JP2764114B2 - Method for producing methanol - Google Patents

Method for producing methanol

Info

Publication number
JP2764114B2
JP2764114B2 JP2055006A JP5500690A JP2764114B2 JP 2764114 B2 JP2764114 B2 JP 2764114B2 JP 2055006 A JP2055006 A JP 2055006A JP 5500690 A JP5500690 A JP 5500690A JP 2764114 B2 JP2764114 B2 JP 2764114B2
Authority
JP
Japan
Prior art keywords
reaction
carbon dioxide
methanol
hydrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2055006A
Other languages
Japanese (ja)
Other versions
JPH03258738A (en
Inventor
伸正 荒柴
隆晴 春日
真二 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2055006A priority Critical patent/JP2764114B2/en
Publication of JPH03258738A publication Critical patent/JPH03258738A/en
Application granted granted Critical
Publication of JP2764114B2 publication Critical patent/JP2764114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はメタノールの製造方法に関する。更に詳しく
は、本発明は溶媒中で二酸化炭素と水素からメタノール
を製造する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing methanol. More specifically, the present invention relates to a method for producing methanol from carbon dioxide and hydrogen in a solvent.

メタノールは、ホルムアルデヒドやカルボン酸エステ
ル等の合成原料に用いられる最も基礎的な汎用化学品の
一つである。
Methanol is one of the most basic general-purpose chemicals used for synthesis raw materials such as formaldehyde and carboxylate.

二酸化炭素は近年大気中濃度の増加傾向が顕著とな
り、それによってもたらされる温室効果など、地球環境
の破壊への影響が最も懸念されている炭素源である。
In recent years, the concentration of carbon dioxide in the atmosphere has been increasing remarkably, and it is the carbon source that is most concerned about the impact on the destruction of the global environment, such as the greenhouse effect caused by it.

[従来の技術] 工業的なメタノールの合成方法としては、一酸化炭素
と水素を原料とし、亜鉛−クロム系触媒を用いる高圧合
成法(320〜380℃、340〜400気圧)と、銅−亜鉛系触媒
を用いる低圧合成法(250〜300℃、50〜150気圧)が知
られている。該反応は、発熱を伴いモル数が減少する平
衡反応であり、化学平衡上低温高圧ほど有利な反応であ
る。従って、反応熱の除去を十分に行い、反応温度の制
御をうまく行わないと転化率の低下を来たし、有利に反
応を進行させる事が出来ない。上記の従来プロセスは全
て気相流通式の触媒反応プロセスであり、特に大型化に
際しては反応器の設計が非常に困難になるという問題点
を有していた。
[Prior Art] Industrial methanol synthesis methods include high-pressure synthesis (320-380 ° C, 340-400 atm) using carbon monoxide and hydrogen as raw materials and a zinc-chromium-based catalyst, and copper-zinc. A low-pressure synthesis method using a system catalyst (250 to 300 ° C., 50 to 150 atm) is known. This reaction is an equilibrium reaction in which the number of moles decreases with exotherm, and the lower the temperature and the pressure, the more advantageous the chemical equilibrium. Therefore, if the reaction heat is not sufficiently removed and the reaction temperature is not properly controlled, the conversion decreases, and the reaction cannot be advantageously advanced. The above-mentioned conventional processes are all gas-phase flow-type catalytic reaction processes, and have a problem that it becomes very difficult to design a reactor especially when the process is enlarged.

この様な問題点を克服する方法として、液相で一酸化
炭素及び水素からメタノールを合成する方法が検討され
てきた。例えば、アメリカのChem Systems社及びAir Pr
oducts社により液相流動層反応方式が開発されパイロッ
ト試験まで実施されている。この方法は不活性媒質中に
不均一系触媒を分散させ、原料ガスを直接メタノールへ
転換するもので、除熱が容易で温度調節も簡単で均一な
温度分布が得られる為、気相法よりも優れていると言わ
れている。アメリカのBrookhaven国立研究所でも、天然
ガスの部分酸化法により得られる合成ガスを原料に、揮
発性の液体触媒を用いる低温液相反応によりメタノール
を合成するプロセスの開発を行っている。該反応方式
は、反応温度が120℃と極めて低い為、化学平衡上高い
ワンパス転化率が得られ、未反応ガスの再循環が不要と
なる等、エネルギー消費上も大きな改善がなされ、メリ
ットの大きなプロセスと言われている。
As a method for overcoming such problems, a method for synthesizing methanol from carbon monoxide and hydrogen in a liquid phase has been studied. For example, Chem Systems and Air Pr
A liquid phase fluidized bed reaction system has been developed by oducts and has been implemented until pilot testing. This method disperses a heterogeneous catalyst in an inert medium and directly converts the raw material gas to methanol.Since heat removal is easy, temperature control is simple, and a uniform temperature distribution can be obtained, this method is better than the gas phase method. Is also said to be excellent. The Brookhaven National Laboratory in the United States is also developing a process for synthesizing methanol from a synthesis gas obtained by the partial oxidation of natural gas as a raw material by a low-temperature liquid-phase reaction using a volatile liquid catalyst. Since the reaction system has a very low reaction temperature of 120 ° C., a high one-pass conversion can be obtained in terms of chemical equilibrium, and there is no need to recycle unreacted gas. It is called a process.

