JPH07107184B2 - Article made of Ti-Ni shape memory alloy for actuator and manufacturing method thereof - Google Patents

Article made of Ti-Ni shape memory alloy for actuator and manufacturing method thereof

Info

Publication number
JPH07107184B2
JPH07107184B2 JP21610089A JP21610089A JPH07107184B2 JP H07107184 B2 JPH07107184 B2 JP H07107184B2 JP 21610089 A JP21610089 A JP 21610089A JP 21610089 A JP21610089 A JP 21610089A JP H07107184 B2 JPH07107184 B2 JP H07107184B2
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
temperature
alloy
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21610089A
Other languages
Japanese (ja)
Other versions
JPH0382728A (en
Inventor
裕一 中里
Original Assignee
裕一 中里
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕一 中里 filed Critical 裕一 中里
Priority to JP21610089A priority Critical patent/JPH07107184B2/en
Publication of JPH0382728A publication Critical patent/JPH0382728A/en
Publication of JPH07107184B2 publication Critical patent/JPH07107184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Manipulator (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はサーボ特性に優れた形状記憶合金に関するもの
であり、各種機械やロボットなどのアクチュエータに適
用した場合、位置制御の特性を向上させるものである。
TECHNICAL FIELD The present invention relates to a shape memory alloy having excellent servo characteristics, and improves position control characteristics when applied to actuators of various machines and robots. Is.

[従来の技術] 従来、アクチュエータに用いられる形状記憶合金は、お
もにTi−Ni合金や銅系合金が用いられているが、その組
成や性質はいずれも均一な材質がもちいられている。
[Prior Art] Conventionally, a shape memory alloy used for an actuator is mainly a Ti-Ni alloy or a copper alloy, but a material having uniform composition and properties is used.

[発明が解決しようとすると問題点] 形状記憶合金は、外力が加わり変形しても、加熱されカ
ルテンサイト逆変態開始温度(以下As点とする)に達す
ると、一斉に形状回復が始まり、マルテンサイト逆変態
終了温度(以下Af点とする)になるまでに完全に形状を
回復する。従来技術の形状記憶合金は材質が均一なた
め、このAs〜Af点間が非常に狭くなる。同様に冷却時
は、マルテンサイト変態開始温度(以下Ms点とする)と
マルテンサイト変態終了温度(以下Mf点とする)の間隔
が狭い。
[Problems to be Solved by the Invention] When a shape memory alloy is heated and reaches the caltensite reverse transformation start temperature (hereinafter referred to as As point) even if it is deformed by an external force, shape recovery starts at once. The shape is completely recovered by the end temperature of martensite reverse transformation (hereinafter referred to as Af point). Since the conventional shape memory alloy is made of a uniform material, the distance between As and Af is extremely narrow. Similarly, during cooling, the interval between the martensitic transformation start temperature (hereinafter referred to as Ms point) and the martensite transformation end temperature (hereinafter referred to as Mf point) is narrow.

このため、均一な組成の形状記憶合金を一定の操作信号
量に応じた機械的変位をもたらすサーボアクチュエータ
として用いる場合、位置制御が難しくなる。特に、微細
な位置制御を行わなければならないロボットなどのアク
チュエータに応用する場合、形状記憶合金を加熱によっ
て操作する限り、As〜Af点間やMs〜Mf点間が狭いと、温
度変化に対する機械的変位が急激に起こり、位置制御が
困難になる。
Therefore, when a shape memory alloy having a uniform composition is used as a servo actuator that causes mechanical displacement according to a constant operation signal amount, position control becomes difficult. Especially when applied to actuators such as robots that require fine position control, as long as shape memory alloy is operated by heating, if As-Af point or Ms-Mf point is narrow, mechanical change Displacement occurs rapidly, making position control difficult.

[問題点を解決するための手段] そこで、本発明は、前記問題点を解決するものとして、
合金各部の変態点温度を変化させ、合金全体のAs〜Af点
間およびMs〜Mf点間を広げる製造方法及びその形状記憶
合金を提供するものである。
[Means for Solving Problems] Accordingly, the present invention is directed to solving the problems as described above.
The present invention provides a manufacturing method and its shape memory alloy in which the transformation temperature of each part of the alloy is changed and the As to Af points and the Ms to Mf points of the entire alloy are expanded.

Ti−Ni系形状記憶合金は、中温処理時の処理温度によっ
て変態点温度が変化することが知られている(米国特許
第4,283,233)。
It is known that the transformation temperature of Ti-Ni-based shape memory alloy changes depending on the treatment temperature during the intermediate temperature treatment (US Pat. No. 4,283,233).

本発明の製法は、Ti−Niからなる、組成の均一な二元合
金を出発材料にして、400℃〜500℃の温度勾配を持った
炉により、中温処理を施すことに主な特徴を有してい
る。
The manufacturing method of the present invention is characterized mainly in that a binary alloy having a uniform composition composed of Ti-Ni is used as a starting material and a medium temperature treatment is performed in a furnace having a temperature gradient of 400 ° C to 500 ° C. is doing.

