP…室外側熱交換器5内
での冷媒の圧力損失)。
The reason for this will be explained using an equation. First, in the outdoor heat exchanger 5, the heat quantity Q given to the frost by the refrigerant is Q = K · A o ·
It is represented by ΔT (K ... heat transfer rate, A o ... heat transfer area outside pipe (refrigerant side), ΔT ... average temperature difference between refrigerant and frost). here, Is (alpha o ... abluminal heat transfer coefficient, alpha i ... tube side heat transfer coefficient, r m ... thermal resistance, A i ... tube-side heat transfer area). The refrigerant flowing into the outdoor heat exchanger 5 is actually superheated gas, but here it is considered that all the refrigerant flowing through the outdoor heat exchanger 5 is in a two-phase state. Therefore, when the refrigerant pressure at the inlet of the outdoor heat exchanger 5 is P 1 and the refrigerant pressure at the outlet is P 2 , the respective saturation temperatures T 1 and T 2 are the refrigerant temperatures. Therefore Further, P 2 = P 1 −ΔP (ΔP ... Pressure loss of refrigerant in the outdoor heat exchanger 5).

ここで、ΔP∝Gr Aおよびα∝Gr Bであることは公知で
ある(Gr…室外側熱交換器5内を流れる冷媒の循環量、
A,B…定数)。
Here, it is known that ΔP∝G r A and α i ∝G r B (G r ... Circulation amount of refrigerant flowing in the outdoor heat exchanger 5,
A, B ... constants).

以上の式に、本発明に関する実験結果を一部用いて第3
バイパス回路▲▼に冷媒を流さない場合と全循環量
の50%をながした場合について、概略の計算を行なう。
A part of the above equation is used as an experimental result related to the present invention.
Approximate calculation is performed when the refrigerant is not passed through the bypass circuit ▲ ▼ and when 50% of the total circulation amount is applied.

まず、バイパスを行なわない場合、 α=200kcal/m2h℃、rm=0、 α=1400kcal/m2h℃、Ao=12m2、 Ai=0.85m2を代入してK=63.6kcal/m2h℃が得られる。
P1=6.0kg/cm2abs、 P2=5.1kg/cm2absより、T1=5.24℃、 T2=0.74℃、Tf≒0℃(除霜中はほぼ0℃を保つ)よ
り、ΔT=2.7℃となる。
First, without bypass, substitute α o = 200 kcal / m 2 h ℃, r m = 0, α i = 1400 kcal / m 2 h ℃, A o = 12 m 2 , A i = 0.85 m 2 and substitute K = 63.6kcal / m 2 h ℃ is obtained.
From P 1 = 6.0kg / cm 2 abs, P 2 = 5.1kg / cm 2 abs, from T 1 = 5.24 ℃, T 2 = 0.74 ℃, T f ≈0 ℃ (maintain 0 ℃ during defrosting) , ΔT = 2.7 ° C.

したがってQ=2060kcal/hとなる。着霜量が1.5kgの場
合、−10℃の霜の0℃の水にするのに必要な熱量FQは、
FQ=127.5kcalであるので除霜時間Tdは、 となる。
Therefore, Q = 2060 kcal / h. When the amount of frost is 1.5 kg, the amount of heat F Q required to turn -10 ° C frost into 0 ° C water is
Since F Q = 127.5 kcal, the defrosting time T d is Becomes

一方バイパスを行なう場合、A=1.75、B=0.5とする
と、α=990となるのでK=49.6となる。また、ΔP
=0.27となり、P1はバイパスをしない場合と同じである
なら、T1=5.24、T2=3.77となり、ΔT=4.51である。
したがって、Q=2684となり、Td=2.85分となり、バイ
パスをしない場合より1分近く除霜時間を短縮できる。
On the other hand, when bypassing is performed, if A = 1.75 and B = 0.5, then α i = 990 and K = 49.6. Also, ΔP
= 0.27, and if P 1 is the same as when bypass is not used, then T 1 = 5.24, T 2 = 3.77, and ΔT = 4.51.
Therefore, Q = 2684 and T d = 2.85 minutes, and the defrosting time can be shortened by almost 1 minute as compared with the case without bypass.

