KR100224472B1 - Iron-catalyst for preparing hydrocarbon - Google Patents

Iron-catalyst for preparing hydrocarbon Download PDF

Info

Publication number
KR100224472B1
KR100224472B1 KR1019970031733A KR19970031733A KR100224472B1 KR 100224472 B1 KR100224472 B1 KR 100224472B1 KR 1019970031733 A KR1019970031733 A KR 1019970031733A KR 19970031733 A KR19970031733 A KR 19970031733A KR 100224472 B1 KR100224472 B1 KR 100224472B1
Authority
KR
South Korea
Prior art keywords
catalyst
iron
carbon dioxide
hydrocarbon
producing
Prior art date
Application number
KR1019970031733A
Other languages
Korean (ko)
Other versions
KR19990009360A (en
Inventor
이규완
최명재
전기원
남상성
최평호
이수제
김호
Original Assignee
김충섭
재단법인 한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 재단법인 한국화학연구소 filed Critical 김충섭
Priority to KR1019970031733A priority Critical patent/KR100224472B1/en
Publication of KR19990009360A publication Critical patent/KR19990009360A/en
Application granted granted Critical
Publication of KR100224472B1 publication Critical patent/KR100224472B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen

Abstract

본 발명은 철 혼성촉매를 이용한 탄화수소의 제조방법에 관한 것으로서, 더욱 상세하게는 담지체 없이 주촉매로서 철(Fe)과, 조촉매로서 아연(Zn), 바나듐(V), 크롬(Cr) 및 망간(Mn) 중에서 선택된 1종 이상이 특정 조성비로 공침되어 있는 철 혼성촉매를 이산화탄소의 수소화 반응에 의한 탄화수소의 제조공정에서 촉매로 사용하여 이산화탄소의 전환율과 C2+탄화수소의 선택도를 향상시키게 되는 철 혼성촉매를 이용한 탄화수소의 제조방법에 관한 것이다.The present invention relates to a method for producing a hydrocarbon using an iron hybrid catalyst, and more particularly, iron (Fe) as a main catalyst, zinc (Zn), vanadium (V), chromium (Cr) and An iron hybrid catalyst, in which at least one selected from manganese (Mn) is co-precipitated at a specific composition ratio, is used as a catalyst in a hydrocarbon production process by hydrogenation of carbon dioxide to improve the conversion of carbon dioxide and selectivity of C 2+ hydrocarbons. It relates to a method for producing a hydrocarbon using an iron hybrid catalyst.

Description

철 혼성촉매를 이용한 탄화수소의 제조방법Method for producing hydrocarbon using iron hybrid catalyst

본 발명은 철 혼성촉매를 이용한 탄화수소의 제조방법에 관한 것으로서, 더욱 상세하게는 담지체 없이 주촉매로서 철(Fe)과, 조촉매로서 아연(Zn), 바나듐(V), 크롬(Cr) 및 망간(Mn) 중에서 선택된 1종 이상이 특정 조성비로 공침되어 있는 철 혼성촉매를 이산화탄소의 수소화 반응에 의한 탄화수소의 제조공정에서 촉매로 사용하여 이산화탄소의 전환율과 C2+탄화수소의 선택도를 향상시키게 되는 철 혼성촉매를 이용한 탄화수소의 제조방법에 관한 것이다.The present invention relates to a method for producing a hydrocarbon using an iron hybrid catalyst, and more particularly, iron (Fe) as a main catalyst, zinc (Zn), vanadium (V), chromium (Cr) and An iron hybrid catalyst, in which at least one selected from manganese (Mn) is co-precipitated at a specific composition ratio, is used as a catalyst in a hydrocarbon production process by hydrogenation of carbon dioxide to improve the conversion of carbon dioxide and selectivity of C 2+ hydrocarbons. It relates to a method for producing a hydrocarbon using an iron hybrid catalyst.

최근 들어 급격한 산업화에 따라 지구환경 보존에 대한 관심이 점차 고조되고 있는 가운데 특히 지구온난화 현상은 가장 거시적인 현상이면서 인류생존에 커다란 영향을 미치는 문제로 인식되고 있다. 이는 이산화탄소와 같은 온난화기체의 방출과 대기중의 누적으로 인하여 지구 기온 상승을 일으켜 생태계의 변화, 농업 등의 산업활동에의 피해 그리고 해수면의 상승으로 인한 지반의 침하를 발생시켜 인간의 산업발전에 의한 환경파괴 중 가장 심각한 문제를 야기시키는 것으로 예측되고 있다.Recently, due to the rapid industrialization, interest in preserving the global environment is gradually increasing, and in particular, global warming is the most macroscopic phenomenon and a problem that has a great influence on human survival. This causes global warming due to the release of warming gases such as carbon dioxide and accumulation in the atmosphere, causing changes in ecosystems, damage to industrial activities such as agriculture, and subsidence of the ground due to rising sea levels. It is expected to cause the most serious problems of environmental destruction.

대기중으로 방출되고 있는 온난화기체 중 지구온난화에 영향을 주는 이산화탄소 농도(약 55%)의 증가방지에 대한 필요성이 절실히 요구되고 있다. 그러한 필요성 때문에 국제적으로 화석연료의 사용량을 줄이면서 이산화탄소의 발생량을 규제하려는 움직임이 활발히 전개되고 있으며 이에 따라 지난 1992년 6월에 브라질의 리오데자네이로에서 2000년까지 방출될 이산화탄소의 발생량을 1990년 수준으로 규제하기에 이르렀다. 그러나 에너지원의 73%를 석유나 석탄 등의 화석연료에 의존한 산업구조로 인하여 빠른 시일내 이산화탄소 방출의 완전한 차단이 불가능하므로 가장 효율적인 대책은 대기중의 이산화탄소를 회수하여 연료나 유용한 화합물로 전환시켜 재이용하는 것이므로, 이에 관련된 기술개발이 시급하다.There is an urgent need to prevent the increase of carbon dioxide concentration (about 55%) that affects global warming among the warming gases released into the atmosphere. Due to such necessity, there is an active movement to regulate the amount of carbon dioxide generated while reducing the use of fossil fuels internationally. As a result, in 1990, the level of carbon dioxide emitted from Rio de Janeiro, Brazil, in 2000 was set at 1990 level. Came to regulate. However, due to the industrial structure of 73% of the energy sources that depend on fossil fuels such as petroleum and coal, it is impossible to completely block carbon dioxide emission in a short time. Since it is reused, technical development related to this is urgent.