一方、二酸化炭素の水素添加によるメタノール合成に
ついては、しばしば合成ガスからの合成法と平行して検
討されている。即ち、合成ガスには少なからぬ量の二酸
化炭素が含まれており、二酸化炭素が共存している場合
の方が時には有利にメタノール合成が進行する事が知ら
れている事である。例えば、アプライド・キャタリシ
ス、第4巻、281頁〜286頁(1982年)(Appl.Catal.,4,
281−6(1986))には、Cu-ZnO-La2O3系触媒を用いる
二酸化炭素と水素からの気相法のメタノール合成が報告
されている。ブル・ケム・ソス・ジャパン、第60巻、26
63〜2664頁(1987年)(Bull.Chem.Soc.Jpn.,60,
(7),2663〜2664(1987))等の文献に見られる様
に、一酸化炭素と水素との反応に較べて、二酸化炭素と
水素との反応の方がメタノール合成に有利であり、メタ
ノール生成は二酸化炭素経由であるとの反応メカニズム
等も提供されている。
On the other hand, methanol synthesis by hydrogenation of carbon dioxide is often studied in parallel with a synthesis method from synthesis gas. That is, it is known that the synthesis gas contains a considerable amount of carbon dioxide, and that the synthesis of methanol sometimes proceeds more advantageously in the presence of carbon dioxide. For example, Applied Catalysis, Vol. 4, pp. 281 to 286 (1982) (Appl. Catal., 4,
To 281-6 (1986)), the synthesis of methanol vapor phase from the carbon dioxide and hydrogen using a Cu-ZnO-La 2 O 3 catalyst has been reported. Bull Chem Sos Japan, Volume 60, 26
63-2664 (1987) (Bull. Chem. Soc. Jpn., 60,
(7), 2663-2664 (1987)), the reaction between carbon dioxide and hydrogen is more advantageous for methanol synthesis than the reaction between carbon monoxide and hydrogen. A reaction mechanism for the generation via carbon dioxide is also provided.

しかし、これら気相法プロセスでは、その反応熱の除
去と反応温度の制御を充分に行わないと前述した如き問
題点は本質的に解決されず、加圧気相法である限りに於
いては反応温度の低下にも限界があり、従って問題点の
解決には限界がある。
However, in these vapor phase processes, the above-mentioned problems cannot be essentially solved unless the reaction heat is removed and the reaction temperature is not sufficiently controlled. There is also a limit to the temperature drop, and thus a limit to the solution of the problem.

そこで、二酸化炭素と水素とを液相で反応させメタノ
ールを合成するというアイデアが考えられるが、これに
ついては検討例が少なく余り知られていない。イズヴェ
スチャ・アカデミー・ナウク・エスエスエスアール・セ
リーヤ・ケミチェスカーヤ、No.12.2669頁〜2770頁(19
79年)(Izv.Akad.Nauk.SSSR Khim.,No.12,2769〜2770
(1979))では反応例として、ベンゼンを反応溶媒とし
四塩化スズ触媒存在下、200℃、100気圧(CO2/H2=1/
3)、12時間の反応で、転化率僅か9%、メタノール収
率8%の反応成績を得ている。しかし、四塩化スズは生
成した水により塩酸を発生し、装置を著しく腐食するお
それがあり、収率も十分ではない等、まだまだ問題点が
ある。
Thus, an idea of synthesizing methanol by reacting carbon dioxide and hydrogen in a liquid phase is conceivable, but there have been few studies on this and little is known. Izvesta Academy Nauk S.S.S.S.S. Seriya Chemichskaya, No. 12.2669-2770 (19
79 years) (Izv.Akad.Nauk.SSSR Khim., No. 12, 2769-2770
(1979)), as a reaction example, using benzene as a reaction solvent, in the presence of a tin tetrachloride catalyst, at 200 ° C. and 100 atm (CO 2 / H 2 = 1 /
3) After 12 hours of reaction, a conversion rate of only 9% and a methanol yield of 8% were obtained. However, tin tetrachloride generates hydrochloric acid due to the generated water, which may significantly corrode the apparatus, and still has problems such as insufficient yield.

ケミカル・エンジニヤリング・サイエンス、第43巻、
第8号、2161頁〜2168頁(1988年)(Chemical Enginee
ring Science,43(8),2161〜2168(1988))の如く気
相法と同様にCOの水素化と比較して、液相に於ける二酸
化炭素の水素化反応によるメタノール合成を速度論的に
検討した例が見られるが、原料ガスとしてはCO過剰の二
酸化炭素を用いており、二酸化炭素から直接的にメタノ
ールが得られているのかどうかは実際上は不明で、COを
原料とするメタノール合成に於ける二酸化炭素の添加効
果を検討しているに過ぎない。更に、フューエル・サイ
エンス・アンド・テクノロジー・インターナショナル、
第6巻、第5号、569頁〜589頁(1988年)(Fuel.Sci.T
echnol.Int.,6,(5),569〜589(1988))には、銅−
亜鉛系の液相スラリー反応で、二酸化炭素を含まない合
成ガス原料ではメタノールが得られるが、COを含まない
二酸化炭素と水素の反応では、水性ガスシフト反応のみ
が進行し、水しか得られないような反応例が報告されて
いる。
Chemical Engineering Science, Vol. 43,
No. 8, pages 2161 to 2168 (1988) (Chemical Enginee
Kinetics of methanol synthesis by hydrogenation of carbon dioxide in the liquid phase compared to hydrogenation of CO as in the gas phase method, as in Ring Science, 43 (8), 2161-2168 (1988). As a source gas, carbon dioxide in excess of CO is used as a source gas, and it is practically unknown whether methanol is obtained directly from carbon dioxide. It is merely examining the effect of adding carbon dioxide on the synthesis. In addition, Fuel Science and Technology International,
Vol. 6, No. 5, pp. 569-589 (1988) (Fuel. Sci. T.
echnol. Int., 6, (5), 569-589 (1988))
In a zinc-based liquid phase slurry reaction, methanol can be obtained from carbon dioxide-free synthesis gas raw material, but in the reaction of carbon dioxide and hydrogen without CO, only the water gas shift reaction proceeds, and only water is obtained. Reaction examples have been reported.

本発明の如き微細粒子を触媒に用いる化学反応の研究
例は比較的少なく、COの水素化反応による液相メタノー
ル合成の例では、特開昭60-94931号などで知られている
のみである。
Comparative examples of chemical reactions using fine particles as a catalyst as in the present invention are relatively few, and examples of liquid-phase methanol synthesis by hydrogenation of CO are only known in JP-A-60-94931. .

二酸化炭素についてはその大気中濃度の増加が、最近
問題になっている地球温暖化の主たる原理であると推定
され、化石燃料の大量消費に伴う排出量を削減する為の
省エネ技術の開発、または、この二酸化炭素を化学的手
段などによって、他の有用物質に変換する技術の開発が
大いに望まれる所である。
It is estimated that the increase in atmospheric concentration of carbon dioxide is the main principle of global warming, which has recently become a problem, and the development of energy-saving technologies to reduce emissions associated with the massive consumption of fossil fuels, or It is highly desired to develop a technology for converting this carbon dioxide into other useful substances by chemical means or the like.

[発明が解決しようとする課題] 本発明の目的は二酸化炭素と水素からメタノールを製
造する方法を提供することにある。
[Problem to be Solved by the Invention] An object of the present invention is to provide a method for producing methanol from carbon dioxide and hydrogen.

[課題を解決するための手段] 本発明者らは、化学的にも変換が求められているこの
二酸化炭素と水素からメタノールを合成する新しい反応
方法について、特に、反応温度の制御が容易で、化学平
衡上反応温度を低温に保つ為に必要な反応熱の除去が容
易な液相に於ける反応を実現する為の触媒について鋭意
検討を行なった結果、銅及び亜鉛を主とする微細粒子の
存在下不活性溶媒中にて反応させる事により、かなり効
率良くメタノール合成が出来る事を見い出し、本発明を
完成させるに至った。
[Means for Solving the Problems] The present inventors have proposed a new reaction method for synthesizing methanol from carbon dioxide and hydrogen, which is also required to be chemically converted. As a result of intensive studies on catalysts for realizing a reaction in the liquid phase where the heat of reaction necessary for keeping the reaction temperature low in terms of chemical equilibrium was easily studied, the fine particles mainly composed of copper and zinc were By reacting in an inert solvent in the presence of methanol, it has been found that methanol can be synthesized quite efficiently, and the present invention has been completed.

即ち、本発明は、 メタノールを合成する方法において、銅及び亜鉛を主
とする金属を加熱蒸発する事により得られる平均粒径10
オングストローム〜1ミクロンの微細粒子を不活性溶媒
中に懸濁させ、実質的に一酸化炭素を含まない二酸化炭
素と水素とを反応させる事を特徴とするメタノールの製
造方法である。
That is, the present invention provides a method for synthesizing methanol, in which a metal mainly composed of copper and zinc is heated and evaporated to obtain an average particle diameter of 10%.
This is a method for producing methanol, comprising suspending fine particles of Å to 1 μm in an inert solvent and reacting carbon dioxide and hydrogen substantially free of carbon monoxide.

本発明について更に詳しく説明する。 The present invention will be described in more detail.

ここでいう二酸化炭素とは、主として化石燃料の燃焼
や、化学反応で発生したものを吸収などにより分離回収
したものであり、大量の一酸化炭素中に数%の二酸化炭
素を含む様ないわゆる合成ガスそのものは意味せず、実
質的に一酸化炭素を含まない二酸化炭素をいう。但し、
例えば、燃焼ガス中には僅かな一酸化炭素が含まれてお
り、又、一酸化炭素の水性ガスシフト反応によって得ら
れる二酸化炭素には化学平衡分の一酸化炭素が含まれ
る。本発明はこれらの少量の一酸化炭素を含有する二酸
化炭素の利用を目的とするものである。概ね一酸化炭素
の含有量が10%以下である様な二酸化炭素を原料とする
もので、この二酸化炭素中に含まれる少量の一酸化炭素
は本発明に於ける反応を本質的に阻害するものではな
い。更に、この二酸化炭素中には窒素やメタン、水蒸気
といったその他の不活性物質が含まれていても差し支え
ない。
The carbon dioxide referred to here is mainly the one generated by burning fossil fuels or chemical reaction and separating and recovering it by absorption. It does not mean gas itself, but refers to carbon dioxide that is substantially free of carbon monoxide. However,
For example, the combustion gas contains a small amount of carbon monoxide, and carbon dioxide obtained by the water gas shift reaction of carbon monoxide contains carbon monoxide in a chemical equilibrium amount. The present invention is directed to the use of carbon dioxide containing these small amounts of carbon monoxide. Carbon dioxide whose carbon monoxide content is generally 10% or less is used as a raw material, and a small amount of carbon monoxide contained in the carbon dioxide essentially inhibits the reaction in the present invention. is not. Further, other inert substances such as nitrogen, methane, and water vapor may be contained in the carbon dioxide.

一方の気体原料である水素については、各種製造方法
により得られるいかなるものでも使用できる。即ち、電
解法で得られる水素の他、石炭のガス化、天然ガスやナ
フサ類の水蒸気改質または部分酸化法で得られる水素な
どを用いる事が出来る。更には一酸化炭素の水性ガスシ
フト反応によって得られるガスも便利である。将来、水
の光半導体電極反応で大量に水素が得られるようになれ
ば、これも有効な水素源と考えられる。
As for hydrogen, which is a gaseous raw material, any hydrogen obtained by various production methods can be used. That is, hydrogen obtained by coal gasification, steam reforming of natural gas or naphtha, or hydrogen obtained by a partial oxidation method can be used in addition to hydrogen obtained by the electrolytic method. Further, a gas obtained by a water gas shift reaction of carbon monoxide is also convenient. In the future, if a large amount of hydrogen can be obtained by the photoelectrode reaction of water, this is also considered to be an effective hydrogen source.

本発明で用いられる銅及び亜鉛を主とする金属は銅及
び亜鉛のみからなるものであっても良いが、必要に応じ
てアルミニウムやクロムなどの補強剤を含有していても
良い。本発明で用いられる銅及び亜鉛を主とする金属か
らなる平均粒径10オングストローム〜1ミクロンの微細
粒子は、通常各々の金属を加熱蒸発して得る事が出来
る。
The metal mainly composed of copper and zinc used in the present invention may be composed of only copper and zinc, but may contain a reinforcing agent such as aluminum or chromium as required. The fine particles having an average particle diameter of 10 angstrom to 1 micron and comprising a metal mainly composed of copper and zinc used in the present invention can be usually obtained by heating and evaporating each metal.

微細粒子は、ヘリウム、アルゴン、窒素などの不活性
ガス、水素、CO、及び二酸化炭素からなる群から選ばれ
る一種又は二種以上の混合ガスの雰囲気下で、圧力10-5
mmHgないし大気圧にて金属を加熱蒸発させる事によって
得る事が出来る。得られる微細粒子の粒度の調節は、金
属の蒸発速度又は金属の供給速度、雰囲気ガスの種類、
圧力条件等の設定により行う事が出来る。微細粒子の粒
度が10オングストロームより小さくなると、触媒性能が
得られず好ましくない。1ミクロンを越えれば触媒性能
が低下する。
Fine particles, helium, argon, inert gas such as nitrogen, hydrogen, CO, and under the atmosphere of one or two or more mixed gas selected from the group consisting of carbon dioxide, pressure 10 -5
It can be obtained by heating and evaporating metal at mmHg or atmospheric pressure. Adjustment of the particle size of the obtained fine particles, metal evaporation rate or metal supply rate, type of atmosphere gas,
This can be done by setting pressure conditions and the like. If the particle size of the fine particles is smaller than 10 angstroms, catalytic performance cannot be obtained, which is not preferable. If it exceeds 1 micron, the catalytic performance will decrease.

加熱方法としては、高温プラズマ中で、銅、亜鉛、又
はそれらの化合物を直接加熱蒸発してもよいし、タング
ステンボード等を用いる抵抗加熱方式などによって実施
する事が出来る。本微細粒子の捕集は、微粒子製造装置
の壁に付着又は凝固させたり、粘性媒体中に付着させた
りして行う事が出来る。
As a heating method, copper, zinc, or a compound thereof may be directly heated and evaporated in a high-temperature plasma, or a resistance heating method using a tungsten board or the like may be used. The collection of the fine particles can be performed by adhering or coagulating on the wall of the fine particle producing apparatus or adhering in a viscous medium.

生成する微細粒子は、成分粒子が異なる混合物ではな
く、銅及び亜鉛の成分金属が個々の微粒子内または表面
で共存している事が望ましく、合金状態であってもよ
い。銅と亜鉛との割合は、銅20〜95重量%に対し亜鉛80
〜10重量%が好ましい。触媒の補強剤としてはアルミニ
ウムやクロムを0〜50重量%含有したものでも良い。
The resulting fine particles are not a mixture of different component particles, but it is desirable that the component metals of copper and zinc coexist in the individual fine particles or on the surface, and may be in an alloy state. The ratio of copper to zinc is 80-80% zinc to 20-95% by weight copper.
~ 10% by weight is preferred. As a reinforcing agent for the catalyst, one containing 0 to 50% by weight of aluminum or chromium may be used.

銅及び亜鉛の各金属塩の水溶液からpH調節により沈殿
を得、これを前駆体として焼成して得られる通常のメタ
ノール合成触媒については、反応に先立って還元処理を
施す必要があるが、本発明によって得られる微粒子触媒
については、焼成還元といった処理は全く必要がなく、
特に、大型プラントのスタートや触媒補強に際して操作
上の大きな合理化、改善が図られるという利点もある。
A precipitate is obtained from an aqueous solution of each metal salt of copper and zinc by pH adjustment, and a conventional methanol synthesis catalyst obtained by calcining this as a precursor needs to be subjected to a reduction treatment prior to the reaction. No processing such as calcining reduction is required for the fine particle catalyst obtained by
In particular, there is an advantage that a large rationalization and improvement in operation can be achieved when starting a large plant or reinforcing a catalyst.

反応に用いる不活性溶媒といては、反応物質及び反応
生成物に対し不活性なもの、例えば、ベンゼン、トルエ
ン、キシレン、ナフタレン等の芳香族化合物、ペンタ
ン、ヘキサン、ヘプタン、オクタン等の直鎖又は環状の
脂肪族化合物、ヘキサノール、オクチルアルコール、ノ
ニルアルコール等の高級アルコール、又は疎水性のパー
フルオロカーボン類が例示される。
As the inert solvent used in the reaction, those inert to the reactants and reaction products, for example, aromatic compounds such as benzene, toluene, xylene, and naphthalene, pentane, hexane, heptane, and linear chains such as octane Examples thereof include cyclic aliphatic compounds, higher alcohols such as hexanol, octyl alcohol, and nonyl alcohol, and hydrophobic perfluorocarbons.

反応温度は100〜400℃、反応圧力は20〜350Kg/cm2
望ましい。原料ガスである二酸化炭素と水素の比は任意
に選べるが、およそ1:10ないし1:1容量比である事が望
ましい。反応時間は上記反応条件及び反応形式によって
異なるが、30分ないし20時間程度である。
The reaction temperature is preferably from 100 to 400 ° C., and the reaction pressure is preferably from 20 to 350 kg / cm 2 . The ratio of carbon dioxide to hydrogen, which is the source gas, can be arbitrarily selected, but it is preferable that the ratio be approximately 1:10 to 1: 1 by volume. The reaction time varies depending on the above reaction conditions and reaction type, but is about 30 minutes to 20 hours.

反応形式は、回分式、多段連続式などのいずれの方式
によっても実施する事が出来る。
The reaction can be carried out in any of a batch system, a multistage continuous system, and the like.

不活性溶媒中の微細粒子の濃度は特に限定されるもの
ではないが、通常0.01〜5重量%が多用される。
The concentration of the fine particles in the inert solvent is not particularly limited, but usually 0.01 to 5% by weight is often used.

[実施例] 以下、実施例により本発明の方法を更に詳しく説明す
る。
EXAMPLES Hereinafter, the method of the present invention will be described in more detail with reference to examples.

実施例1 約1mmHgの圧力のアルゴン雰囲気下、タングステンボ
ードの抵抗加熱により銅及び亜鉛を加熱蒸発させてCu/Z
n=57/24(重量比、残部19が主として酸素)、平均粒径
390オングストロームの微細粒子を得た。100mlのオート
クレーブにベンゼン40mlと上記微細粒子触媒0.3gを入
れ、二酸化炭素/水素=1/3容量比のガスを全圧100kg/c
m2に張り、250℃に昇温して5時間反応させた。尚、原
料ガスは予め、反応用のオートクレーブとは別の内容積
3リットルの耐圧容器にCOフリーの液化炭素ガスと水素
とから室温で1/3のガス容量比で120Kg/cm2に調合して用
いた。
Example 1 Under an argon atmosphere at a pressure of about 1 mmHg, copper and zinc were heated and evaporated by resistance heating of a tungsten board to produce Cu / Z.
n = 57/24 (weight ratio, balance 19 is mainly oxygen), average particle size
Fine particles of 390 Å were obtained. In a 100 ml autoclave, put 40 ml of benzene and 0.3 g of the above fine particle catalyst, and feed a gas having a carbon dioxide / hydrogen ratio of 1/3 by volume at a total pressure of 100 kg / c.
tension in m 2, and reacted for 5 hours the temperature was raised to 250 ° C.. The raw material gas was previously prepared from a CO-free liquefied carbon gas and hydrogen in a 3 liter pressure vessel separately from the reaction autoclave at room temperature at a gas volume ratio of 1/3 to 120 kg / cm 2. Used.

反応終了後、冷却して反応生成液を取り出し、ガスク
ロマトグラフィーにて分析したところ、メタノールが仕
込みの二酸化炭素に対して15%の収率で生成していた。
After completion of the reaction, the reaction product was cooled and the reaction product liquid was taken out and analyzed by gas chromatography. As a result, it was found that methanol was produced at a yield of 15% based on the charged carbon dioxide.

実施例2 実施例1と同様にタングステンボードの抵抗加熱法に
よりCu/Zn=64/18(重量比、残部18が主として酸素)、
平均粒径340オングストロームの微細粒子を得、同様に
0.3gを触媒として実施例1と同条件にて反応させたとこ
ろ、13.5%の収率でメタノールが生成していた。
Example 2 Cu / Zn = 64/18 (weight ratio, balance 18 being mainly oxygen) by resistance heating of a tungsten board in the same manner as in Example 1,
Fine particles with an average particle size of 340 Å were obtained.
When 0.3 g of the catalyst was reacted under the same conditions as in Example 1, methanol was produced at a yield of 13.5%.

比較例1 1Mの硝酸銅・3水塩と1Mの硝酸亜鉛・6水塩の水溶液
を混合撹拌し、85〜90℃に保ちながら1Mの炭酸ナトリウ
ム水溶液を滴下し、pHが6.8〜7.0に落ち着くまで加えた
後、更に2時間加熱撹拌を続けた。冷却後沈澱をろ過
し、蒸留水で十分に洗浄した後、100℃で一晩乾燥し
た。更に、これを空気中で350℃にて4時間焼成した。
この段階でCuOとZnOの酸化物として75/25重量比のもの
を、原料の硝酸塩水溶液の混合比で調整して得た。次い
で、2%の水素を含む窒素気流下250℃で更に10時間還
元処理し、これを乳鉢で摺り潰した後、篩分けし149〜2
50ミクロンの粉末を得た。
Comparative Example 1 A 1M aqueous solution of copper nitrate trihydrate and a 1M aqueous solution of zinc nitrate hexahydrate were mixed and stirred, and a 1M aqueous sodium carbonate solution was added dropwise while maintaining the temperature at 85 to 90 ° C., and the pH settled to 6.8 to 7.0. After the addition, heating and stirring were continued for another 2 hours. After cooling, the precipitate was filtered, thoroughly washed with distilled water, and dried at 100 ° C. overnight. Further, it was fired in air at 350 ° C. for 4 hours.
At this stage, an oxide of CuO and ZnO having a weight ratio of 75/25 was obtained by adjusting the mixing ratio of the raw material nitrate aqueous solution. Then, the mixture was further reduced at 250 ° C. for 10 hours in a nitrogen gas stream containing 2% hydrogen, crushed in a mortar, and sieved.
A 50 micron powder was obtained.

これを触媒として5g用いた以外は、実施例1と全く同
様に反応させて分析したところ、メタノールが3.4%の
収率で生成していた。
Except that 5 g of this was used as a catalyst, the reaction was conducted in exactly the same manner as in Example 1 and analysis revealed that methanol was produced in a yield of 3.4%.

比較例2 比較例1に於いて、CuO/ZnO=55/45重量比で同様に調
整して得た触媒を5g用いた以外は、比較例1と全く同様
に行ったところ、1.9%の収率でメタノールが得られ
た。
Comparative Example 2 The same procedure as in Comparative Example 1 was repeated except that 5 g of a catalyst obtained by adjusting the weight ratio of CuO / ZnO = 55/45 was used. Methanol was obtained at a rate.

[発明の効果] 本発明によれば、銅と亜鉛を主とする金属を加熱蒸発
させる事によって得られる微細粒子を触媒として用いる
事により、反応温度の制御が容易で、平衡上有利な反応
条件が維持できる不活性溶媒中で、COを含まない二酸化
炭素と水素からかなりの効率でメタノールが得られる。
本発明は、化学的にも固定化が望まれる二酸化炭素の転
換方法として、又、クリーンなエネルギー源としてのメ
タノールの製造方法としても、産業上極めて有益なプロ
セスを提供するものである。
[Effects of the Invention] According to the present invention, by using fine particles obtained by heating and evaporating a metal mainly composed of copper and zinc as a catalyst, the reaction temperature can be easily controlled and reaction conditions advantageous in terms of equilibrium can be obtained. Methanol can be obtained with considerable efficiency from CO-free carbon dioxide and hydrogen in an inert solvent that is capable of maintaining.
The present invention provides an industrially useful process as a method for converting carbon dioxide, which is chemically desired to be immobilized, and also as a method for producing methanol as a clean energy source.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 C07B 61/00 300

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】メタノールを合成する方法において、銅及
び亜鉛を主とする金属を加熱蒸発する事により得られる
平均粒径10オングストローム〜1ミクロンの微細粒子を
不活性溶媒中に懸濁させ、実質的に一酸化炭素を含まな
い二酸化炭素と水素とを反応させる事を特徴とするメタ
ノールの製造方法。
In a method for synthesizing methanol, fine particles having an average particle size of 10 angstrom to 1 micron obtained by heating and evaporating a metal mainly composed of copper and zinc are suspended in an inert solvent. A method for producing methanol, which comprises reacting carbon dioxide and carbon monoxide-free carbon with hydrogen.
【請求項2】銅及び亜鉛を主とする金属が補強剤として
アルミニウムまたはクロムを含有したものである請求項
1に記載の方法。
2. The method according to claim 1, wherein the metal mainly composed of copper and zinc contains aluminum or chromium as a reinforcing agent.
【請求項3】不活性溶媒が芳香族化合物、直鎖又は環状
の脂肪族化合物、高級アルコールおよびパーフルオロカ
ーボンからなる群から選ばれたものである請求項1に記
載の方法。
3. The method according to claim 1, wherein the inert solvent is selected from the group consisting of aromatic compounds, linear or cyclic aliphatic compounds, higher alcohols and perfluorocarbons.
【請求項4】反応温度が100〜400℃である請求項1に記
載の方法。
4. The method according to claim 1, wherein the reaction temperature is 100 to 400 ° C.
JP2055006A 1990-03-08 1990-03-08 Method for producing methanol Expired - Lifetime JP2764114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055006A JP2764114B2 (en) 1990-03-08 1990-03-08 Method for producing methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055006A JP2764114B2 (en) 1990-03-08 1990-03-08 Method for producing methanol

Publications (2)

Publication Number Publication Date
JPH03258738A JPH03258738A (en) 1991-11-19
JP2764114B2 true JP2764114B2 (en) 1998-06-11

Family

ID=12986573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055006A Expired - Lifetime JP2764114B2 (en) 1990-03-08 1990-03-08 Method for producing methanol

Country Status (1)

Country Link
JP (1) JP2764114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119399A (en) * 2007-11-16 2009-06-04 Kyushu Univ Method of manufacturing methanol synthesis catalyst, and methanol synthesis catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713684B2 (en) * 1992-09-01 1998-02-16 工業技術院長 Methanol synthesis method
JP2010254666A (en) * 2009-03-30 2010-11-11 Tokyo Electric Power Co Inc:The Method of methanol synthesis using microwave
JP5590320B2 (en) * 2010-09-28 2014-09-17 東京電力株式会社 Slurry bed type carbon dioxide fixation reactor
JP5777043B2 (en) * 2010-11-24 2015-09-09 新日鐵住金株式会社 Method for producing methanol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119399A (en) * 2007-11-16 2009-06-04 Kyushu Univ Method of manufacturing methanol synthesis catalyst, and methanol synthesis catalyst

Also Published As

Publication number Publication date
JPH03258738A (en) 1991-11-19

Similar Documents

Publication Publication Date Title
JP3010314B2 (en) Hydrocarbon preparation method
JP6918018B2 (en) Methanol production method
JP2012532011A (en) A process for making an improved cobalt molybdenum-sulfide catalyst for higher alcohol synthesis.
US20180273454A1 (en) Multicomponent heterogeneous catalysts for direct co2 hydrogenation to methanol
US5137924A (en) Catalytic process
US20170056861A1 (en) Catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons
JP3005647B2 (en) Photocatalyst, method for producing the same, and method for producing hydrogen using the same
CN1569785A (en) Process for the preparation of methanol
JP2764114B2 (en) Method for producing methanol
WO2014111919A2 (en) A catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons
US20200299214A1 (en) Production of ethanol from carbon dioxide and hydrogen
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
JPH03258737A (en) Production of methanol
EP0133778B1 (en) Methanol conversion process
JP3086867B2 (en) Catalyst for syngas production and method for syngas production
US4943551A (en) Catalyst for synthesis of mixtures of methanol and higher alcohols
JP5626077B2 (en) Methanol production method and methanol production catalyst
CN113603648A (en) Cobalt complex and preparation method and application thereof
JP5843250B2 (en) Method for producing methanol
EA039032B1 (en) Start-up procedure for a fischer-tropsch process
JP7361072B2 (en) carbon dioxide reduction catalyst
JP7332871B2 (en) Methanol production method and methanol production catalyst
WO2018015824A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of a copper/zinc/zirconium mixed metal oxide catalyst
JP7174407B2 (en) Method for producing methoxypropanol
JP2529161B2 (en) Method for producing dimethyl ether