この処理により、出発材料の各部は異なる処理温度で処
理されることになり、各部の変態点温度に違いが出る。
そして、出発材料全体を考えた場合、一つの形状金属合
金で各部の変態点温度に勾配を生じた合金、つまり、形
状回復温度幅が広く、アクチュエータなどの制御に適し
た合金を得ることができる。
By this treatment, each part of the starting material is treated at a different processing temperature, which causes a difference in the transformation point temperature of each part.
Then, when considering the entire starting material, it is possible to obtain an alloy in which the transformation temperature of each part has a gradient in one shape metal alloy, that is, an alloy having a wide shape recovery temperature range and suitable for controlling actuators and the like. .

処理時間は、合金の大きさによって異なるが、30〜90分
位が適当である。処理時間が短すぎると処理効果が得ら
れず、長すぎると効果が損なわれることがある。
The treatment time varies depending on the size of the alloy, but 30 to 90 minutes is suitable. If the treatment time is too short, the treatment effect may not be obtained, and if it is too long, the effect may be impaired.

[実施例] 次に、本発明を図面に示す実施例に基づいて説明する。EXAMPLES Next, the present invention will be described based on examples shown in the drawings.

Ti−Ni形状記憶合金ワイヤを出発材料として、次の処理
を行う。
The following processing is performed using a Ti-Ni shape memory alloy wire as a starting material.

第1図に示すような陶製の管2の中にTi−Ni形状記憶合
金ワイヤ1を固定し、これを炉4の内部に耐火煉瓦3を
介して設置した。炉4の周囲に電熱線5を巻き付け炉4
を加熱できるようにした。また、電熱線5の巻線間隔を
適宜変えることによって第2図に示すような炉4の内部
の温度分布を得てTi−Ni形状記憶合金ワイヤ1に30分間
中温処理を施し、本発明の形状記憶合金を得た。
A Ti-Ni shape memory alloy wire 1 was fixed in a ceramic tube 2 as shown in FIG. 1, and this was installed inside a furnace 4 through a refractory brick 3. A heating wire 5 is wrapped around the furnace 4
So that it can be heated. Further, by appropriately changing the winding interval of the heating wire 5, the temperature distribution inside the furnace 4 as shown in FIG. 2 is obtained, and the Ti—Ni shape memory alloy wire 1 is subjected to a medium temperature treatment for 30 minutes to obtain the temperature distribution of the present invention. A shape memory alloy was obtained.

下記の条件で、従来技術の形状記憶合金と本発明の形状
記憶合金のそれぞれの温度−ひじみ特性を測定した。
The temperature-shrinkage characteristics of the shape memory alloy of the prior art and the shape memory alloy of the present invention were measured under the following conditions.

往復運動を行うために、常にバイアス力がかかって
いるアクチュエータを想定する。このため、装置の形状
記憶合金には常に一定負荷をかけるようにする。
It is assumed that the actuator is constantly biased to perform reciprocating motion. Therefore, a constant load is always applied to the shape memory alloy of the device.

形状記憶合金は、応答性があまり良くないので、加
熱・冷却は徐々に行う。また加熱速度や冷却速度によっ
て、発生力に違いが出ることがあることから、加熱・冷
却速度は一定に保つ。
Shape memory alloys do not have very good responsiveness, so heating and cooling are gradually performed. Since the generated force may differ depending on the heating rate and cooling rate, the heating / cooling rate is kept constant.

線状の形状記憶合金を加熱・冷却することから、形
状記憶合金の各部によって、温度が異なることがないよ
う、形状記憶合金の各部を均一に加熱・冷却する。
Since the linear shape memory alloy is heated and cooled, each part of the shape memory alloy is uniformly heated and cooled so that the temperature does not vary depending on each part of the shape memory alloy.

測定結果を、第3図及び第4図に示す。The measurement results are shown in FIGS. 3 and 4.

第3図は加熱時の温度−ひずみ特性である。従来技術の
合金はAs〜Af点間の温度差が小さい、つまり形状回復温
度幅が小さくなっている。本発明の合金はAs〜Af点間の
温度差が大きい、つまり形状回復温度幅が大きくなって
いる。
FIG. 3 shows temperature-strain characteristics during heating. The alloy of the prior art has a small temperature difference between the As and Af points, that is, has a narrow shape recovery temperature range. The alloy of the present invention has a large temperature difference between the As and Af points, that is, has a wide shape recovery temperature range.

第4図は冷却時の温度−ひずみ特性であり、従来技術の
合金はMs〜Mf点間の温度差が小さい、つまり形状回復温
度幅が小さくなっている。本発明の合金はMs〜Mf点間の
温度差が大きい、つまり形状回復温度幅が大きくなって
いる。
FIG. 4 shows the temperature-strain characteristics during cooling. In the alloy of the prior art, the temperature difference between the Ms and Mf points is small, that is, the shape recovery temperature width is small. The alloy of the present invention has a large temperature difference between the Ms and Mf points, that is, a wide shape recovery temperature range.

[発明の効果] 本発明は、変態温度As〜Af点間およびMs〜Mf点間が広
く、特に、Ms〜Mf点間は、従来のものよりも大幅に広が
った。このため、本発明をアクチュエータに応用し、加
熱・冷却によって、変位を調整する場合、変位の開始・
終了の温度幅が大きくなり、位置制御が容易になる。
[Effects of the Invention] In the present invention, the transformation temperatures As to Af points and Ms to Mf points are wide, and in particular, the Ms to Mf points are much wider than the conventional ones. Therefore, when the present invention is applied to an actuator and the displacement is adjusted by heating / cooling, when the displacement starts /
The temperature range at the end is increased, and the position control becomes easier.

【図面の簡単な説明】[Brief description of drawings]

第1図は炉の断面図、第2図は炉内の温度分布を示す
図、第3図は従来の形状記憶合金と本発明の加熱時に於
けるそぞれの温度−ひずみ特性を示す図、第4図は従来
の形状記憶合金と本発明の冷却時に於けるそれぞれの温
度−ひずみ特性を示す図である。 1……形状記憶合金ワイヤ、4……炉 2……陶製の管、5……電熱線 3……耐火煉瓦
FIG. 1 is a sectional view of the furnace, FIG. 2 is a view showing a temperature distribution in the furnace, and FIG. 3 is a view showing temperature-strain characteristics of a conventional shape memory alloy and the heating of the present invention. FIG. 4 is a diagram showing the temperature-strain characteristics of the conventional shape memory alloy and the cooling of the present invention. 1 ... Shape memory alloy wire, 4 ... Furnace, 2 ... Ceramic tube, 5 ... Heating wire, 3 ... Fire brick

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Ti−Ni形状記憶合金からなる物品の各部に
異なる処理温度で400℃〜500℃の中温処理を施し、物品
全体としての形状回復温度幅を広くした物品
1. An article in which each part of an article made of a Ti-Ni shape memory alloy is subjected to a medium-temperature treatment at 400 ° C. to 500 ° C. at different treatment temperatures to widen the shape recovery temperature range as a whole.
【請求項2】Ti−Ni形状記憶合金を、400℃〜500℃の温
度勾配を持った炉により、中温処理を施し、形状回復温
度幅を広くする特許請求の範囲第1項記載のTi−Ni形状
記憶合金からなる物品の製造方法
2. A Ti-Ni shape memory alloy according to claim 1, wherein a Ti-Ni shape memory alloy is subjected to an intermediate temperature treatment in a furnace having a temperature gradient of 400 ° C. to 500 ° C. to widen the shape recovery temperature range. Method for manufacturing article made of Ni shape memory alloy
JP21610089A 1989-08-24 1989-08-24 Article made of Ti-Ni shape memory alloy for actuator and manufacturing method thereof Expired - Lifetime JPH07107184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21610089A JPH07107184B2 (en) 1989-08-24 1989-08-24 Article made of Ti-Ni shape memory alloy for actuator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21610089A JPH07107184B2 (en) 1989-08-24 1989-08-24 Article made of Ti-Ni shape memory alloy for actuator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0382728A JPH0382728A (en) 1991-04-08
JPH07107184B2 true JPH07107184B2 (en) 1995-11-15

Family

ID=16683248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21610089A Expired - Lifetime JPH07107184B2 (en) 1989-08-24 1989-08-24 Article made of Ti-Ni shape memory alloy for actuator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07107184B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807393B1 (en) * 2006-06-05 2008-02-28 경상대학교산학협력단 Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby

Also Published As

Publication number Publication date
JPH0382728A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
US4881981A (en) Method for producing a shape memory alloy member having specific physical and mechanical properties
KR100807393B1 (en) Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby
Luo et al. A comparison of methods for the training of NiTi two-way shape memory alloy
JPH07107184B2 (en) Article made of Ti-Ni shape memory alloy for actuator and manufacturing method thereof
WO2010127646A2 (en) A method of heat treatment and/or inspection of functional mechanical properties, particularly transformation strain and/or strength, of shape memory alloy filaments and apparatus for the application of this method
JP2008156706A (en) Method for producing shape memory member
JPS61183455A (en) Manufacture of ni-ti type shape memory material
JPS61227141A (en) Niti shape memory alloy wire
US3753792A (en) Method of achieving thermally balanced hot wire relay type devices
JPS59170247A (en) Manufacture of niti type shape memory material
JPH06172886A (en) Ti-ni-cu shape memory alloy
RU2678699C1 (en) Device for manipulation of micro-and nano-objects with storage function
JPS6144150B2 (en)
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
JPS60169551A (en) Manufacture of shape memory alloy
JPH02104647A (en) Heat treatment for ni-p alloy film
JPS6214216B2 (en)
JPH04248031A (en) Manufacture of coil spring formed of shape memory alloy wire material
SU1442693A1 (en) Heat-responsive power element
SU396061A1 (en) Method of heat treatment of iron-chromium-nickel-base alloy
US6800143B1 (en) Supermagnetostrictive alloy and method of preparation thereof
JPH059686A (en) Production of shape memory niti alloy
Matsumoto et al. Crystallinity of rapidly solidified Ti Ni Cu alloy
JPS6059054A (en) Thermal response element
JPS5896844A (en) Very rapidly cooled shape memory ni-ti alloy