현재 이산화탄소의 재활용 방법에는 여러가지 연구가 진행되고 있으며 그 중 이산화탄소의 수소화에 의한 화학적 고정화는 연료와 자원을 동시에 제공하기 때문에 기존의 산업체계를 크게 변화시키지 않으며 화석연료를 사용할 때의 편리함을 유지시킬 수 있다는 장점이 있다. 상기 이산화탄소의 수소화에 의한 화학적 고정화로서 가장 많이 연구되는 분야는 수소화에 의한 메탄올 합성1과 탄화수소의 합성이 있다.Currently, various researches are being conducted on the recycling method of carbon dioxide. Among them, chemical immobilization by hydrogenation of carbon dioxide provides fuel and resources at the same time, so it does not change the existing industrial system significantly and maintains convenience when using fossil fuel. There is an advantage. The fields most studied as chemical immobilization by hydrogenation of carbon dioxide include methanol synthesis 1 and synthesis of hydrocarbons by hydrogenation.

상기 메탄올의 합성은 그 연구가 활발하여 상당한 진전이 있어서 실용화단계에 이르렀다. 그러나 합성의 열역학적 한계로 인하여 메탄올로의 전환율을 증가시키기 어려우며 또한 연료로서의 효용 가치에도 한계점이 있다.The synthesis of the methanol has been actively studied and has made considerable progress and has reached the stage of practical use. However, due to the thermodynamic limitations of the synthesis, it is difficult to increase the conversion to methanol and also has a limit on the utility value as a fuel.

한편 탄화수소의 합성은 메탄올에 비하면 열역학적인 제한도 훨씬 작게 받을 뿐만 아니라, 현재의 에너지원 및 석유화학공업의 원료로 대체할 수 있다는 점에서 커다란 의미가 있다. 탄화수소의 합성 방법은 크게 두가지로 나눌 수 있다.On the other hand, the synthesis of hydrocarbons is not only significantly less thermodynamically limited than methanol, but also has great significance in that it can be replaced by current energy sources and raw materials of the petrochemical industry. Hydrocarbon synthesis can be divided into two main methods.

첫번째 방법으로는 이산화탄소를 전환시켜 메탄올을 합성하고 또한 생성된 메탄올의 연속적인 반응을 통하여 탄화수소 화합물을 합성하는 2단계 합성법이고 [일본특허 공개공보 평 11-190,638호, 일본특허 공개공보 평 4-120,191호], 두번째 방법은 이산화탄소와 수소를 반응시켜 탄화수소를 직접적으로 합성하는 방법이다The first method is a two-step synthesis method of synthesizing methanol by converting carbon dioxide and synthesizing a hydrocarbon compound through a continuous reaction of the produced methanol. [Japanese Patent Laid-Open No. 11-190,638, Japanese Patent Laid-Open No. 4-120,191 The second method is to directly synthesize hydrocarbons by reacting carbon dioxide with hydrogen.

[G, A, Somorjai, J Catal, 52, 291, 1978; C. H. Bartholomew., J Catal, 52, 291, 1978 ; M. D. Lee, Bull. Chem. Soc. Jpn., 62, 2756, 1989].G, A, Somorjai, J Catal, 52, 291, 1978; C. H. Bartholomew., J Catal, 52, 291, 1978; M. D. Lee, Bull. Chem. Soc. Jpn., 62, 2756, 1989].

상기의 연구결과 중, 두 번째 방법에 의하여 이산화탄소로부터 탄소원자수 2 이상의 탄화수소(C2+탄화수소)를 제조하는 경우 전환율은 25% 이하로 낮았고, 일산화탄소의 생성으로 인하여 전체 탄화수소의 수율이 25% 이하로 저조하였으며 또한 메탄(CH4)의 생성도 상당하여 20% 이하의 C2+탄화수소 수율을 얻게 되므로 이를 산업적으로 이용하기에는 문제가 있었다.In the results of the above study, when the hydrocarbon having 2 or more carbon atoms (C 2+ hydrocarbon) was produced from carbon dioxide by the second method, the conversion was lower than 25%, and the yield of total hydrocarbons was lower than 25% due to the production of carbon monoxide. In addition, the production of methane (CH 4 ) is also very low, yielding a C 2+ hydrocarbon yield of 20% or less, which is problematic for industrial use.

본 발명의 발명자들은 종래의 이산화탄소의 수소화반응에 의한 탄화수소의 제조방법에서 나타나는 상기의 문제점들을 해결하고자 노력한 결과, 담지체는 전혀 사용하지 않고 다만 철을 주성분으로 하고, 여기에 아연, 바나듐, 크롬 및 망간 중에서 선택된 1종 이상을 공침시켜 구성된 철 혼성촉매을 제조하였고, 또한 철 혼성촉매상에서 수소와 이산화탄소 원료기체를 반응시킴으로써 본 발명을 완성하였다.The inventors of the present invention have tried to solve the above problems in the conventional method for producing a hydrocarbon by hydrogenation of carbon dioxide, and as a result, do not use the carrier at all, but only iron as a main component, zinc, vanadium, chromium and An iron hybrid catalyst composed by coprecipitation of at least one selected from manganese was prepared, and the present invention was completed by reacting hydrogen and carbon dioxide gas on an iron hybrid catalyst.

따라서 본 발명에서는 지구환경의 커다란 위해가 되는 이산화탄소를 효율적으로 이용하기 위한 방편으로서 촉매상에서 이산화탄소를 수소화시켜 화학공업이나 에너지원으로 중요한 고부가가치의 탄화수소를 높은 수율로 제조하는 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention provides a method for producing a high value-added hydrocarbon with high yield by hydrogenating carbon dioxide on a catalyst as a means for efficiently utilizing carbon dioxide, which is a major hazard of the global environment, as a chemical industry or an energy source. have.

본 발명은 별도의 담지체 없이 철을 주촉매로 하고, 여기에 조촉매로서 아연, 바나듐, 크롬 및 망간 중 선택된 1종 이상이 공침되어 있는 탄화수소 제조용 철 혼성촉매를 특징으로 한다.The present invention features iron as a main catalyst without a separate carrier, and an iron hybrid catalyst for preparing a hydrocarbon in which at least one selected from zinc, vanadium, chromium and manganese is co-precipitated as a promoter.

또한 본 발명은 이산화탄소의 수소화반응에 의해 탄화수소를 제조하는 방법에 있어서, 100 ~ 500℃의 반응온도와 1 ~ 100기압의 반응압력 조건하에서 상기의 철 혼성촉매상에 이산화탄소와 수소가 1 : 1.0 ~ 5.0 부피비로 혼입된 혼합기체를 1000 ~ 2000 ㎖/g-촉매·시간의 공간속도로 유입시켜 이산화탄소의 수소화반응을 수행하는 탄화수소의 제조방법을 또 다른 특징으로 한다.In addition, the present invention is a method for producing a hydrocarbon by hydrogenation of carbon dioxide, carbon dioxide and hydrogen in the iron hybrid catalyst under the reaction temperature of 100 ~ 500 ℃ and reaction pressure of 1 ~ 100 atm: 1: 1.0 ~ Another feature is a method for producing a hydrocarbon which carries out hydrogenation of carbon dioxide by introducing a mixed gas mixed at a volume ratio of 5.0 to 2000 ml / g-catalyst at a space velocity of time.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 담지체 없이 주촉매인 철에, 조촉매인 아연, 바나듐, 크롬 및 망간 중 선택된 1종 이상이 일정한 함량비를 이루는 신규 탄화수소 제조용 철 혼성촉매와 이러한 촉매상에서 이산화탄소와 수소를 반응시켜 고부가가치의 C2+탄화수소를 높은 수율로 제조하는 방법에 관힌 것이다.The present invention provides a new hybrid hybrid catalyst for producing a hydrocarbon, in which at least one selected from the cocatalyst iron, zinc, vanadium, chromium and manganese has a constant content ratio, and carbon dioxide and hydrogen are reacted on the catalyst. It relates to a process for producing high value-added C 2+ hydrocarbons.

본 발명에 따른 철 혼성촉매는 주촉매인 철(Fe)에 조촉매인 아연(Zn), 바나듐(V), 크롬(Cr), 망간(Mn)이 1 종 이상 공침된 것으로서 그 제조방법을 상세히 설명하면 다음과 같다.The iron hybrid catalyst according to the present invention is co-precipitated with zinc (Zn), vanadium (V), chromium (Cr), and manganese (Mn) as cocatalysts to iron (Fe) as a main catalyst, and the preparation method thereof is described in detail. The explanation is as follows.

철 함유염의 수용액과 아연을 비롯한 조촉매 함유염의 수용액을 혼합한 혼합용액을 암모니아수와 같은 염기성 용액을 사용하여 pH가 6.0 ∼ 8.5 범위가 될때까지 1 ∼ 100 ㎖/hr로 적정하여 철-조촉매 산화물을 형성시킨다. 그리고 80 ∼ 200℃에서 12 ∼ 48 시간 건조시키고 400 ∼ 700℃에서 소성시킨다.An iron-catalyst oxide was titrated at 1-100 mL / hr until the pH was in the range of 6.0-8.5 using a basic solution such as ammonia water, using a mixed solution containing an aqueous solution of an iron-containing salt and an aqueous solution of a promoter including zinc. To form. And it dried at 80-200 degreeC for 12 to 48 hours, and bakes at 400-700 degreeC.

이때, 철 함유염 또는 아연을 비롯한 조촉매 금속의 함유염으로는 염화물, 질산화물, 황상화물, 아세트산화물 및 옥살산화물 중에서 선택된다. 상기 염들의 수용액은 0.5 ~ 1.0M 농도로 유지하는 것이 pH를 조절하는 면에서 유리하다.At this time, the salt containing the iron or salt of the promoter metal including zinc is selected from chloride, nitrate, sulfide, acetate and oxal oxide. Maintaining the aqueous solution of the salts in 0.5 ~ 1.0M concentration is advantageous in terms of adjusting the pH.

또한 혼합용액의 적정에서 pH가 상기의 범위를 벗어나면 전기이중충효과로 인하여 입자크기가 커지기 때문에 촉매의 표면적이 감소하여 촉매반응성이 떨어진다.In addition, when the pH is out of the above range in the titration of the mixed solution, the particle size is increased due to the electric duplexing effect, so that the surface area of the catalyst is reduced and the catalytic reactivity is poor.

주촉매 금속으로서 함유되는 철(Fe)은 전체 촉매중에 10 ∼ 90 중량%, 바람직하기로는 전체 촉매중에 50 ∼ 90 중량% 함유되고, 아연을 비롯한 조촉매 금속은 철에 대하여 1 : 0.1 ∼ 10 원자비, 바람직하기로는 1 : 0.1 ∼ 1.0 원자비로 공침된다. 본 발명에 의하면 조촉매 금속이 철에 대하여 0.1 원자비 미만으로 공침되어 있을 때에는 촉매의 염기도를 충분히 증가시켜 주지 못하여 산성인 이산화탄소의 활성에 적절치 못하며, 10 원자비를 초과하여 과량으로 공침되어 있을 때에는 활성성분인 철의 전체 함량이 지나치게 줄어들어 촉매의 활성을 상실하게 된다.Iron (Fe) contained as the main catalyst metal is contained 10 to 90% by weight in the total catalyst, preferably 50 to 90% by weight in the total catalyst, and the promoter metal including zinc is 1: 0.1 to 10 won based on iron. It is coprecipitated, preferably it is coprecipitated in the ratio of 1: 0.1-1.0. According to the present invention, when the cocatalyst metal is coprecipitated with iron at less than 0.1 atomic ratio, the basicity of the catalyst is not sufficiently increased, which is not suitable for the activity of acidic carbon dioxide, and when it is coprecipitated in excess of 10 atomic ratio. The total content of iron as an active ingredient is reduced so much that the activity of the catalyst is lost.

상기에서 얻어진 철 혼성촉매 물질은 적절한 반응전 처리과정을 거쳐야만 본발명에 유효한 촉매가 얻어지는데, 이 전 처리는 촉매의 환원 및 활성화 과정으로 이루어진다.The obtained iron hybrid catalyst material must be subjected to an appropriate pre-treatment treatment to obtain a catalyst effective for the present invention. The pretreatment consists of reduction and activation of the catalyst.

먼저 촉매의 환원과정은 1 ~ 20 기압, 250 ~ 600℃ 온도에서 수소를 1000 ~ 2000 ㎖/g-촉매·시간 유속으로 12 ~ 16 시간 동안 촉매에 흘려주는 것으로 구성되며, 환원과정을 거친 촉매중의 산화철과 산화아연, 산화바나듐, 산화크롬 또는 산화망간으로 이루어진 복합산화물이 금속 상태의 혼합물로 변하게 된다.First, the reduction process of the catalyst consists of flowing hydrogen at 1000 to 2000 ml / g-catalyst and hourly flow rate for 12 to 16 hours at a temperature of 1 to 20 atm and 250 to 600 ° C. The complex oxide consisting of iron oxide and zinc oxide, vanadium oxide, chromium oxide or manganese oxide is converted into a mixture of metal states.

또한 이산화탄소의 탄화수소로의 전환 반응에 있어서 촉매가 높은 활성을 나타내도록 하기 위해서는 촉매의 활성화 과정을 거치게 되는데, 활성화과정은 10 ∼ 50 기압, 200 ∼ 500℃ 온도에서 수소/이산화탄소 1 ∼ 20 부피의 혼합기체를 1000 ∼ 2000 ㎖/g-촉매·시간 유속으로 촉매에 1 ∼ 2 시간 동안 흘려준 후, 1 ∼ 20 기압 및 100 ∼ 500℃ 온도에서 질소, 아르곤, 헬륨 등의 비활성 기체를 600 ∼ 1800 ㎖/g-촉매·시간의 유속으로 촉매에 흘려주면서 1 ∼ 2 시간 동안 흘려 주어 활성화 반응시킨다.In addition, in order to show high activity of the catalyst in the conversion reaction of carbon dioxide to hydrocarbon, the catalyst is activated. The activation process is a mixture of 1 to 20 volumes of hydrogen / carbon dioxide at a temperature of 10 to 50 atmospheres and a temperature of 200 to 500 ° C. After flowing the gas through the catalyst for 1 to 2 hours at 1000 to 2000 ml / g-catalyst and hour flow rate, 600 to 1800 ml of inert gas such as nitrogen, argon and helium at 1 to 20 atm and 100 to 500 ° C. / g-catalyst, activating reaction by flowing for 1 to 2 hours while flowing to the catalyst at a flow rate of time.

이러한 환원 맞 활성화 과정을 거친 촉매는 혼합금속이 탄화된 상태로 존재하여 이산화탄소의 활성화에 효과적으로 작용하게 된다.The catalyst, which has undergone such reduction butt activation, is present in the carbonized state of the mixed metal to effectively activate the carbon dioxide.

본 발명에 따른 이산화탄소와 수소의 혼합기체를 촉매반응을 통하여 탄화수소로 전환하는 데 있어서 반응기로는 기상의 고정층 반응기, 유동층 반응기 및 액상의 슬러리 형태의 반응기 중 선택된 1 종의 것이 사용될 수 있다. 그리고 반응조건에 있어서 원료기체인 이산화탄소와 수소의 혼합비는 1 : 1.0 ∼ 5.0 부피비의 범위가 알맞고, 100 ∼ 500℃의 반응온도, 1 ∼ 100 기압의 반응압력, 1000 ∼ 2000 ㎖/g-촉매·시간의 공간속도 범위에서 이산화탄소의 수소화반응이 진행되는 것이 바람직하다.In converting a mixed gas of carbon dioxide and hydrogen into a hydrocarbon through a catalytic reaction according to the present invention, a reactor selected from a fixed bed reactor in a gas phase, a fluidized bed reactor, and a reactor in the form of a liquid slurry may be used. In the reaction conditions, the mixing ratio of carbon dioxide and hydrogen as a raw material gas is suitably in the range of 1: 1.0 to 5.0 by volume, reaction temperature of 100 to 500 ° C, reaction pressure of 1 to 100 atmospheres, and 1000 to 2000 ml / g-catalyst. It is preferable that the hydrogenation reaction of carbon dioxide proceeds in the space velocity range of time.

이때, 혼합기체의 부피비가 상기 범위를 벗어나면 높은 전환율을 기대할 수 없으며, 반응온도가 100℃ 미만이면 반응속도가 충분하지 못하여 전환율이 낮아지고 반응온도가 500℃를 초과하면 작은 분자의 생성이 유리하여 다량의 메탄이 생성되므로 C2+의 선택성이 작아진다. 또한 반응압력이 1 기압 미만이면 반응속도가 너무 느리고 부산물인 메탄이 다량 생성되며, 100 기압을 초과하는 압력에서는 반응 운전상의 문제점이 발생될 수 있다.At this time, when the volume ratio of the mixed gas is out of the above range, high conversion cannot be expected. When the reaction temperature is less than 100 ° C., the reaction rate is insufficient, and the conversion rate is low. When the reaction temperature exceeds 500 ° C., the formation of small molecules is advantageous. As a large amount of methane is produced, the selectivity of C 2+ decreases. In addition, when the reaction pressure is less than 1 atm, the reaction rate is too slow and a large amount of by-product methane is produced. At pressures exceeding 100 atm, problems in the reaction operation may occur.

이산화탄소의 수소에 의한 촉매 환원반응에 의해 탄화수소를 제조하는 일반적인 방법에 있어서, 종래에는 촉매로서 철(Fe)이 담지체에 담지된 철촉매를 사용하였으나, 본발명에서는 특정 담지체의 사용없이 철과 조촉매 금속이 공침된 철 혼성촉매를 사용한다. 즉, 산화철-산화아연(Fe2O3- ZnO) 등의 복합산화물을 촉매로 하여 수소에 의한 촉매의 환원과정을 통하여 혼합금속을 만들고, 이산화탄소와 수소의 혼합기체를 통한 촉매의 활성화 과정을 거쳐 탄화된 혼합금속을 만든다. 그후 상기의 반응조건하에서 이산화탄소를 수소에 의해 촉매환원 반응시켜 탄화수소를 제조하였으며 이는 기존의 방법에 비교하여 향상된 전환율과 높은 C2+의 탄화수소 선택성을 보여주고 있다.In the general method for producing hydrocarbons by catalytic reduction reaction of hydrogen with carbon dioxide, conventionally, an iron catalyst supported on iron (Fe) as a catalyst was used. However, in the present invention, iron and iron are used without using a specific carrier. An iron hybrid catalyst co-precipitated with a promoter metal is used. That is, a mixed metal such as iron oxide-zinc oxide (Fe 2 O 3 -ZnO) is used as a catalyst to form a mixed metal through a reduction process of a catalyst by hydrogen, and then a catalyst is activated through a mixed gas of carbon dioxide and hydrogen. Make a carbonized mixed metal. Thereafter, a hydrocarbon was prepared by catalytic reduction of carbon dioxide with hydrogen under the above reaction conditions, which shows improved conversion and high C 2+ hydrocarbon selectivity compared to the conventional method.

따라서, 본 발명은 이산화탄소의 수소화에 있어 높은 전환율과 C2+의 선택성을 지닌 탄화수소를 제조하는 촉매공정을 특징으로 하고 있어서 탄화수소를 에너지로 사용하거나 이로부터 화합물을 제조하는 분야에 특히 유용하다.Accordingly, the present invention features a catalytic process for producing hydrocarbons with high conversion and C 2+ selectivity for hydrogenation of carbon dioxide and is particularly useful in the field of using hydrocarbons as energy or preparing compounds therefrom.

이하 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to Examples.

실시예 1Example 1

원자비로 Fe : Zn 이 9 : 1인 촉매계를 만들기 위하여 Fe(NO3)3·9H2O와 Zn(NO3)2·6H2O을 각각 3.6g과 0.3g씩 섞어 물에 완전히 녹여 전체용액이 100㎖가 되도록 하였다. 이때 pH는 1.0 미만으로 유지시켰다. 생성된 수용액을 교반과 동시에 50 ∼ 60℃로 유지시키면서 0.3M의 암모니아수를 100 ㎖/hr의 속도로 전체용액의 pH가 6.0 ∼ 8.5가 될때까지 적정하였다. 침전된 용액을 1 시간 정도 더 교반시킨후 3차 증류수로 여과 및 세척을 여러차례 반복하였다. 이후 120℃에서 24 시간 건조후 450℃에서 12 시간동안 공기 분위기하에서 소성을 하여 촉매를 제조하였다.Fe (NO 3 ) 3 · 9H 2 O and Zn (NO 3 ) 2 · 6H 2 O were mixed with 3.6g and 0.3g respectively to make a catalyst system having an atomic ratio of 9: 1 by Fe: Zn. The solution was brought to 100 ml. The pH was maintained below 1.0. While maintaining the resulting aqueous solution at 50-60 ° C. with stirring, 0.3 M ammonia water was titrated at a rate of 100 ml / hr until the pH of the whole solution reached 6.0-8.5. After stirring the precipitated solution for another 1 hour, filtration and washing with tertiary distilled water were repeated several times. After drying at 120 ° C. for 24 hours, calcining was carried out at 450 ° C. for 12 hours in an air atmosphere to prepare a catalyst.

실시에 22 to implementation

원자비로 Fe : Zn 이 7 : 3인 촉매계를 만들기 위하여 Fe(NO3)3·9H2O와 Zn(NO3)2·6H2O 을 각각 2.9g과 0.9g씩 섞어 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다.Fe (NO 3 ) 3 · 9H 2 O and Zn (NO 3 ) 2 · 6H 2 O were mixed with 2.9g and 0.9g respectively to make a catalyst system having an Fe: Zn of 7: 3 by an atomic ratio. The solution was adjusted to 100 ml. The pH was maintained below 1.0.

이후의 촉매 제조방법은 상기 실시예 1과 동일하게 실시하였다.After the catalyst production method was carried out in the same manner as in Example 1.

실시예 3Example 3

원자비로 Fe : Zn 이 5 : 5인 촉매계를 만들기 위하여 Fe(NO3)3·9H2O와 Zn(NO3)2·6H2O 을 각각 2.0g과 1.5g씩 섞어 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다.Fe (NO 3 ) 3 · 9H 2 O and Zn (NO 3 ) 2 · 6H 2 O were mixed 2.0g and 1.5g, respectively, in order to make a catalyst system having an atomic ratio of 5: 5 by Fe: Zn. The solution was adjusted to 100 ml. The pH was maintained below 1.0.

이후의 촉매제조방법은 상기 실시예 1과 동일하게 실시하였다.Since the catalyst manufacturing method was carried out in the same manner as in Example 1.

실시예 4Example 4

원자비로 Fe : Zn 이 3 : 7인 촉매계를 만들기 위하여 Fe(NO3)3·9H2O와 Zn(NO3)2·6H2O 을 각각 1.2g과 2.1g씩 섞어 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다.Fe (NO 3 ) 3 · 9H 2 O and Zn (NO 3 ) 2 · 6H 2 O were mixed 1.2g and 2.1g, respectively, in order to make a catalyst system having an atomic ratio of Fe: Zn 3: 7. The solution was adjusted to 100 ml. The pH was maintained below 1.0.

이후의 촉매제조방법은 상기 실시예 1과 동일하게 실시하였다.Since the catalyst manufacturing method was carried out in the same manner as in Example 1.

실시예 5Example 5

원자비로 Fe : Zn 이 1 : 9인 촉매계를 만들기 위하여 Fe(NO3)3·9H2O와 Zn(NO3)2·6H2O 을 각각 0.4g과 2.7g씩 섞어 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다, 이때 pH는 1.0 미만으로 유지시켰다.0.4g and 2.7g of Fe (NO 3 ) 3 · 9H 2 O and Zn (NO 3 ) 2 · 6H 2 O were mixed in water to make a catalyst system with Fe: Zn 1: 9 by atomic ratio. The solution was adjusted to 100 ml, with the pH maintained below 1.0.

이후의 촉매 제조방법은 상기 실시예 1과 동일하게 실시하였다.After the catalyst production method was carried out in the same manner as in Example 1.

실시에 66 to implementation

원자비로 Fe : V 이 9 : 1인 촉매계를 만들기 위하여 V2O5분말 0.12g과 옥살산 5.4g을 물 60㎖에 80℃에서 완전히 녹여 수용액을 만든 후 5g의 Fe(NO3)3·9H2O를 첨가하여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다.To make a catalyst system with Fe: V of 9: 1 by atomic ratio, 0.12 g of V 2 O 5 powder and 5.4 g of oxalic acid were completely dissolved in 60 ml of water at 80 ° C. to prepare an aqueous solution, followed by 5 g of Fe (NO 3 ) 3 · 9H. 2 O was added and the total solution was adjusted to 100 ml. The pH was maintained below 1.0.

이후의 촉매 제조방법은 상기 실시예 1과 동일하게 실시하였다.After the catalyst production method was carried out in the same manner as in Example 1.

실시예 7Example 7

원자비로 Fe : Cr이 9 : 1인 촉매계를 만들기 위하여 Fe(NO3)3·9H2O와 Cr(NO3)3·6H2O 을 각각 3.6g과 0.4g씩 섞어 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다. 이후의 촉매 제조방법은 상기 실시예 1과 동일하게 실시하였다.Fe (NO 3 ) 3 · 9H 2 O and Cr (NO 3 ) 3 · 6H 2 O were mixed with 3.6g and 0.4g respectively to make a catalyst system with Fe: Cr 9: 1 in atomic ratio and completely dissolved in water. The solution was adjusted to 100 ml. The pH was maintained below 1.0. After the catalyst production method was carried out in the same manner as in Example 1.

실시예 8Example 8

원자비로 Fe : Mn 이 9 : 1인 촉매계를 만들기 위하여 Fe(NO3)3·9H2O와 Mn(NO3)2·6H2O 을 각각 3.6g과 0.28g씩 섞어 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다.Fe (NO 3 ) 3 · 9H 2 O and Mn (NO 3 ) 2 · 6H 2 O were mixed in 3.6g and 0.28g, respectively, to make a catalyst system having an atomic ratio of 9: 1 by Fe: Mn. The solution was adjusted to 100 ml. The pH was maintained below 1.0.

이후의 촉매 제조방법은 상기 실시예 1과 동일하게 실시하였다.After the catalyst production method was carried out in the same manner as in Example 1.

비교예 1Comparative Example 1

아연이 함유되지 않은 철 촉매를 만들기 위하여 Fe(NO3)3·9H2O 4.0g을 취해 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다.4.0 g of Fe (NO 3 ) 3 · 9H 2 O was taken to make an iron catalyst containing no zinc, and completely dissolved in water. The total solution was adjusted to 100 ml. The pH was maintained below 1.0.

이후의 촉매 제조방법은 상기 실시예 1과 동일하게 실시하였다.After the catalyst production method was carried out in the same manner as in Example 1.

비교예 2Comparative Example 2

철이 함유되지 않은 아연 촉매를 만들기 위하여 Zn(NO3)2·6H2O을 9g 취해 물에 완전히 녹여 전체용액이 100㎖가 되도록 맞추었다. 이때 pH는 1.0 미만으로 유지시켰다.In order to make the iron-free zinc catalyst, 9 g of Zn (NO 3 ) 2 .6H 2 O was taken and completely dissolved in water, and the total solution was adjusted to 100 ml. The pH was maintained below 1.0.

이후의 촉매 제조방법은 상기 실시예 1과 동일하게 실시하였다.After the catalyst production method was carried out in the same manner as in Example 1.

실험예Experimental Example

상기 실시예 1 ∼ 8 및 비교예 1 ∼ 2에서 제조된 촉매를 0.5g 채취하여 고정층 반응기에서 45℃, 2000 ㎖/g-촉매·시간의 수소기류하에서 16 시간동안 환원시켰다. 이어서 10 기압, 300℃ 온도에서 혼합기체(수소/이산화탄소의 부피비=3)를 2000 ㎖/g-촉매·시간 유속으로 촉매에 1시간 흘려준 후, 10 기압 및 300℃ 온도에서 질소 기체를 1800 ㎖/g-촉매·시간의 유속으로 1 시간 동안 촉매에 흘려주어 활성화시켰다. 그후 촉매를 이산화탄소와 수소의 혼합기체 (H2/CO2의 부피비 = 3)를 1800 ㎖/g-촉매·시간의 유속으로 D 기압, 300℃에서 촉매와 접촉시켜 수소화 반응을 수행하였다.0.5 g of the catalysts prepared in Examples 1 to 8 and Comparative Examples 1 to 2 were collected and reduced in a fixed bed reactor for 16 hours under a hydrogen stream of 45 ° C. and 2000 ml / g-catalyst. Subsequently, a mixed gas (volume ratio of hydrogen / carbon dioxide = 3) was flowed into the catalyst for 1 hour at a flow rate of 2000 ml / g-catalyst and an hour at 10 atm and 300 ° C, and then 1800 ml of nitrogen gas at 10 atm and 300 ° C. Activated by flowing the catalyst for 1 hour at a flow rate of / g-catalyst. The hydrogenation reaction was then carried out by contacting the catalyst with a mixture of carbon dioxide and hydrogen (volume ratio of H 2 / CO 2 = 3) at D atmospheric pressure and 300 ° C. at a flow rate of 1800 mL / g-catalyst.

접촉후 12 시간 이후부터는 동일한 농도의 생성물을 얻을 수 있으며 반응은 48 시간동안 진행시켰다. 이때 얻어진 결과를 다음 표 1에 나타내었다.After 12 hours of contact, the same concentration of product was obtained and the reaction proceeded for 48 hours. The results obtained at this time are shown in Table 1 below.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

상기 표 1에서 살펴본 바와 같이 본 발명에 따른 실시예 1 ∼ 5 에서 제조한 Fe - Zn 촉매가 특히 활성이 우수함을 알 수 있다. Fe - Zn 촉매의 경우, 아연이 철에 첨가되므로써 촉매의 염기도가 증가하고 이로 말미암아 이산화탄소가 촉매 표면에 흡착하려는 경향이 강해지며 활성화도 용이해진다. 또한 철과 함께 조촉매로서 바나듐, 크롬, 망간이 각각 함유된 실시예 6 ∼ 9에서도 동일한 현상을 보인다. 뿐만 아니라, 반응시 생성된 불포화된 탄화수소(올레핀)가 촉매 표면에 재흡착하여 포화된 탄화수소로의 전환을 지연시킴으로 인하여 선택도가 최고 60% 이상의 고부가가치를 가지는 올레핀을 얻을 수 있고 철 또는 아연을 단독으로 사용한 비교예의 촉매보다 이산화탄소의 전환율이 10% 이상 증가하게 된다. 반면에 철 단독촉매를 사용하고 있는 비교예 1과 아연 단독촉매를 사용하고 있는 비교예 2인 경우에는 낮은 반응성과 수율을 보여주고 있음을 알 수 있다.As described in Table 1, it can be seen that the Fe-Zn catalysts prepared in Examples 1 to 5 according to the present invention are particularly excellent in activity. In the case of Fe-Zn catalysts, the addition of zinc to iron increases the basicity of the catalyst, thereby increasing the tendency for carbon dioxide to adsorb on the catalyst surface and facilitating activation. The same phenomenon is also observed in Examples 6 to 9 each containing vanadium, chromium and manganese as promoters together with iron. In addition, unsaturated hydrocarbons (olefins) produced during the reaction can be resorbed on the catalyst surface to delay the conversion to saturated hydrocarbons, resulting in olefins with high added value up to 60% or higher, The conversion rate of carbon dioxide is increased by 10% or more than the catalyst of the comparative example used alone. On the other hand, Comparative Example 1 using the iron monocatalyst and Comparative Example 2 using the zinc monocatalyst showed low reactivity and yield.

본 발명에 따른 탄화수소 제조용 철 혼성촉매는 철에 아연, 바나듐, 크롬, 망간이 적절히 혼합되어 있어 촉매표면의 염기도를 증가시켜 이산화탄소의 흡착을 용이하게 하고 올레핀의 흡착을 지연시켜 촉매의 활성과 올레핀의 선택도를 증가시켜 주는 효과가 있다.The iron hybrid catalyst for hydrocarbon production according to the present invention has zinc, vanadium, chromium, and manganese mixed with iron to increase the basicity of the catalyst surface, thereby facilitating the adsorption of carbon dioxide and delaying the adsorption of olefins and thus the activity of the catalyst and This increases the selectivity.

Claims (6)

이산화탄소의 수소화반응에 의해 탄화수소를 제조하는 방법에 있어서, 별도의 담지체 없이 철을 주촉매로 하고, 여기서 조촉매로서 아연, 바나듐, 크롬 및 망간 중 선택된 1종 이상이 공침되어 있는 철 혼성촉매상에 100 ~ 500℃의 반응온도와 1 ~ 100 기압의 반응압력 조건하에서 이산화탄소와 수소가 1 : 1.0 ~ 5.0 부피비로 혼입된 혼합기체를 1000 ~ 2000 ㎖/g-촉매·시간의 공간속도로 유입시켜 이산화탄소의 수소화반응을 수행하는 것을 특징으로 하는 탄화수소의 제조방법.In the method for producing a hydrocarbon by hydrogenation of carbon dioxide, iron is used as a main catalyst without a separate carrier, wherein an iron hybrid catalyst phase in which at least one selected from zinc, vanadium, chromium and manganese is co-precipitated Under a reaction temperature of 100 to 500 ° C and a reaction pressure of 1 to 100 atm, a mixture gas containing carbon dioxide and hydrogen in a volume ratio of 1.0 to 5.0 is introduced at a space velocity of 1000 to 2000 ml / g-catalyst and time. A method for producing a hydrocarbon, characterized in that to carry out hydrogenation of carbon dioxide. 제1항에 있어서, 상기 수소화반응은 액상의 슬러리 형태의 반응기, 기상의 고정층 반응기 또는 유동층 반응기 중에서 수행하는 것을 특징으로 하는 탄화수소의 제조방법.The method of claim 1, wherein the hydrogenation is performed in a slurry slurry, a gaseous fixed bed reactor, or a fluidized bed reactor. 제1항에 있어서, 상기 철 혼성촉매 중 철(Fe)은 전체 촉매에 대하여 10 ~ 90 중량% 함유되어 있는 것을 특징으로 하는 탄화수소의 제조방법.The method of claim 1, wherein the iron (Fe) in the iron hybrid catalyst is contained 10 to 90% by weight based on the total catalyst. 제1항 또는 제3항에 있어서, 상기 철 혼성촉매 중 철(Fe)에 대하여 아연, 바나듐, 크롬, 망간은 1 : 0.1 ~ 10 원자비로 공침되어 있는 것을 특징으로 하는 탄화수소의 제조방법.The method of claim 1, wherein zinc, vanadium, chromium, and manganese are co-precipitated with an iron ratio of 1: 0.1 to 10 with respect to iron (Fe) in the iron hybrid catalyst. 제1항에 있어서, 상기 철 혼성촉매는 1 ~ 20 기압 및 250 ~ 600℃ 온도에서 1000 ~ 2000 ㎖/g-촉매·시간 유속으로 12 ~ 16 시간동안 수소를 흘려주어 환원시킨 것임을 특징으로 하는 탄화수소의 제조방법.The hydrocarbon mixture of claim 1, wherein the iron hybrid catalyst is reduced by flowing hydrogen for 12 to 16 hours at a flow rate of 1000 to 2000 ml / g-catalyst at 1 to 20 atm and 250 to 600 ° C. Manufacturing method. 제1항에 있어서, 상기 철 혼성촉매는 10 ~ 50 기압 및 200 ~ 500℃ 온도에서 수소/이산화탄소의 혼입비가 1 ~ 20 부피인 혼합기체를 1000 ~ 2000 ㎖/g-촉매·시간 유속으로 1 ~ 2 시간 흘려준 다음, 1 ~ 20 기압 및 100 ~ 500℃ 온도에서 비활성 기체를 600 ~ 1800 ㎖/g-촉매·시간의 유속으로 1 ~ 2 시간 흘려주어 활성화한 것임을 특징으로 하는 탄화수소의 제조방법.The method of claim 1, wherein the iron hybrid catalyst is a mixed gas having a mixing ratio of hydrogen / carbon dioxide of 1 to 20 volumes at 10 to 50 atm and a temperature of 200 to 500 ℃ 1 to 1000 ~ 2000 mL / g-catalyst, time flow rate After passing for 2 hours, the method of producing a hydrocarbon, characterized in that activated by injecting an inert gas for 1 to 2 hours at a flow rate of 600 ~ 1800 ml / g-catalyst, at a temperature of 1 to 20 atm and 100 ~ 500 ℃.
KR1019970031733A 1997-07-09 1997-07-09 Iron-catalyst for preparing hydrocarbon KR100224472B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970031733A KR100224472B1 (en) 1997-07-09 1997-07-09 Iron-catalyst for preparing hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970031733A KR100224472B1 (en) 1997-07-09 1997-07-09 Iron-catalyst for preparing hydrocarbon

Publications (2)

Publication Number Publication Date
KR19990009360A KR19990009360A (en) 1999-02-05
KR100224472B1 true KR100224472B1 (en) 1999-10-15

Family

ID=19513836

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970031733A KR100224472B1 (en) 1997-07-09 1997-07-09 Iron-catalyst for preparing hydrocarbon

Country Status (1)

Country Link
KR (1) KR100224472B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133242A (en) * 1993-11-11 1995-05-23 Tsushosangyosho Kiso Sangyokyokucho Production of ethanol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133242A (en) * 1993-11-11 1995-05-23 Tsushosangyosho Kiso Sangyokyokucho Production of ethanol

Also Published As

Publication number Publication date
KR19990009360A (en) 1999-02-05

Similar Documents

Publication Publication Date Title
KR0169188B1 (en) Method of preparing hydrocarbon
Baiker Utilization of carbon dioxide in heterogeneous catalytic synthesis
US4585798A (en) Synthesis gas conversion using ruthenium-promoted cobalt catalyst
US5140049A (en) Method for producing olefins from H2 and CO2 using an iron carbide based catalyst
JPH0273023A (en) Production of alcohol and olefin from h2 and co2 using iron carbide base catalyst
KR20010046301A (en) Catalyst for preparing hydrocarbon
JPH0768171A (en) Catalyst for reduction reaction of carbon dioxide
CN112174764A (en) Application of iron-based catalyst in catalyzing carbon dioxide hydrogenation to synthesize low-carbon olefin
EP0548679A1 (en) Process for the preparation of synthetic gases
JP2021030117A (en) Agent for improving activity of catalyst for methanol synthesis
Gottschalk et al. Cobalt/manganese oxide water gas shift catalysts: I. Competition between carbon monoxide hydrogenation and water gas shift activity
US4605639A (en) Methods for making a supported iron-copper catalyst
KR100224472B1 (en) Iron-catalyst for preparing hydrocarbon
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
AU642029B2 (en) Catalysts and catalysts precursors suitable for hydrocarbon synthesis
US4826803A (en) Process for the production of a syngas conversion catalyst
JP2002161279A (en) Method for producing hydrocarbons by fischer-tropsch process
EP0131465A2 (en) Iron on titania catalyst and its use for hydrocarbon synthesis
JP2002161280A (en) Method for producing hydrocarbons in the presence of carbon dioxide
JP2003105344A (en) Method for producing hydrocarbons by fischer-tropsch method in coexistence of carbon dioxide
US4521394A (en) Conversion of gases to useable products
US4548953A (en) Production of alkanes from mixtures of CO and H2
JPH0370692B2 (en)
US5118891A (en) Syngas conversion catalyst, production and use thereof
JP2003003174A (en) Method for producing hydrocarbons by fischer-tropsch method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee