JPH07107000B2 - Method for producing ethanol - Google Patents

Method for producing ethanol

Info

Publication number
JPH07107000B2
JPH07107000B2 JP5304571A JP30457193A JPH07107000B2 JP H07107000 B2 JPH07107000 B2 JP H07107000B2 JP 5304571 A JP5304571 A JP 5304571A JP 30457193 A JP30457193 A JP 30457193A JP H07107000 B2 JPH07107000 B2 JP H07107000B2
Authority
JP
Japan
Prior art keywords
catalyst
copper
iron
zinc
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5304571A
Other languages
Japanese (ja)
Other versions
JPH07133242A (en
Inventor
淳 岡本
和夫 田中
Original Assignee
通商産業省基礎産業局長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通商産業省基礎産業局長 filed Critical 通商産業省基礎産業局長
Priority to JP5304571A priority Critical patent/JPH07107000B2/en
Publication of JPH07133242A publication Critical patent/JPH07133242A/en
Publication of JPH07107000B2 publication Critical patent/JPH07107000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二酸化炭素を接触水素
化してエタノールを製造する方法に関するもので、エタ
ノ−ルは、各種化学品、医薬や農薬等の重要な基礎原料
となるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen by catalytically hydrogenating carbon dioxide. Ethanol is an important basic raw material for various chemical products, pharmaceuticals, agricultural chemicals and the like. .

【0002】[0002]

【従来の技術】エタノールは、現在、澱粉や廃糖蜜等の
酵母による発酵法や酸性触媒等の存在下においてエチレ
ンを水和する方法によって製造されている。近年、地球
温暖化などの環境問題が取り沙汰されているが、特にそ
の主因物質であると考えられる二酸化炭素の排出抑制が
世界的に検討されているが、最も望ましい解決策として
は、これを回収し再資源化することである。 その一つ
の方策として二酸化炭素を炭素資源としたエタノールへ
の工業的な変換技術開発は大いに意義あることである。
2. Description of the Related Art Ethanol is currently produced by a fermentation method using yeast such as starch and molasses and a method of hydrating ethylene in the presence of an acidic catalyst. In recent years, environmental problems such as global warming have been highlighted. In particular, carbon dioxide emission control, which is considered to be the main causative agent, is being studied worldwide, but the most desirable solution is to collect it. It is to recycle it. As one of the measures, the development of industrial conversion technology from carbon dioxide as a carbon resource to ethanol is of great significance.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
の様な観点から二酸化炭素を炭素源として有効に利用し
て工業的に有用なエタノールを製造する方法を提供する
ことにある。
An object of the present invention is to provide a method for producing industrially useful ethanol by effectively using carbon dioxide as a carbon source from the above viewpoint.

【0004】[0004]

【課題を解決するための手段】本発明者らは、二酸化炭
素を接触水素化によりエタノールを合成すべく鋭意研究
を重ねた結果、鉄、銅、亜鉛または鉄、銅、亜鉛、周期
律表第1a族元素(以下、アルカリ金属元素と称す)な
る成分により構成される触媒存在下において、二酸化炭
素の水素化反応を行うことによってエタノールが生成す
ることを見い出し、本発明を完成させるに至った。即ち
本発明は、鉄、銅、亜鉛または鉄、銅、亜鉛、アルカリ
金属元素なる成分により構成される触媒を用いて二酸化
炭素を接触水素化することによりエタノールを効率的に
製造する方法を提供するものである。本発明のエタノ−
ル合成反応は、2CO2 +6H2 →C2 5 OH+3H
2 Oにより表すことができる。
Means for Solving the Problems As a result of intensive studies to synthesize ethanol by catalytic hydrogenation of carbon dioxide, the present inventors have found that iron, copper, zinc or iron, copper, zinc, the periodic table It was found that ethanol is produced by carrying out a hydrogenation reaction of carbon dioxide in the presence of a catalyst composed of a group 1a element (hereinafter referred to as an alkali metal element), and completed the present invention. That is, the present invention provides a method for efficiently producing ethanol by catalytic hydrogenation of carbon dioxide using a catalyst composed of iron, copper, zinc or iron, copper, zinc, and an alkali metal element. It is a thing. The ethanol of the present invention
The synthesis reaction is 2CO 2 + 6H 2 → C 2 H 5 OH + 3H
It can be represented by 2 O.

【0005】本発明の触媒を調製するに当たっては、
鉄、銅、亜鉛、及び/又はアルカリ金属元素の各成分が
最終的に組み合わされておればよく、各元素の出発物質
としての化合物形態等には特に制限はなく、例えば、各
当該元素の酸化物、水酸化物、塩基性炭酸塩、硝酸塩、
酢酸塩、または各種錯体などが用いられる。調製された
触媒は一般的には還元して反応に使用することを考慮す
れば、鉄及び銅成分についての出発物質としては、易還
元性化合物もしくは易還元性化合物に変換できる化合物
が好ましい。 また、本発明の触媒調製に用いるアルカ
リ金属元素は、カリウム、ナトリウム、リチウム、セシ
ウムであり、それぞれ水酸化物、塩化物、炭酸塩、硝酸
塩、酢酸塩、リン酸塩等の形態で用いることができる。
In preparing the catalyst of the present invention,
It suffices that each component of iron, copper, zinc, and / or alkali metal element is finally combined, and there is no particular limitation on the compound form etc. as a starting material of each element. Substance, hydroxide, basic carbonate, nitrate,
Acetate or various complexes are used. Considering that the prepared catalyst is generally reduced and used in the reaction, as the starting material for the iron and copper components, an easily reducing compound or a compound that can be converted into an easily reducing compound is preferable. The alkali metal elements used in the preparation of the catalyst of the present invention are potassium, sodium, lithium, and cesium, which are used in the form of hydroxide, chloride, carbonate, nitrate, acetate, phosphate, etc., respectively. it can.

【0006】本発明の触媒における各構成成分の比は、
銅/鉄、及び亜鉛/鉄なる原子比で示すとそれぞれ0.
01〜100、好ましくは0.1〜10の範囲であり、
アルカリ金属元素を含む場合にはアルカリ金属元素/鉄
の原子比で0.001〜5、好ましくは0.01〜2の
範囲である。
The ratio of each constituent in the catalyst of the present invention is
The atomic ratios of copper / iron and zinc / iron are 0.
01 to 100, preferably 0.1 to 10,
When the alkali metal element is contained, the atomic ratio of alkali metal element / iron is 0.001 to 5, preferably 0.01 to 2.

【0007】本発明における触媒の調製方法としては、
特に制限はないが、次に記す如き方法を採用することが
できる。例えば、1)鉄、銅、亜鉛の化合物を混練して調
製する方法、2)鉄、銅及び亜鉛の化合物の混合溶液を沈
澱剤により共沈させて調製する方法、3)鉄、銅の化合物
の混合溶液を適当な亜鉛化合物上に担持して調製する方
法、4)銅、亜鉛の化合物の混合溶液を適当な鉄化合物上
に担持して調製する方法等を採ることができる。アルカ
リ金属元素を含有する触媒の調製方法の例としては、1)
鉄、銅、亜鉛、アルカリ金属元素の化合物を混練して調
製する方法、2)鉄、銅及び亜鉛の化合物の混合溶液を沈
澱剤により共沈させた後にアルカリ金属元素化合物を含
浸又は混合して調製する方法、3)鉄、銅、アルカリ金属
元素の化合物の混合溶液を適当な亜鉛化合物上に担持し
て調製する方法、4)銅、亜鉛、アルカリ金属元素の化合
物の混合溶液を適当な鉄化合物上に担持して調製する方
法等を採ることができる。また、本発明の触媒調製にお
いては、必須構成成分の均一分散または担持のために反
応に悪影響を及ぼさない物質であれば使用することがで
きる。
The method for preparing the catalyst in the present invention is as follows:
There is no particular limitation, but the following method can be adopted. For example, 1) a method of kneading a compound of iron, copper and zinc, 2) a method of coprecipitating a mixed solution of a compound of iron, copper and zinc with a precipitant, 3) a compound of iron and copper It is possible to employ a method of preparing a mixed solution of the above on a suitable zinc compound, 4) a method of preparing a mixed solution of a compound of copper and zinc on a suitable iron compound, and the like. Examples of the method for preparing a catalyst containing an alkali metal element, 1)
Iron, copper, zinc, a method of kneading and preparing a compound of an alkali metal element, 2) impregnating or mixing an alkali metal element compound after coprecipitating a mixed solution of a compound of iron, copper and zinc with a precipitating agent Preparation method, 3) method of preparing a mixed solution of iron, copper and a compound of an alkali metal element on a suitable zinc compound, 4) a method of preparing a mixed solution of a compound of copper, zinc and an alkali metal element with a suitable iron A method of supporting the compound on the compound to prepare it can be adopted. Further, in the preparation of the catalyst of the present invention, any substance that does not adversely influence the reaction for uniformly dispersing or supporting the essential constituents can be used.

【0008】このようにして調製された触媒前駆体は、
焼成した後、水素にて還元し、触媒として反応に使用す
ることができる。触媒前駆体の焼成処理は、その方法に
特に制限はないが、炉内に静置して焼成する方法やガス
気流中で焼成する方法等で行われ、空気または酸素と不
活性ガスの任意の割合に混合された雰囲ガス等にて焼成
する方法が採られる。焼成温度としては、一般に200
〜600℃の範囲が好ましく、焼成時間としては0.5
〜10hr程度である。触媒の水素還元処理は、純水素
または不活性ガスにより任意の割合に希釈された水素中
で行われ、処理方法に特に制限はないが、生成する水等
の除去を考慮すると上記のガスを流通させながら行うの
が好ましい。還元温度としては、250〜500℃の範
囲が好ましく、還元時間は0.5〜20hr程度であ
る。 水素還元後の触媒は、極めて酸化され易いため反
応に使用する直前に反応器内で水素還元処理を行うのが
望ましい。 なお、触媒の還元は、水素のみならず、水
素と一酸化炭素の混合ガスや一酸化炭素にてもおこなう
ことができる。
The catalyst precursor thus prepared is
After calcination, it can be reduced with hydrogen and used as a catalyst in the reaction. The calcination treatment of the catalyst precursor is not particularly limited in its method, but it is carried out by a method of calcining by leaving it in a furnace, a method of calcination in a gas stream, or the like, and any method of air or oxygen and an inert gas is used. A method of firing in an atmosphere gas or the like mixed in a ratio is adopted. The firing temperature is generally 200
The temperature is preferably in the range of to 600 ° C.
It is about 10 hours. The hydrogen reduction treatment of the catalyst is carried out in pure hydrogen or hydrogen diluted to an arbitrary ratio with an inert gas, and there is no particular limitation on the treatment method, but the above gas is distributed in consideration of removal of water or the like produced. It is preferable to do so. The reduction temperature is preferably in the range of 250 to 500 ° C., and the reduction time is about 0.5 to 20 hours. Since the catalyst after hydrogen reduction is extremely susceptible to oxidation, it is desirable to perform hydrogen reduction treatment in the reactor immediately before using it in the reaction. The catalyst can be reduced not only by hydrogen but also by a mixed gas of hydrogen and carbon monoxide or carbon monoxide.

【0009】本発明の触媒において、反応に使用する場
合の形状については特に制限はないが、粉末、打錠成型
品、押し出し成型品等の形状で使用することができる。
成型して使用する際には、バインダーとしてアルミナ、
シリカ、マグネシア、珪藻土等の無機化合物を用いるこ
とができる。本発明における反応方法としては、固体触
媒を用いる通常の反応方式であれば特に制限はないが、
気相固定床、気相流動床、液相懸濁床等の方式を用いる
ことができる。
In the catalyst of the present invention, the shape of the catalyst used in the reaction is not particularly limited, but it may be in the form of powder, tablet-molded product, extrusion-molded product or the like.
When used by molding, alumina as a binder,
Inorganic compounds such as silica, magnesia and diatomaceous earth can be used. The reaction method in the present invention is not particularly limited as long as it is a normal reaction method using a solid catalyst,
A system such as a gas phase fixed bed, a gas phase fluidized bed, or a liquid phase suspension bed can be used.

【0010】本発明の反応に用いられる原料は、二酸化
炭素と水素、またはそれに不活性ガスから成る混合ガス
が用いられる。 これらの混合比率には特に制限はない
が、CO2 /H2 モル比で0.1〜10の範囲である事
が望ましい。反応温度としては、100〜600℃、好
ましくは200〜400℃の範囲である。 反応圧力と
しては、2〜300気圧、好ましくは10〜80気圧の
範囲である。 ガス空間速度は、100〜30000h
-1、好ましくは1000〜10000hr-1の範囲で
ある。反応生成物としては、主生成物のエタノールの他
に、メタノール、プロパノール、ブタノール等のアルコ
ール類、アセトアルデヒド、酢酸エステル等、炭化水素
類、一酸化炭素等が生成する。 エタノ−ルを始めとし
た液状生成物は、蒸留等により分離回収することができ
る。
As the raw material used in the reaction of the present invention, carbon dioxide and hydrogen, or a mixed gas containing an inert gas thereof is used. The mixing ratio of these is not particularly limited, but the CO 2 / H 2 molar ratio is preferably in the range of 0.1 to 10. The reaction temperature is in the range of 100 to 600 ° C, preferably 200 to 400 ° C. The reaction pressure is in the range of 2 to 300 atm, preferably 10 to 80 atm. Gas space velocity is 100 to 30000h
r −1 , preferably in the range of 1000 to 10000 hr −1 . As reaction products, in addition to ethanol, which is the main product, alcohols such as methanol, propanol, butanol, acetaldehyde, acetic acid ester, hydrocarbons, carbon monoxide, etc. are produced. Liquid products such as ethanol can be separated and recovered by distillation or the like.

【0011】[0011]

【発明の効果】本発明は、鉄、銅、亜鉛または鉄、銅、
亜鉛、周期律表第1a族元素から成る触媒の存在下にお
いて、二酸化炭素の接触水素化反応を行うことにより有
用なエタノールを製造できるものであり、その工業的な
意義は大きい。
The present invention provides iron, copper, zinc or iron, copper,
A useful ethanol can be produced by carrying out a catalytic hydrogenation reaction of carbon dioxide in the presence of a catalyst containing zinc and an element of Group 1a of the periodic table, and its industrial significance is great.

【0012】[0012]

【実施例】以下に、本発明について実施例及び比較例を
以て具体的に説明する。但し、本発明はこれらの実施例
に制限されるものではない。実施例1 塩基性炭酸銅3.92g、塩基性炭酸亜鉛6.56g、
水酸化鉄2.63gの混合物に、イオン交換水15ml
を加え乳鉢中でよく混練した。ここで得られるスラリー
を60℃の乾燥器で一晩乾燥した後、坩堝に移し空気中
で400℃にて3時間焼成した。こうして得られた粉末
を成型し、16/30メッシュに整粒した。この整粒物
の内、1.0gを精秤して反応管に充填し、常圧下、水
素流速100ml/min、350℃にて水素還元処理
を30分間行った。還元処理後、触媒層が冷却したとこ
ろでCO2 /H2 =1/3モル組成の原料ガスに切り替
えて昇圧し、系内が70kg/cm2 となったところで
原料ガス流速を90ml/minに調整し昇温を開始し
た。所定の反応温度に達し定常状態となったところで反
応を行った。 反応生成物は、オンラインでガスクロマ
トグラフにより分析した。 触媒活性試験の結果を表1
に示す。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples. Example 1 3.92 g of basic copper carbonate, 6.56 g of basic zinc carbonate,
To a mixture of 2.63 g of iron hydroxide, 15 ml of deionized water
And kneaded well in a mortar. The slurry obtained here was dried overnight in a dryer at 60 ° C., then transferred to a crucible and calcined in air at 400 ° C. for 3 hours. The powder thus obtained was molded and sized to 16/30 mesh. 1.0 g of this sized product was precisely weighed and charged into a reaction tube, and hydrogen reduction treatment was carried out at 350 ° C. for 30 minutes under normal pressure at a hydrogen flow rate of 100 ml / min. After the reduction treatment, when the catalyst layer was cooled, the raw material gas of CO 2 / H 2 = 1/3 molar composition was switched to increase the pressure, and when the inside of the system reached 70 kg / cm 2 , the raw material gas flow rate was adjusted to 90 ml / min. Then, the temperature rise was started. The reaction was performed when the temperature reached a predetermined reaction temperature and reached a steady state. The reaction products were analyzed online by gas chromatography. Table 1 shows the results of the catalytic activity test.
Shown in.

【0013】実施例2 塩基性炭酸銅3.89g、塩基性炭酸亜鉛6.55g、
水酸化鉄2.64gの混合物に、炭酸カリウム0.83
gを溶解したイオン交換水15mlを加え乳鉢中でよく
混練した。ここで得たスラリーを60℃の乾燥器で一晩
乾燥した後、坩堝に移し空気中で400℃、3時間焼成
した。こうして得られた粉末を成型し、16/30メッ
シュに整粒した。 以下、実施例1と同様の方法、及び
条件で触媒1.0gを活性試験にかけ、触媒性能を評価
した。 結果を表1に示す。また、蛍光X線分析法によ
り触媒の分析を行ったところ、鉄、銅、亜鉛、カリウム
の原子比は仕込み原子比とほぼ同じであった。
Example 2 Basic copper carbonate 3.89 g, basic zinc carbonate 6.55 g,
To a mixture of 2.64 g of iron hydroxide, 0.83 of potassium carbonate
15 ml of ion-exchanged water in which g was dissolved was added and kneaded well in a mortar. The slurry obtained here was dried overnight in a dryer at 60 ° C., then transferred to a crucible and calcined in air at 400 ° C. for 3 hours. The powder thus obtained was molded and sized to 16/30 mesh. Hereinafter, 1.0 g of the catalyst was subjected to an activity test under the same method and conditions as in Example 1 to evaluate the catalyst performance. The results are shown in Table 1. When the catalyst was analyzed by fluorescent X-ray analysis, the atomic ratio of iron, copper, zinc, and potassium was almost the same as the charged atomic ratio.

【0014】実施例3 硝酸銅三水和物7.27g、 硝酸亜鉛六水和物17.8
7g、硝酸第二鉄九水和物12.14gをビーカーに採
り200mlのイオン交換水に溶解した。よく攪拌しな
がら水酸化ナトリウム21.6gを溶解したイオン交換
水100mlを滴下し沈澱物を得た。この沈澱物をイオ
ン交換水約3リットルで洗浄したのち、炭酸カリウム
0.83gを溶解したイオン交換水10mlを加え混練
し、スラリー化した。これを60℃の乾燥器内で一晩乾
燥した。その後、坩堝に移し空気中で400℃、3時間
焼成し、得られた粉末を成型し、16/30メッシュに
整粒した。 以下、実施例1と同様の方法、及び条件で
触媒1.0gを活性試験にかけて触媒性能を評価した。
結果を表1に示す。また、蛍光X線分析法により触媒
の分析を行ったところ、鉄、銅、亜鉛、カリウムの原子
比は仕込み原子比とほぼ同じであった。
Example 3 7.27 g of copper nitrate trihydrate, zinc nitrate hexahydrate 17.8
7 g and 12.14 g of ferric nitrate nonahydrate were placed in a beaker and dissolved in 200 ml of ion-exchanged water. 100 ml of ion-exchanged water in which 21.6 g of sodium hydroxide was dissolved was added dropwise while stirring well to obtain a precipitate. This precipitate was washed with about 3 liters of ion-exchanged water, then 10 ml of ion-exchanged water in which 0.83 g of potassium carbonate was dissolved was added and kneaded to form a slurry. This was dried in a dryer at 60 ° C. overnight. Then, it was transferred to a crucible and baked in air at 400 ° C. for 3 hours, and the obtained powder was molded and sized to 16/30 mesh. Hereinafter, 1.0 g of the catalyst was subjected to an activity test under the same method and conditions as in Example 1 to evaluate the catalyst performance.
The results are shown in Table 1. When the catalyst was analyzed by fluorescent X-ray analysis, the atomic ratio of iron, copper, zinc, and potassium was almost the same as the charged atomic ratio.

【0015】実施例4 実施例2の触媒1.0gを実施例1と同様の方法で反応
圧40kg/cm2 の条件で活性試験を行った。 結果
を表2に示す。
Example 4 1.0 g of the catalyst of Example 2 was subjected to an activity test in the same manner as in Example 1 under the reaction pressure of 40 kg / cm 2 . The results are shown in Table 2.

【0016】実施例5 硝酸銅三水和物7.24g、硝酸亜鉛六水和物17.8
8g、硝酸第二鉄九水和物24.33gを用いて実施例
2の方法で触媒調製を行い、実施例1と同様の方法、及
び条件で触媒1.0gを活性試験にかけた。 結果を表
2に示す。また、蛍光X線分析法により触媒の分析を行
ったところ鉄、銅、亜鉛、カリウムの原子比は仕込み原
子比とほぼ同じであった。
Example 5 7.24 g of copper nitrate trihydrate and 17.8 of zinc nitrate hexahydrate
A catalyst was prepared by the method of Example 2 using 8 g and ferric nitrate nonahydrate 24.33 g, and 1.0 g of the catalyst was subjected to the activity test under the same method and conditions as in Example 1. The results are shown in Table 2. When the catalyst was analyzed by X-ray fluorescence analysis, the atomic ratio of iron, copper, zinc and potassium was almost the same as the charged atomic ratio.

【0017】実施例6 水酸化鉄10.01gを200mlナス型フラスコに採
り、硝酸銅三水和物5.33g、硝酸亜鉛六水和物6.
57g、硝酸カリウム2.22gを溶解したイオン交換
水100mlを加え、60℃の湯浴で加熱しながら減圧
し水を蒸発させた。こうして得られた粉末を空気中で4
00℃、3時間焼成した。 焼成処理後、成型し16/
30メッシュに整粒した。 以下、実施例1と同様の方
法、及び条件で触媒1.0gを活性試験にかけた。 結
果を表2に示す。
Example 6 10.01 g of iron hydroxide was placed in a 200 ml eggplant-shaped flask and 5.33 g of copper nitrate trihydrate and zinc nitrate hexahydrate 6.
57 g and 100 ml of ion-exchanged water in which 2.22 g of potassium nitrate was dissolved were added, and the pressure was reduced while heating in a water bath at 60 ° C. to evaporate the water. 4 of the powder thus obtained in air
It was baked at 00 ° C. for 3 hours. After firing treatment, molded 16 /
The size was adjusted to 30 mesh. Hereinafter, 1.0 g of the catalyst was subjected to an activity test under the same method and conditions as in Example 1. The results are shown in Table 2.

【0018】比較例1 水酸化鉄9.98gを200mlナス型フラスコに採
り、イオン交換水100mlを加え、60℃の湯浴で加
熱しながら減圧し水を蒸発させた。こうして得られた粉
末を空気中で400℃、3時間焼成した。焼成処理後、
成型し16/30メッシュに整粒した。以下、実施例1
と同様の方法、条件で触媒1.0gを活性試験にかけ
た。 結果を表3に示す。
Comparative Example 1 9.98 g of iron hydroxide was placed in a 200 ml eggplant type flask, 100 ml of ion-exchanged water was added, and the pressure was reduced while heating in a water bath at 60 ° C. to evaporate the water. The powder thus obtained was calcined in air at 400 ° C. for 3 hours. After firing treatment,
It was molded and sized to 16/30 mesh. Hereinafter, Example 1
1.0 g of the catalyst was subjected to the activity test in the same manner and under the same conditions. The results are shown in Table 3.

【0019】比較例2 水酸化鉄10.02gを200mlナス型フラスコに採
り、硝酸銅三水和物5.31gを溶解させたイオン交換
水100mlを加え、60℃の湯浴で加熱しながら減圧
し水を蒸発させた。こうして得られた粉末を空気中で4
00℃、3時間焼成した。焼成処理後、成型し16/3
0メッシュに整粒した。 以下、実施例1と同様の方
法、及び条件で触媒1.0gを活性試験にかけた。結果
を表3に示す。
Comparative Example 2 10.02 g of iron hydroxide was placed in a 200 ml eggplant-shaped flask, 100 ml of ion-exchanged water in which 5.31 g of copper nitrate trihydrate was dissolved was added, and the pressure was reduced while heating in a water bath at 60 ° C. Then the water was evaporated. 4 of the powder thus obtained in air
It was baked at 00 ° C. for 3 hours. After firing, molded 16/3
The size was adjusted to 0 mesh. Hereinafter, 1.0 g of the catalyst was subjected to an activity test under the same method and conditions as in Example 1. The results are shown in Table 3.

【0020】比較例3 塩基性炭酸銅5.41g、塩基性炭酸亜鉛9.01gの
混合物に、炭酸カリウム1.13gを溶解したイオン交
換水15mlを加え乳鉢中でよく混練した。できたスラ
リーを60℃の乾燥器で一晩乾燥した後、坩堝に移し空
気中で400℃、3時間焼成した。こうして得られた粉
末を成型し、16/30メッシュに整粒した。 以下、
実施例1と同様の方法、及び条件で触媒1.0gを活性
試験にかけた。結果を表3に示す。
Comparative Example 3 To a mixture of 5.41 g of basic copper carbonate and 9.01 g of basic zinc carbonate, 15 ml of ion-exchanged water in which 1.13 g of potassium carbonate was dissolved was added and kneaded well in a mortar. The resulting slurry was dried overnight in a drier at 60 ° C., transferred to a crucible and calcined in air at 400 ° C. for 3 hours. The powder thus obtained was molded and sized to 16/30 mesh. Less than,
Using the same method and conditions as in Example 1, 1.0 g of the catalyst was subjected to the activity test. The results are shown in Table 3.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 触媒 1.0g、空間速度 4500hr-1 *1 炭素基準 *2 メタノール、プロパノール、ブタノールの合計 *3 炭素数1〜5の飽和及び不飽和炭化水素化合物の合
[Table 3] Catalyst 1.0 g, space velocity 4500 hr -1 * 1 Carbon standard * 2 Total of methanol, propanol and butanol * 3 Total of saturated and unsaturated hydrocarbon compounds having 1 to 5 carbon atoms

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄、銅、及び亜鉛なる元素を含んで構成さ
れる触媒を用いて二酸化炭素を接触水素化することを特
徴とするエタノールの製造方法。
1. A method for producing ethanol, which comprises catalytically hydrogenating carbon dioxide using a catalyst containing elements such as iron, copper and zinc.
【請求項2】鉄、銅、亜鉛、及び周期律表第1a族なる
元素を含んで構成される触媒を用いることを特徴とする
請求項1記載の方法。
2. The method according to claim 1, wherein a catalyst composed of iron, copper, zinc, and an element belonging to Group 1a of the periodic table is used.
JP5304571A 1993-11-11 1993-11-11 Method for producing ethanol Expired - Lifetime JPH07107000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304571A JPH07107000B2 (en) 1993-11-11 1993-11-11 Method for producing ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304571A JPH07107000B2 (en) 1993-11-11 1993-11-11 Method for producing ethanol

Publications (2)

Publication Number Publication Date
JPH07133242A JPH07133242A (en) 1995-05-23
JPH07107000B2 true JPH07107000B2 (en) 1995-11-15

Family

ID=17934600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304571A Expired - Lifetime JPH07107000B2 (en) 1993-11-11 1993-11-11 Method for producing ethanol

Country Status (1)

Country Link
JP (1) JPH07107000B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100224472B1 (en) * 1997-07-09 1999-10-15 김충섭 Iron-catalyst for preparing hydrocarbon
CN113908840A (en) * 2021-11-18 2022-01-11 山东能源集团有限公司 Fe-based multifunctional catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JPH07133242A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
JP3345783B2 (en) Synthesis gas production method
CS219336B2 (en) Catalyser for preparation of the dimethylether
EP0057796B1 (en) Catalyst, catalyst support and oxychlorination process
US6037305A (en) Use of Ce/Zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
JP2685130B2 (en) Ethanol production method
US4232171A (en) Process for producing methyl formate
JP2813770B2 (en) Ethanol production method
JPH07107000B2 (en) Method for producing ethanol
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
JPS647974B2 (en)
JP3837520B2 (en) Catalyst for CO shift reaction
JPH0669969B2 (en) Hydrocarbon production method
JP2002263497A (en) Methanol synthetic catalyst
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
US5104845A (en) Group 1 metalloaluminum borates
JP3867305B2 (en) Carbon monoxide conversion catalyst
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
JP3346820B2 (en) Production method of methyl chloride
CN111054382B (en) Catalyst for dehydrogenation of organic liquid hydrogen storage materials
JPH06277510A (en) Catalyst for synthesizing methyl chloride
JP3032816B2 (en) Method for producing styrene monomer
JP2005087861A (en) Alcohol oxidation catalyst and manufacturing method for aldehyde or ketone using the catalyst
CN116212888A (en) Catalyst for preparing methacrolein by one-step oxidation of tert-butyl alcohol/isobutene and application thereof
JPH0585965A (en) Production of methyl chloride

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term