ここで第4図は、バイパス流量割合と除霜時間との関係
を計算した計画を示す図である。このようにバイパス量
が80%を超えると、バイパスしない時より除霜時間が長
くなってしまう。したがって、バイパス量が最適となる
ように(図では約30〜60%)第3バイパス回路▲▼
上に補助絞りを設けてもよい。
Here, FIG. 4 is a diagram showing a plan for calculating the relationship between the bypass flow rate and the defrosting time. When the bypass amount exceeds 80%, the defrosting time becomes longer than when the bypass is not used. Therefore, ensure that the bypass amount is optimal (about 30-60% in the figure). Third bypass circuit ▲ ▼
An auxiliary diaphragm may be provided on the top.

なお、本実施例においては、冷媒流路の切換は二方弁を
用いたが、これに限定されるものではなく、三方弁等他
の手段を用いてもよい。また、絞り装置としては電動膨
脹弁4を用いて説明したが、キャピラリと二方弁の組合
せ等、他の手段を用いてもよい。
In this embodiment, the two-way valve is used for switching the refrigerant flow path, but the invention is not limited to this, and other means such as a three-way valve may be used. Although the expansion device has been described using the electric expansion valve 4, other means such as a combination of a capillary and a two-way valve may be used.

また、第2バイパス回路▲▼は、電動膨脹弁4をバ
イパスさせたが、電動膨脹弁4と室外側熱交換器5との
間の管路をバイパスしてもよい。
Further, although the second bypass circuit {circle over (2)} bypasses the electric expansion valve 4, it may bypass the conduit between the electric expansion valve 4 and the outdoor heat exchanger 5.

また、本実施例においては、第3バイパス回路▲▼
は第1バイパス回路▲▼および第2バイパス回路▲
▼と管路の一部を共有しているがこれに限定される
ものではなく、室外側熱交換器5をバイパスする管路で
あれば他の位置に設けてもよい。
Further, in this embodiment, the third bypass circuit ▲ ▼
Is the first bypass circuit ▲ ▼ and the second bypass circuit ▲
Although a part of the pipeline is shared with ▼, the pipeline is not limited to this and may be provided at another position as long as the pipeline bypasses the outdoor heat exchanger 5.

さらに、第1バイパス回路▲▼は圧縮機1と四方弁
2との間の管路をバイパスしたが、暖房運転時に高圧側
となる他の位置をバイパスしてもよい。
Further, although the first bypass circuit (2) bypasses the pipe line between the compressor 1 and the four-way valve 2, it may also bypass other positions on the high pressure side during the heating operation.

また、本実施例においては、除霜モードおよび立上りモ
ード時において蓄熱量検知手段により冷媒流路を切換え
たがこれに限定されるものではなく、暖房モード時で蓄
熱を行なう時、蓄熱量検知手段により蓄熱槽への蓄熱完
了を検知して冷媒流路を暖房運転のみに切換える等の他
の制御にも利用可能である。蓄熱量検知手段としても1
個若しくは複数個の温度検知素子を蓄熱槽へ配設する等
の他の手段を用いてもよい。
Further, in the present embodiment, the refrigerant flow path is switched by the heat storage amount detecting means in the defrosting mode and the rising mode, but the present invention is not limited to this, and the heat storage amount detecting means is used when heat is stored in the heating mode. Can be used for other control such as detecting completion of heat storage in the heat storage tank and switching the refrigerant flow path to only heating operation. Also as a heat storage amount detection means 1
Other means such as disposing one or a plurality of temperature detecting elements in the heat storage tank may be used.

また、圧縮機の能力可変手段も周波数可変形に限定され
るものでない。
Further, the capacity varying means of the compressor is not limited to the variable frequency type.

発明の効果 以上のように本発明のヒートポンプ式空気調和機は、暖
房運転時に蓄熱槽に蓄熱し、除霜運転時にこの熱を利用
することで高い暖房能力を保ちながら除霜可能である。
また、暖房運転の立上り時にも蓄熱された熱を利用し
て、外気温に左右されず高い暖房能力を発揮することが
できる。
Effect of the Invention As described above, the heat pump type air conditioner of the present invention is capable of defrosting while maintaining high heating capacity by storing heat in the heat storage tank during heating operation and utilizing this heat during defrosting operation.
Further, even when the heating operation is started up, the accumulated heat can be used to exert a high heating capacity regardless of the outside air temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の冷凍サイクル図、第2図は同ヒートポンプ式空
気調和機の各運転時の弁類の動作状態を示す図、第3図
は同ヒートポンプ式空気調和機の蓄熱利用の除霜モード
時の冷凍サイクルをモリエル線図上に示した図、第4図
は同ヒートポンプ式空気調和機の特性図である。 1……圧縮機、2……四方弁、3……室内側熱交換器、
4……電動膨脹弁(減圧器)、5……室外側熱交換器、
10〜15……二方弁(流路制御手段)、16……蓄熱槽、17
……蓄熱材、18……蓄熱熱交換器、19……補助絞り装置
(補助減圧器)、▲▼……第1バイパス回路、▲
▼……第2バイパス回路、▲▼……第3バイパス
回路。
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner according to an embodiment of the present invention, FIG. 2 is a diagram showing operating states of valves during each operation of the heat pump type air conditioner, and FIG. 3 is the same. FIG. 4 is a characteristic diagram of the heat pump type air conditioner showing a refrigeration cycle in the defrosting mode using heat storage in the heat pump type air conditioner, and FIG. 4 is a characteristic diagram of the heat pump type air conditioner. 1 ... compressor, 2 ... four-way valve, 3 ... indoor heat exchanger,
4 ... Electric expansion valve (pressure reducer), 5 ... Outdoor heat exchanger,
10 to 15 …… Two-way valve (flow path control means), 16 …… Heat storage tank, 17
...... Heat storage material, 18 …… Heat storage heat exchanger, 19 …… Auxiliary expansion device (auxiliary decompressor), ▲ ▼ …… First bypass circuit, ▲
▼ …… Second bypass circuit, ▲ ▼ …… Third bypass circuit.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、室外側熱交換器、減圧器、室内側
熱交換器を順に配管にて環状に連結して主冷媒回路を構
成し、運転時に高圧側となる前記圧縮機の吐出側から前
記減圧器までの配管の一部をバイパスし蓄熱熱交換器を
有する第1バイパス回路と、前記減圧器をバイパスし補
助減圧器及び前記蓄熱熱交換器を有する第2バイパス回
路と、前記室外側熱交換器をバイパスする第3バイパス
回路と、蓄熱暖房時に前記第1バイパス回路を開とする
とともに前記第2バイパス回路および前記第3バイパス
回路を閉とし、除霜時に前記第1バイパス回路を閉とす
るとともに前記第2バイパス回路及び前記第3バイパス
回路を開として前記室外側熱交換器を流れる冷媒の一部
を前記第3バイパス回路に流す流路制御手段とを有する
ヒートポンプ式空気調和機。
Claim: What is claimed is: 1. A compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are sequentially connected in an annular shape by pipes to form a main refrigerant circuit, and the discharge of the compressor which becomes the high pressure side during operation. A first bypass circuit having a heat storage heat exchanger that bypasses a part of the piping from the side to the pressure reducer; a second bypass circuit that bypasses the pressure reducer and has an auxiliary pressure reducer and the heat storage heat exchanger; A third bypass circuit that bypasses the outdoor heat exchanger, the first bypass circuit is opened during heat storage heating, the second bypass circuit and the third bypass circuit are closed, and the first bypass circuit is during defrosting. And a flow path control means for flowing a part of the refrigerant flowing through the outdoor heat exchanger to the third bypass circuit by closing the second bypass circuit and the third bypass circuit. Conditioner.
【請求項2】圧縮機、室外側熱交換器、減圧器、室内側
熱交換器を順に配管にて環状に連結して主冷媒回路を構
成し、運転時に高圧側となる前記圧縮機の吐出側から前
記減圧器までの配管の一部をバイパスし蓄熱熱交換器を
有する第1バイパス回路と、前記減圧器をバイパスし補
助減圧器及び前記蓄熱熱交換器を有する第2バイパス回
路と、前記室外側熱交換器をバイパスする第3バイパス
回路と、蓄熱暖房時に前記第1バイパス回路を開とする
とともに前記第2バイパス回路および前記第3バイパス
回路を閉とし、除霜時に前記第1バイパス回路を閉とす
るとともに前記第2バイパス回路及び前記第3バイパス
回路を開として前記室外側熱交換器を流れる冷媒の一部
を前記第3バイパス回路に流し、蓄熱利用の運転開始時
に前記第2バイパス回路および前記第3バイパス回路を
開として前記室外側熱交換器を流れる冷媒の全部を前記
第3バイパス回路に流す流路制御手段を有するヒートポ
ンプ式空気調和機。
2. A discharge of the compressor which becomes a high pressure side during operation by connecting a compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger in order by a pipe to form a ring. A first bypass circuit having a heat storage heat exchanger that bypasses a part of the piping from the side to the pressure reducer; a second bypass circuit that bypasses the pressure reducer and has an auxiliary pressure reducer and the heat storage heat exchanger; A third bypass circuit that bypasses the outdoor heat exchanger, the first bypass circuit is opened during heat storage heating, the second bypass circuit and the third bypass circuit are closed, and the first bypass circuit is during defrosting. Is closed and the second bypass circuit and the third bypass circuit are opened so that a part of the refrigerant flowing through the outdoor heat exchanger is caused to flow into the third bypass circuit, and the second bypass circuit is operated at the start of operation of heat storage utilization. Circuit and a heat pump type air conditioner having a flow path control means for flowing the whole of the refrigerant flowing through the outdoor side heat exchanger to the third bypass circuit the third bypass circuit is opened.
【請求項3】圧縮機を能力可変圧縮機とし、蓄熱暖房時
に前記圧縮機を高能力運転する請求項1または請求項2
記載のヒートポンプ式空気調和機の制御方法。
3. The compressor according to claim 1 or 2, wherein the compressor is a variable capacity compressor, and the compressor is operated at high capacity during heat storage heating.
A method for controlling the heat pump type air conditioner described.
【請求項4】蓄熱熱交換器で生じる熱を蓄熱する蓄熱槽
と、前記蓄熱槽の蓄熱量を検出する蓄熱量検知手段とを
設け、流路制御手段は前記蓄熱量検知手段の信号に基づ
いて冷媒流路を切換える請求項1または請求項2に記載
のヒートポンプ式空気調和機。
4. A heat storage tank for storing the heat generated in the heat storage heat exchanger, and a heat storage amount detecting means for detecting the heat storage amount of the heat storage tank, wherein the flow path control means is based on a signal from the heat storage amount detecting means. The heat pump type air conditioner according to claim 1 or 2, wherein the refrigerant passages are switched by means of the heat pump type air conditioner.
【請求項5】蓄熱量検知手段は、蓄熱熱交換器の入口側
および出口側に接続されたそれぞれの配管に配設した2
個の温度検知素子で構成した請求項4記載のヒートポン
プ式空気調和機。
5. The heat storage amount detecting means is provided in each of the pipes connected to the inlet side and the outlet side of the heat storage heat exchanger.
The heat pump type air conditioner according to claim 4, wherein the heat pump type air conditioner is composed of individual temperature detecting elements.
【請求項6】圧縮機、室外側熱交換器、減圧器、室内側
熱交換器を順に配管にて環状に連結して主冷媒回路を構
成し、運転時に高圧側となる前記圧縮機の吐出側から前
記減圧器までの配管の一部をバイパスし蓄熱熱交換器を
有する第1バイパス回路と、前記減圧器をバイパスし補
助減圧器及び前記蓄熱熱交換器を有する第2バイパス回
路と、前記室外側熱交換器をバイパスする第3バイパス
回路と、前記それぞれのバイパス回路を開閉制御する流
路制御手段とを備え、前記第1バイパス回路は、運転時
に高圧側となる前記圧縮機の吐出側から前記減圧器まで
の配管に一端を接続した第1配管と、前記第1配管の他
端に一端を接続し、他端を前記蓄熱熱交換器の冷媒流入
端に接続した第2配管と、前記蓄熱熱交換器の冷媒流出
端に一端を接続した第3配管と、前記第3配管の他端に
一端を接続した第4配管と、前記第4配管の他端に一端
を接続し、他端を前記第1配管の一端より下流側で前記
減圧器までの配管に接続した第5配管とより構成し、前
記第2バイパス回路は、前記室内側熱交換器から前記減
圧器までの配管に一端を接続し、他端を前記第1配管の
他端に接続するとともに前記補助減圧器を有する第6配
管と、前記第2配管と、前記第3配管と、前記第3配管
の他端に一端を接続し、他端を前記減圧器から前記室外
側熱交換器までの配管に接続した第7配管とより構成し
たヒートポンプ式空気調和機。
6. A discharge of the compressor, which becomes a high-pressure side during operation, by connecting a compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger in this order by a pipe to form a main refrigerant circuit. A first bypass circuit having a heat storage heat exchanger that bypasses a part of the piping from the side to the pressure reducer; a second bypass circuit that bypasses the pressure reducer and has an auxiliary pressure reducer and the heat storage heat exchanger; A third bypass circuit that bypasses the outdoor heat exchanger, and a flow path control unit that controls opening and closing of each of the bypass circuits are provided, and the first bypass circuit is a high pressure side during operation of the compressor discharge side. To the pressure reducer, a first pipe having one end connected to the pipe, and a second pipe having one end connected to the other end of the first pipe and the other end connected to the refrigerant inflow end of the heat storage heat exchanger, Connect one end to the refrigerant outflow end of the heat storage heat exchanger A third pipe, a fourth pipe having one end connected to the other end of the third pipe, one end connected to the other end of the fourth pipe, and the other end having the depressurized pressure downstream from one end of the first pipe. The second bypass circuit has one end connected to a pipe from the indoor heat exchanger to the pressure reducer, and the other end connected to the first pipe other than the first pipe. A sixth pipe connected to an end and having the auxiliary decompressor, the second pipe, the third pipe, and one end connected to the other end of the third pipe, and the other end from the decompressor to the chamber A heat pump type air conditioner composed of a seventh pipe connected to a pipe to the outer heat exchanger.
【請求項7】第3バイパス回路は、第6配管と、第2配
管と、第3配管と、第7配管と、第4配管と、前記第4
配管の他端に一端を接続し、他端を前記室外側熱交換器
から前記圧縮機の吸入側配管に接続した第8配管とより
構成した請求項6記載のヒートポンプ式空気調和機。
7. The third bypass circuit includes a sixth pipe, a second pipe, a third pipe, a seventh pipe, a fourth pipe, and the fourth pipe.
The heat pump type air conditioner according to claim 6, further comprising: an eighth pipe having one end connected to the other end of the pipe and the other end connected to the suction side pipe of the compressor from the outdoor heat exchanger.
【請求項8】圧縮機の吐出側配管及び吸入側配管を接続
し、室内側熱交換器、減圧器及び室外側熱交換器を流れ
る冷媒方向を切換える四方弁を設け、第1バイパス回路
の両端を前記圧縮機の吐出側から前記四方弁までの管に
接続した請求項1から請求項4までのいずれかに記載の
ヒートポンプ式空気調和機。
8. A four-way valve for connecting the discharge side pipe and the suction side pipe of the compressor and switching the direction of the refrigerant flowing through the indoor heat exchanger, the pressure reducer and the outdoor heat exchanger, and both ends of the first bypass circuit. The heat pump type air conditioner according to any one of claims 1 to 4, wherein is connected to a pipe from the discharge side of the compressor to the four-way valve.
JP6399588A 1988-03-17 1988-03-17 Heat pump air conditioner Expired - Fee Related JPH07107470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6399588A JPH07107470B2 (en) 1988-03-17 1988-03-17 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6399588A JPH07107470B2 (en) 1988-03-17 1988-03-17 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JPH01239352A JPH01239352A (en) 1989-09-25
JPH07107470B2 true JPH07107470B2 (en) 1995-11-15

Family

ID=13245360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6399588A Expired - Fee Related JPH07107470B2 (en) 1988-03-17 1988-03-17 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JPH07107470B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389271B1 (en) * 2001-03-17 2003-06-27 진금수 Heat pump apparatus

Also Published As

Publication number Publication date
JPH01239352A (en) 1989-09-25

Similar Documents

Publication Publication Date Title
CN102523754B (en) Refrigerating circulatory device
CN103765133A (en) Refrigeration cycle apparatus and air conditioner provided with same
KR100333814B1 (en) Dual unit type air conditioner for heating and cooling and defrosting method thereof
JPH01118080A (en) Heat pump type air conditioner
JPS63169457A (en) Heat pump type air conditioner
JP2002107012A (en) Air conditioner
JPH04366369A (en) Air conditioning apparatus
JPH07107470B2 (en) Heat pump air conditioner
JPH07107471B2 (en) Heat pump air conditioner
JPH0424364Y2 (en)
CN110701821A (en) Air conditioner, control method and device thereof, and computer-readable storage medium
JPH1062020A (en) Heat-storage type air-conditioner
JPS6018757Y2 (en) air conditioner
JP2012077938A (en) Refrigerating cycle device
JP2842471B2 (en) Thermal storage type air conditioner
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JP2871166B2 (en) Air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH065572Y2 (en) Refrigeration equipment
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner
JPH04347466A (en) Air conditioner
JPH02272237A (en) Heat storage type air conditioner
JPH0519723Y2 (en)
JPH0233108Y2 (en)
JPH0579901B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees