JP2545734B2 - Hydrocarbon producing catalyst and hydrocarbon producing method - Google Patents

Hydrocarbon producing catalyst and hydrocarbon producing method

Info

Publication number
JP2545734B2
JP2545734B2 JP5254988A JP25498893A JP2545734B2 JP 2545734 B2 JP2545734 B2 JP 2545734B2 JP 5254988 A JP5254988 A JP 5254988A JP 25498893 A JP25498893 A JP 25498893A JP 2545734 B2 JP2545734 B2 JP 2545734B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
copper
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5254988A
Other languages
Japanese (ja)
Other versions
JPH0780309A (en
Inventor
尚功 安藤
正浩 藤原
芳枝 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5254988A priority Critical patent/JP2545734B2/en
Publication of JPH0780309A publication Critical patent/JPH0780309A/en
Application granted granted Critical
Publication of JP2545734B2 publication Critical patent/JP2545734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素製造用触媒及
び炭化水素の製造方法に関する。
TECHNICAL FIELD The present invention relates to a catalyst for producing hydrocarbons and a method for producing hydrocarbons.

【0002】[0002]

【従来技術とその問題点】近年、産業の発展とともに化
石燃料の使用量が増加し、それに伴って大気中に排出さ
れる二酸化炭素も増え続けている。このため、大気中の
二酸化炭素の濃度上昇による地球の温暖化が深刻な環境
問題となっている。二酸化炭素は、炭素資源として活用
することが可能であり、最近では二酸化炭素を回収して
リサイクル利用するための研究も進められているが、実
用化には至っていない。従って、二酸化炭素を回収して
その排出量を低減するとともに二酸化炭素を有効に利用
する技術の開発が急務となっている。
2. Description of the Related Art In recent years, the amount of fossil fuels used has increased with the development of industry, and accompanying this, the amount of carbon dioxide emitted into the atmosphere has also continued to increase. Therefore, global warming due to an increase in the concentration of carbon dioxide in the atmosphere has become a serious environmental problem. Carbon dioxide can be utilized as a carbon resource, and recently, although research for collecting and recycling carbon dioxide is under way, it has not been put to practical use. Therefore, there is an urgent need to develop a technique for recovering carbon dioxide to reduce its emission amount and effectively utilizing carbon dioxide.

【0003】二酸化炭素と水素とを反応させて炭化水素
を製造する方法に関しては、二酸化炭素をメタノールに
変換した後、これを炭化水素に変換する方法が知られて
いる(Masahiro Fujiwara and Yoshie Souma,J.Chem.So
c.Commun.,767(1992))。しかしながら、この方法では、
炭化水素の収率が第1段階で生成したメタノールの量に
制約されるため、二酸化炭素の炭化水素への転化率は低
く、せいぜい20%程度である。
Regarding a method for producing a hydrocarbon by reacting carbon dioxide with hydrogen, a method of converting carbon dioxide into methanol and then converting this into hydrocarbon is known (Masahiro Fujiwara and Yoshie Souma, J.Chem.So
c.Commun., 767 (1992)). However, with this method,
Since the yield of hydrocarbons is limited by the amount of methanol produced in the first stage, the conversion rate of carbon dioxide to hydrocarbons is low, about 20% at most.

【0004】また、二酸化炭素から直接炭化水素を合成
することも試みられている (Jyh-Fu Lee, Wen-Shing
Chern and Min-Dar Lee,Can.J.Chem.Eng.,Vol 70,511(1
992). Min-Dar Lee,Jyh-Fu Lee, and Chau-Shang,Bul
l.Chem.Soc.Jpn.,62,2756-2758(1989)) 。しかしなが
ら、この方法では、高温・高圧の条件下でも、二酸化炭
素の反応率及び炭化水素の選択率が低く、工業的実施に
は適していない。
It has also been attempted to directly synthesize hydrocarbons from carbon dioxide (Jyh-Fu Lee, Wen-Shing
Chern and Min-Dar Lee, Can.J.Chem.Eng., Vol 70,511 (1
992). Min-Dar Lee, Jyh-Fu Lee, and Chau-Shang, Bul
l. Chem. Soc. Jpn., 62 , 2756-2758 (1989)). However, according to this method, the reaction rate of carbon dioxide and the selectivity of hydrocarbons are low even under conditions of high temperature and high pressure, and are not suitable for industrial practice.

【0005】このように、二酸化炭素の接触水素化につ
いての技術は未だ確立されておらず、また二酸化炭素か
ら炭化水素を製造するための有効な触媒等も知られてい
ないというのが現状である。
As described above, the technology for catalytic hydrogenation of carbon dioxide has not been established yet, and no effective catalyst for producing hydrocarbons from carbon dioxide is known. .

【0006】[0006]

【発明が解決しようとする課題】二酸化炭素を「リサイ
クルエネルギー」の原料として利用するに際しては、こ
の原料から得られる炭化水素が化石燃料と同等のエネル
ギー密度をもっていることが望ましい。ここで、二酸化
炭素の接触水素化反応において生成する物質としてメタ
ノール、メタン及びC2 以上の炭化水素が挙げられる
が、常温常圧における単位体積当たりのエネルギー密度
の順序は、炭化水素(液状)>メタノール>>メタンの
順となる。そのため、輸送性、貯蔵性等においても有利
な液状炭化水素を製造することが最も有効である。
When carbon dioxide is used as a raw material for "recycling energy", it is desirable that the hydrocarbon obtained from this raw material has an energy density equivalent to that of fossil fuel. Here, examples of substances produced in the catalytic hydrogenation reaction of carbon dioxide include methanol, methane, and C 2 or higher hydrocarbons. The order of energy density per unit volume at room temperature and normal pressure is hydrocarbon (liquid)> Methanol >>> methane in that order. Therefore, it is most effective to produce a liquid hydrocarbon which is also advantageous in terms of transportability, storability and the like.

【0007】従って、本発明は、二酸化炭素及び水素か
ら高収率で液状炭化水素を生成させることができるとと
もに、長期間高い活性が維持できる触媒、並びに二酸化
炭素及び水素から液状炭化水素を製造する方法を提供す
ることを主目的とする。
Therefore, the present invention produces a liquid hydrocarbon from carbon dioxide and hydrogen in a high yield and can maintain a high activity for a long time, and a liquid hydrocarbon from carbon dioxide and hydrogen. The main purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく研究を重ねた結果、銅と鉄とを主成分とし、
これに特定の金属を含有させた触媒が上記目的を達成で
きることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of repeated research to achieve the above object, the present inventor has found that copper and iron are the main components,
The inventors have found that a catalyst containing a specific metal can achieve the above object, and completed the present invention.

【0009】即ち、本発明は、下記の炭化水素製造用触
媒および炭化水素の製造方法を提供するものである; 1.二酸化炭素と水素とを原料として炭化水素を製造す
るための触媒であって、鉄99〜1:銅1〜99(原子
比)からなる主成分と主成分の0.01〜5%の割合で
アルカリ金属およびアルカリ土類金属の少なくとも1種
とを含むことを特徴とする炭化水素製造用触媒。 2.二酸化炭素と水素とを原料として炭化水素を製造す
るに際し、鉄99〜1:銅1〜99(原子比)からなる
主成分と主成分の0.01〜5%の割合でアルカリ金属
およびアルカリ土類金属の少なくとも1種とを含む触媒
の存在下に二酸化炭素と水素とを反応させることを特徴
とする方法。
That is, the present invention provides the following catalyst for producing hydrocarbons and a method for producing hydrocarbons: A catalyst for producing a hydrocarbon using carbon dioxide and hydrogen as raw materials, the main component being iron 99-1: copper 1-99 (atomic ratio) and the proportion of 0.01-5% of the main component. A catalyst for hydrocarbon production, comprising at least one kind of alkali metal and alkaline earth metal. 2. When producing hydrocarbons using carbon dioxide and hydrogen as raw materials, the main component consisting of iron 99-1: copper 1-99 (atomic ratio) and the alkali metal and alkaline earth in a proportion of 0.01-5% of the main component. A method comprising reacting carbon dioxide and hydrogen in the presence of a catalyst containing at least one kind of metal.

【0010】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0011】まず、本発明の触媒は、鉄及び銅を主成分
とし、さらにアルカリ金属及びアルカリ土類金属の少な
くとも1種を含むものである。鉄と銅との比率は、通常
99:1〜1:99程度、好ましくは95:5〜10:
90とする。上記比率が範囲外となる場合、例えば鉄の
比率が極端に多い場合は二酸化炭素の転化率が低下す
る。また例えば、銅の比率が多い場合は液状炭化水素の
選択率が低下する。
First, the catalyst of the present invention contains iron and copper as main components, and further contains at least one kind of alkali metal and alkaline earth metal. The ratio of iron to copper is usually about 99: 1 to 1:99, preferably 95: 5 to 10 :.
90. When the ratio is out of the range, for example, when the ratio of iron is extremely large, the conversion rate of carbon dioxide decreases. Further, for example, when the proportion of copper is large, the selectivity of liquid hydrocarbons is lowered.

【0012】アルカリ金属・アルカリ土類金属として
は、ナトリウム、カリウム、マグネシウム、カルシウム
等いずれのものも適用できる。上記主成分に対するアル
カリ金属・アルカリ土類金属の比率は、通常0.01〜
5%程度、好ましくは0.1〜3%程度とする。アルカ
リ金属・アルカリ土類金属が少なすぎると二酸化炭素の
転化率が低下し、一方多すぎると耐久性が低下するので
好ましくない。
As the alkali metal or alkaline earth metal, any of sodium, potassium, magnesium, calcium and the like can be applied. The ratio of alkali metal / alkaline earth metal to the main component is usually 0.01 to
It is set to about 5%, preferably about 0.1 to 3%. If the amount of the alkali metal or alkaline earth metal is too small, the conversion rate of carbon dioxide will decrease, while if it is too large, the durability will decrease, such being undesirable.

【0013】本発明触媒は、その形状は特に限定され
ず、例えば粒状、成形体等の形状で使用できる。なお、
粒状で用いる場合は、原料ガスの流量を考慮してその粒
度を8〜40メッシュ(約0.64〜2.4mm)程度
とすることが望ましい。
The shape of the catalyst of the present invention is not particularly limited, and it can be used in the shape of, for example, granules or molded bodies. In addition,
When used in a granular form, it is desirable that the grain size be about 8 to 40 mesh (about 0.64 to 2.4 mm) in consideration of the flow rate of the raw material gas.

【0014】また、本発明の触媒は、そのままでも使用
できるが、例えばシリカ、アルミナ等の通常の触媒にお
ける担体として用いられる物質に担持させて用いても良
い。この場合、担持量は通常2〜10%程度とする。
Although the catalyst of the present invention can be used as it is, it may be used by supporting it on a substance such as silica or alumina which is used as a carrier in a usual catalyst. In this case, the supported amount is usually about 2 to 10%.

【0015】上記触媒の製造方法は、例えば次のように
して行なうことができる。すなわち、硝酸鉄水溶液と硝
酸銅水溶液との混合水溶液に、水酸化ナトリウム等のア
ルカリ金属・アルカリ土類金属の水溶性化合物を溶解さ
せた水溶液を滴下してpH7〜10程度とする。その
後、室温で5〜15時間程度熟成し、生成した共沈殿物
を濾過・洗浄した後、100〜120℃程度で6〜10
時間程度乾燥し、さらに350〜400℃程度で3〜5
時間程度焼成することにより本発明触媒が得られる。な
お、担体を用いる場合には、含浸法等によって担持を行
なえば良い。
The method for producing the above catalyst can be performed, for example, as follows. That is, an aqueous solution in which a water-soluble compound of an alkali metal or an alkaline earth metal such as sodium hydroxide is dissolved is added dropwise to a mixed aqueous solution of an aqueous iron nitrate solution and an aqueous copper nitrate solution to adjust the pH to about 7 to 10. Then, after aging at room temperature for about 5 to 15 hours, filtering and washing the generated coprecipitate, at about 100 to 120 ° C. for 6 to 10 hours.
Dry for about 3 hours, and then at 350-400 ℃ for 3-5
The catalyst of the present invention can be obtained by calcination for about an hour. When a carrier is used, it may be supported by an impregnation method or the like.

【0016】本発明による炭化水素の製造方法において
は、鉄及び銅を主成分とし、さらにアルカリ金属及びア
ルカリ土類金属の少なくとも1種を含む触媒の存在下
に、二酸化炭素と水素とを反応させる。上記原料は、そ
の二酸化炭素と水素の比率が1/6〜1/3程度とす
る。
In the method for producing hydrocarbons according to the present invention, carbon dioxide and hydrogen are reacted in the presence of a catalyst containing iron and copper as main components and at least one of alkali metals and alkaline earth metals. . The above raw material has a carbon dioxide to hydrogen ratio of about 1/6 to 1/3.

【0017】反応方式は特に制限はなく、例えば上記触
媒の粒状物等を充填した反応装置中に上記原料を通過さ
せる方法(固定床流通方式)によれば良い。この場合の
反応条件としては、温度は通常150〜500℃程度、
好ましくは200〜400℃とし、圧力は1〜70気圧
程度、好ましくは10〜50気圧とし、及びSV100
0〜12000ml/g−cat・h程度とする。本発
明の製造方法における二酸化炭素の炭化水素への転化率
は、用いる触媒、反応条件等によって異なるが通常30
〜35%程度である。また、本発明の製造方法によって
得られる液状炭化水素としては、触媒の種類、反応条件
等によって一様ではないが、主に例えばペンタン、ヘキ
サン、ヘプタン、オクタン、ノナン等が例示される。
The reaction system is not particularly limited, and for example, a method of passing the above-mentioned raw materials through a reaction apparatus filled with the above-mentioned catalyst particles (fixed bed circulation method) may be used. As the reaction conditions in this case, the temperature is usually about 150 to 500 ° C,
The pressure is preferably 200 to 400 ° C., the pressure is about 1 to 70 atm, preferably 10 to 50 atm, and SV100.
It is about 0 to 12000 ml / g-cat · h. Although the conversion rate of carbon dioxide to hydrocarbons in the production method of the present invention varies depending on the catalyst used, reaction conditions and the like, it is usually 30
It is about 35%. The liquid hydrocarbon obtained by the production method of the present invention is not uniform depending on the type of catalyst, reaction conditions, etc., but mainly pentane, hexane, heptane, octane, nonane, etc. are exemplified.

【0018】[0018]

【作用】本発明における触媒において、特に、銅は水素
を活性化し、反応し易い状態にする作用を有し、鉄は二
価の銅イオンを金属銅に還元する作用と、炭化水素が生
成して成長する過程でその反応場を提供する作用とを有
する。
In the catalyst of the present invention, in particular, copper has an action of activating hydrogen to make it easily reactive, and iron has the action of reducing divalent copper ions to metallic copper and the formation of hydrocarbons. And the action of providing the reaction field in the process of growing.

【0019】[0019]

【発明の効果】本発明の触媒及び炭化水素の製造方法に
よれば、二酸化炭素及び水素から高収率で液状炭化水素
を合成することができる。しかも、安定性に優れている
ので、本発明触媒は、高温における長期間の使用に対し
ても高い活性を維持することが可能である。
According to the catalyst and the method for producing hydrocarbons of the present invention, liquid hydrocarbons can be synthesized from carbon dioxide and hydrogen in high yield. Moreover, because of its excellent stability, the catalyst of the present invention can maintain high activity even when used for a long period of time at high temperature.

【0020】従って、本発明触媒は、民生用燃料供給、
化成品製造工業、エネルギー変換工業などの各種化学工
業分野において極めて有用であり、地球の温暖化問題の
解決、石油資源の節約等に大きく貢献できるものであ
る。
Therefore, the catalyst of the present invention is used for supplying fuel for consumer use,
It is extremely useful in various chemical industries, such as the chemical product manufacturing industry and the energy conversion industry, and can greatly contribute to solving the global warming problem and saving petroleum resources.

【0021】[0021]

【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明確にする。
EXAMPLES Examples and comparative examples will be shown below to further clarify the features of the present invention.

【0022】実施例1 銅−鉄系触媒(Fe/Cu=7/3 原子比)を以下の
ようにして製造した。硝酸鉄九水和物28.3gと硝酸
銅三水和物7.26gを蒸留水に溶解させて全容を10
0mlとした。これに、水酸化カリウム56.1gを蒸
留水に溶解させて全容を1000mlとした溶液を湯浴
中攪拌しながらpH=8(70℃)となるまで滴下し
た。その後、室温で15時間攪拌した後、濾過洗浄し、
120℃で6時間乾燥後、350℃で3時間焼成した。
Example 1 A copper-iron catalyst (Fe / Cu = 7/3 atomic ratio) was produced as follows. 28.3 g of iron nitrate nonahydrate and 7.26 g of copper nitrate trihydrate were dissolved in distilled water to obtain a total volume of 10
The volume was 0 ml. A solution of 56.1 g of potassium hydroxide dissolved in distilled water to a total volume of 1000 ml was added dropwise to this while stirring in a water bath until pH = 8 (70 ° C.). After that, the mixture is stirred at room temperature for 15 hours, filtered and washed,
After drying at 120 ° C. for 6 hours, it was baked at 350 ° C. for 3 hours.

【0023】このようにして得られた粒状触媒1g(2
4−40メッシュ)を内径1cmのステンレススチール
製反応管に充填し、固定床加圧流通反応装置にセットし
た。これに反応ガス(H2 /CO2 =3/1)を50k
g/cm2 、SV=3000ml/g−cat・hで供
給し、表1に示す各反応温度における反応生成物の分布
をオンラインガスクロマトグラフにより分析した。その
結果を表1に示す。
1 g (2 g of the granular catalyst thus obtained)
4-40 mesh) was filled in a stainless steel reaction tube having an inner diameter of 1 cm and set in a fixed bed pressure distribution reactor. 50 k of reaction gas (H 2 / CO 2 = 3/1)
It was supplied at g / cm 2 and SV = 3000 ml / g-cat · h, and the distribution of reaction products at each reaction temperature shown in Table 1 was analyzed by an online gas chromatograph. Table 1 shows the results.

【0024】[0024]

【表1】 実施例2 水酸化カリウム56.1gの代わりに水酸化ナトリウム
40gを用いた以外は実施例1と同様にして得られた触
媒を用い、実施例1と同様の反応方式に従って、この触
媒に反応ガス(H2 /CO2 =3/1)を400℃、S
V=3000ml/g−cat・hで接触させ、反応圧
力の変化による反応生成物の分布をオンラインガスクロ
マトグラフにより分析した。その結果を表2に示す。
[Table 1] Example 2 A catalyst obtained in the same manner as in Example 1 was used except that 40 g of sodium hydroxide was used instead of 56.1 g of potassium hydroxide, and a reaction gas was added to this catalyst according to the same reaction scheme as in Example 1. (H 2 / CO 2 = 3/1) at 400 ° C., S
The contact was made at V = 3000 ml / g-cat · h, and the distribution of reaction products due to changes in the reaction pressure was analyzed by an online gas chromatograph. The results are shown in Table 2.

【0025】[0025]

【表2】 実施例3 表3に示すように銅と鉄の比率を変えた以外は実施例2
と同様にして触媒を製造した。得られた触媒1gを用
い、実施例1と同様の反応方式に従って、これに反応ガ
ス(H2 /CO2 =3)を400℃、50kg/cm2
でSV=3000ml/g−cat・hで接触させ、各
触媒における反応生成物の分布をオンラインガスクロマ
トグラフにより分析した。その結果を表3に示す。
[Table 2] Example 3 Example 2 except that the ratio of copper to iron was changed as shown in Table 3.
A catalyst was produced in the same manner as in. Using 1 g of the obtained catalyst, a reaction gas (H 2 / CO 2 = 3) was added thereto at 400 ° C. and 50 kg / cm 2 according to the same reaction method as in Example 1.
SV = 3000 ml / g-cat · h, and the distribution of the reaction product in each catalyst was analyzed by online gas chromatography. Table 3 shows the results.

【0026】[0026]

【表3】 試験例1 表4に示す組成(原子%)の触媒A〜Dを実施例1と同
様にして調製し、これらに反応ガス(H2 /CO2 =3
/1)を400℃、50kg/cm2 でSV=3000
ml/g−cat・hで供給し、各触媒における反応生
成物の分布をオンラインガスクロマトグラフにより分析
した。その結果を表4に示す。
[Table 3] Test Example 1 Catalysts A to D having the compositions (atomic%) shown in Table 4 were prepared in the same manner as in Example 1 and reaction gases (H 2 / CO 2 = 3) were prepared.
/ 1) at 400 ° C. and 50 kg / cm 2 SV = 3000
It was supplied at ml / g-cat · h, and the distribution of reaction products in each catalyst was analyzed by an online gas chromatograph. The results are shown in Table 4.

【0027】[0027]

【表4】 試験例2 実施例3で得られた本発明触媒(Fe/Cu=5/5
原子比)を用い、これに反応ガス(H2 /CO2 =3/
1)を400℃、50kg/cm2 、SV=3000m
l/g−cat・hで供給し、時間の経過による転化率
の変化について調べた。その結果を表5に示す。
[Table 4] Test Example 2 The catalyst of the present invention obtained in Example 3 (Fe / Cu = 5/5
Atomic ratio is used, and the reaction gas (H 2 / CO 2 = 3 /
1) at 400 ° C., 50 kg / cm 2 , SV = 3000 m
It was supplied at 1 / g-cat · h, and the change in conversion rate over time was examined. The results are shown in Table 5.

【0028】[0028]

【表5】 [Table 5]

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化炭素と水素とを原料として炭化水素
を製造するための触媒であって、鉄99〜1:銅1〜9
9(原子比)からなる主成分と主成分の0.01〜5%
の割合でアルカリ金属およびアルカリ土類金属の少なく
とも1種とを含むことを特徴とする炭化水素製造用触
媒。
1. A catalyst for producing a hydrocarbon using carbon dioxide and hydrogen as raw materials, which is iron 99-1: copper 1-9.
Main component consisting of 9 (atomic ratio) and 0.01 to 5% of the main component
A catalyst for hydrocarbon production, comprising at least one of an alkali metal and an alkaline earth metal in a proportion of.
【請求項2】二酸化炭素と水素とを原料として炭化水素
を製造するに際し、鉄99〜1:銅1〜99(原子比)
からなる主成分と主成分の0.01〜5%の割合でアル
カリ金属およびアルカリ土類金属の少なくとも1種とを
含む触媒の存在下に二酸化炭素と水素とを反応させるこ
とを特徴とする方法。
2. When producing hydrocarbons using carbon dioxide and hydrogen as raw materials, iron 99-1: copper 1-99 (atomic ratio)
A method of reacting carbon dioxide and hydrogen in the presence of a catalyst containing a main component consisting of: and a catalyst containing 0.01 to 5% of the main component and at least one of an alkali metal and an alkaline earth metal. .
JP5254988A 1993-09-16 1993-09-16 Hydrocarbon producing catalyst and hydrocarbon producing method Expired - Lifetime JP2545734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254988A JP2545734B2 (en) 1993-09-16 1993-09-16 Hydrocarbon producing catalyst and hydrocarbon producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254988A JP2545734B2 (en) 1993-09-16 1993-09-16 Hydrocarbon producing catalyst and hydrocarbon producing method

Publications (2)

Publication Number Publication Date
JPH0780309A JPH0780309A (en) 1995-03-28
JP2545734B2 true JP2545734B2 (en) 1996-10-23

Family

ID=17272654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254988A Expired - Lifetime JP2545734B2 (en) 1993-09-16 1993-09-16 Hydrocarbon producing catalyst and hydrocarbon producing method

Country Status (1)

Country Link
JP (1) JP2545734B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747499B2 (en) * 2009-12-25 2015-07-15 東ソー株式会社 Hydrogenation catalyst, method for producing the same, and use thereof
JP2015077575A (en) * 2013-10-18 2015-04-23 岩谷産業株式会社 Hydrocarbon synthesis catalyst, and hydrocarbon production device using the same and method for producing hydrocarbon
JP2016132644A (en) * 2015-01-21 2016-07-25 岩谷産業株式会社 Hydrocarbon production apparatus and hydrocarbon production method
JP6599223B2 (en) * 2015-12-16 2019-10-30 岩谷産業株式会社 Method for producing hydrocarbon synthesis catalyst, method for producing hydrocarbon
JP6978844B2 (en) * 2017-03-22 2021-12-08 岩谷産業株式会社 Hydrocarbon synthesis catalyst manufacturing method, hydrocarbon manufacturing method
JP7392854B2 (en) * 2020-06-22 2023-12-06 株式会社Ihi Hydrocarbon generation system
JP2022064671A (en) * 2020-10-14 2022-04-26 国立研究開発法人産業技術総合研究所 Production method of hydrocarbon
WO2022138910A1 (en) 2020-12-25 2022-06-30 Eneos株式会社 Hydrocarbon production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536862A (en) * 1976-07-08 1978-01-21 Nippon Electric Co Method of making thinnfilm resistor
JPS624438A (en) * 1985-06-28 1987-01-10 Mitsubishi Acetate Co Ltd Composition generating sol-gel transition
JPS6352936A (en) * 1986-08-21 1988-03-07 Mitsubishi Electric Corp Screw part feeding device

Also Published As

Publication number Publication date
JPH0780309A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
CN104226353B (en) Preparation method of iron-carbide/carbon nanocomposite catalysts including potassium additives for high temperature fischer-tropsch synthesis reaction and the iron-carbide/carbon nanocomposite catalysts thereof, and manufacturing method of liquid hydrocarbon using the same and liquid hydrocarbon thereof
NZ210651A (en) Palladium/rhenium catalyst and preparation of tetrahydrofuran and 1,4-butanediol
CN106268923A (en) A kind of preparation method and application of bifunctional catalyst
CN106890668A (en) A kind of catalyst for producing methyl acetate, its preparation method and application
CN106466611A (en) The ferrum-based catalyst of co-precipitation-fusion method preparation, its preparation method and application
US2767202A (en) Catalytic hydrogenation of carbon monoxides
AU679868B2 (en) Photocatalyst, method for preparing the same, and production of hydrogen using the same
CN113908840A (en) Fe-based multifunctional catalyst and preparation method and application thereof
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
EP2301663B1 (en) Catalyst for fischer-tropsch synthesis and method for producing hydrocarbons
US4659686A (en) Method for treating carbon supports for hydrogenation catalysts
RU2266884C2 (en) Method for preparing hydrocarbon and catalyst for its realization
JPH0739755A (en) Methanol synthesis catalyst and manufacture thereof
RU2106909C1 (en) Catalysts on carriers for methane or purified natural gas conversion, preparation thereof, and method of ethylene production on these catalysts
US4393144A (en) Method for producing methanol
CN109926066A (en) Double auxiliary agent nano Pd catalyst Preparation method and uses
JP4006328B2 (en) Production method of hydrocarbons by Fischer-Tropsch process
CN110252309B (en) CuNi/SiO2Composite bimetal supported catalyst and preparation method and application thereof
JP2764114B2 (en) Method for producing methanol
AU642029B2 (en) Catalysts and catalysts precursors suitable for hydrocarbon synthesis
Loktev Alcohols and hydrocarbons from carbon oxides and hydrogen and fused iron catalysts: Developments of syntheses and mechanism
JPH06179632A (en) Method for synthesizing methanol
RU2177365C1 (en) Carbon production catalyst and carbon production process
CN109158107A (en) A method of liquid hydrocarbon is prepared by carbon dioxide direct hydrogenation
US20240198318A1 (en) Iron-based catalyst and method of hydrogenating carbon dioxide